Designation: D 3239 - 91 (Reapproved 2001)

# Standard Test Method for Aromatic Types Analysis of Gas-Oil Aromatic Fractions by High Ionizing Voltage Mass Spectrometry<sup>1</sup>

This standard is issued under the fixed designation D 3239; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon  $(\epsilon)$  indicates an editorial change since the last revision or reapproval.

#### 1. Scope

1.1 This test method<sup>2</sup> covers the determination by high ionizing voltage, low resolution mass spectrometry of 18 aromatic hydrocarbon types and 3 aromatic thiophenotypes in straight run aromatic petroleum fractions boiling within the range from 205 to 540°C (400 to 1000°F) (corrected to atmospheric pressure). Samples must be nonolefinic, must contain not more than 1 mass % of total sulfur, and must contain not more than 5 % nonaromatic hydrocarbons. Composition data are in volume percent.

Note 1—Although names are given to 15 of the compound types determined, the presence of other compound types of the same empirical formulae is not excluded. All other compound types in the sample, unidentified by name or empirical formula, are lumped into six groups in accordance with their respective homologous series.

- 1.2 The values stated in acceptable SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

# 2. Referenced Documents

- 2.1 ASTM Standards:
- D 2549 Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography<sup>3</sup>
- D 2786 Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturate Fractions by High Ionizing Voltage Mass Spectrometry<sup>4</sup>
- E 137 Practice for Evaluation of Mass Spectrometers for

Quantitative Analysis from a Batch Inlet<sup>5</sup>

### 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 Characteristic Mass Summations— Classes I–VII:
- 3.1.2 *Class I*:

$$\Sigma 78 = 78 + 92 + 106 + 120 + ...$$
to end, polyisotopic  
+ 91 + 105 + 119 + ...to end, monoisotopic (1)

3.1.3 *Class II*:

$$\Sigma 104 = 104 + 118 + 132 + 146 + ...$$
to end, polyisotopic + 117 + 131 + 145 + ...to end, monoisotopic (2)

3.1.4 Class III:

$$\Sigma 129 = 130 + 144 + 158 + 172 + ...$$
to end, polyisotopic  $+ 129 + 143 + 157 + 171 + ...$ to end, monoisotopic (3)

3.1.5 Class IV:

$$\Sigma 128 = 128 + 142 + 156 + 170 + ...$$
to end, polyisotopic + 141 + 155 + 169 + ...to end, monoisotopic (4)

3.1.6 Class V:

$$\Sigma 154 = 154 + 168 + 182 + 196 + ...$$
to end, polyisotopic +  $167 + 181 + 195 + ...$ to end, monoisotopic (5)

3.1.7 Class VI:

$$\Sigma 166 = 166 + 180 + 194 + 208 + ...$$
to end, polyisotopic + 179 + 193 + 207 + ...to end, monoisotopic (6)

3.1.8 *Class VII*:

$$\Sigma 178 = 178 + 192 + 206 + 220 + ...$$
to end, polyisotopic + 191 + 205 + 219 + ...to end, monoisotopic (7)

3.1.9 Classes, Compound Types, Empirical Formulae—See Table 1.

# 4. Summary of Test Method

4.1 The relative abundance of seven classes (I–VII) of aromatics in petroleum aromatic fractions is determined by mass spectrometry using a summation of peaks most characteristic of each class. Calculations are carried out by the use of a 7 by 7 inverted matrix derived from published spectra of pure aromatic compounds. Each summation of peaks includes the polyisotopic homologous series that contains molecular ions and the monoisotopic homologous series one mass unit less

<sup>&</sup>lt;sup>1</sup> This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.04 on Hydrocarbon Analysis.

Current edition approved Oct. 15, 1991. Published December 1991. Originally published as D 3239-73 T. Last previous edition D 3239-86.

<sup>&</sup>lt;sup>2</sup> Robinson, C. J., and Cook, G. L., *Analytical Chemistry* (ANCHA), Vol 41, 1969, p. 1548.

<sup>&</sup>lt;sup>3</sup> Annual Book of ASTM Standards, Vol 05.01.

<sup>&</sup>lt;sup>4</sup> Annual Book of ASTM Standards, Vol 05.02.

<sup>&</sup>lt;sup>5</sup> Discontinued—See 1992 Annual Book of ASTM Standards, Vol 05.03.

TABLE 1 Classes, Compound Types, and Empirical Formulae

| _ |       | , ,  | , , , , , , , , , , , , , , , , , , ,                  |
|---|-------|------|--------------------------------------------------------|
| Ī | Class | Туре | Formula                                                |
|   | I     | 0    | alkylbenzenes, C <sub>n</sub> H <sub>2n-6</sub>        |
|   | 1     | 1    | benzothiophenes, C <sub>n</sub> H <sub>2n-10</sub> S   |
|   | 1     | 2    | naphthenephenanthrenes,                                |
|   |       |      | $C_{n}H_{2n-20}$                                       |
|   | II    | 0    | naphthenebenzenes, C <sub>n</sub> H <sub>2n-8</sub>    |
|   | II.   | 1    | pyrenes, C <sub>0</sub> H <sub>20-22</sub>             |
|   | II    | 2    | unidentified                                           |
|   | III   | 0    | dinaphthenebenzenes, $C_nH_{2n-10}$                    |
|   | III   | 1    | chrysenes, C <sub>p</sub> H <sub>20-24</sub>           |
|   | III   | 2    | unidentified                                           |
|   | IV    | 0    | naphthalenes, C <sub>n</sub> H <sub>2n-12</sub>        |
|   | IV    | 1    | dibenzothiophenes, C <sub>n</sub> H <sub>2n-16</sub> S |
|   | IV    | 2    | unidentified                                           |
|   | V     | 0    | acenaphthenes + dibenzofurans,                         |
|   |       |      | $C_{n}H_{2n-14}$ and $C_{n}H_{2n-16}O$                 |
|   | V     | 1    | perylenes, C <sub>0</sub> H <sub>20-28</sub>           |
|   | V     | 2    | unidentified                                           |
|   | VI    | 0    | fluorenes, C <sub>p</sub> H <sub>2p-16</sub>           |
|   | VI    | 1    | dibenzanthracenes, C <sub>n</sub> H <sub>2n-30</sub>   |
|   | VI    | 2    | unidentified                                           |
|   | VII   | 0    | phenanthrenes, C <sub>n</sub> H <sub>2n-18</sub>       |
|   | VII   | 1    | naphthobenzothiophenes, C <sub>n</sub> H <sub>2n</sub> |
|   |       |      | 22S                                                    |
|   | VII   | 2    | unidentified                                           |
|   |       |      |                                                        |

than the molecular ion series. Using characteristic summations found in the monoisotopic molecular ion—1 series of peaks, each class is further resolved to provide relative abundances of three compound types: nominal (Type 0), first overlap (Type 1), and second overlap (Type 2). The aromatic fraction is obtained by liquid elution chromatography (see Test Method D 2549).

Note 2—Monoisotopic peaks heights are obtained by correcting the polyisotopic heights for naturally occurring heavy isotopes, assuming that only ions of  $C_nH_{2n+2}$  to  $C_nH_{2-11}$  are present. This is not strictly accurate for aromatics, but the errors introduced by such assumption are trivial.

### 5. Significance and Use

5.1 A knowledge of the hydrocarbon composition of process streams and petroleum products boiling within the range 205 to 540°C (400 to 1000°F) is useful in following the effect of changes in process variables, diagnosing the source of plant upsets, and in evaluating the effect of changes in composition on product performance properties. This method, when used together with Test Method D 2786, provides a detailed analysis of the hydrocarbon composition of such materials.

# 6. Apparatus

6.1 Mass Spectrometer—The suitability of the mass spectrometer to be used with this method shall be proven by

performance tests described both herein and in Practice E 137.

- 6.2 Sample Inlet System—Any inlet system may be used that permits the introduction of the sample without loss, contamination, or change in composition. The system must function in the range from 125 to 350°C to provide an appropriate sampling device.
  - 6.3 Microburet or Constant-Volume Pipet.
- 6.4 Mass Spectrum Digitizer—It is recommended that a mass spectrum digitizer be used in obtaining the analysis, because it is necessary to use the heights of most of the peaks in the spectrum. Any digitizing system capable of supplying accurate mass numbers and peak heights is suitable.
- 6.5 *Electronic Digital Computer*—The computations for this analysis are not practical without the use of a computer. Any computer capable of providing approximately 60 K bytes in core and capable of compiling programs written in FORTRAN IV should be suitable.

### 7. Reagent

7.1 *n-Hexadecane*. (**Warning**—Combustible-Very harmful.)

### 8. Calibration

- 8.1 Calibration equations in the computer program given in Table 2 may be used directly provided the following procedures are followed:
- 8.1.1 *Instrumental Conditions*—Repeller settings are adjusted to maximize the m/e 226 ion of n-hexadecane. A magnetic field is used that will permit a scan over the mass range from 78 to 700. An ionizing voltage of 70 eV and an ionizing current in the range from 10 to 70  $\mu$ A is used.
- Note 3—The instrument conditions and calibration equations described in this method are based on the use of a  $180^{\circ}$  magnetic-deflection type mass spectrometer (CEC Model 21-103). Satisfactory results have been obtained with some other magnetic deflection instruments. It is not known if the equations are suitable for use on all other mass spectrometer types.
- 8.1.2 Computer Program—The FORTRAN program given in Table 2 contains all the equations for calculating the analysis, including those for calculating monoisotopic peak heights. The program is compiled and linked to create a computer load module that is available whenever needed. When the spectrum shown in Table 3 is processed, thee results should agree with those shown in Table 4.

### TABLE 2 High Ionizing Voltage, Low Resolution Mass Spectrometric Analysis of Gas Oil Aromatic Fractions

\* The "end statement" designated is specific for IBM computers. The user may modify the FORTRAN program to suit his individual needs. IN THIS PROGRAM THE VARIABLE "H(M)" REPRESENTS THE HEIGHT OF THE POLYISOTOPIC PEAK AT MASS M. THE VARIABLE "HDI(M)" IS THE HEIGHT С C OF THE DEISOTOPED PEAK AT MASS M. С С THIS IS A POSSIBLE MAIN PROGRAM THAT READS INPUT DATA AND CALLS FIRST С THE DEISOTOPING ROUTINE "SUBROUTINE DEISO" AND THEN THE C С CALCULATING AND REPORTING ROUTINE "SUBROUTINE AROMTC". C COMMON TITLE(20) + H(758) + HDI(758) DIMENSION MASS(8) + HITE(8) 1 READ (5,10,END=99) (TITLE(I),I=1,20) 10 FORMAT(20A4) A TITLE CARD FOR SAMPLE NAME, ETC. PRECEDES SPECTRAL DATA CARDS. C FORMAT FOR TITLE IS 2044 (20 4-CHARACTER WORDS IN 80 COLUMNS). C FORMAT FOR SPECTRAL DATA IS MASS (16) FOLLOWED BY HEIGHT (F4.0) С С WITH 8 PEAKS PER 80-COLUMN CARD. C DO 20 I=12.758 H(I) = 0.020 HDI(I) = 0.030 READ (5.40) (MASS(I) +HITE(I) + I=1.8) 40 FORMAT(8(16+F4.0)) DO 50 I=1.8 IF (MASS(I) .EQ. 999999) GO TO 60 С ENTER "999999" IN A MASS POSITION ON A CARD TO DENOTE SPECTRUM END. IF (MASS(I) . EQ. n) GO TO 50 M = MASS(I)H(M) = HITE(I)50 CONTINUE GO TO 30 60 CALL DEISO CALL AROMTC 60 TO 1 С "GO TO 1" ALLOWS SUCCESSIVE SAMPLES TO BE COMPUTED BEFORE RELEASING С С COMPUTER. C 99 STOP END SURROUTINE DEISO THIS SUBROUTINE COMPUTES MONOISOTOPIC PEAKS ASSUMING ALL IONS HAVE С С Z NUMBERS FROM +2 TO -11 IN THE FORMULA C(N)H(2N + Z). COMMON TITLE (20) + H(758) + HDI (758) DIMENSION NCAPR (758) . NHYD (758) 00 10 I=12.758 NCARB(T) = 010 NHYD(I) = 0DO 20 K=12.758 NCARB(K) = (K + 11)/14NHYD(K) = K - 12\*NCARB(K) $IF(NHYD(K) \cdot LT \cdot 0)NHYD(K) = 0$ 20 CONTINUE DO 30 K=14.758 HDI(K) = H(K) - HDI(K-1) \* (.010811 \* FLOAT(NCARB(K-1)) + .00015 \* FLOAT1 (NHYD (K-1))) HDJ(K) = HDJ(K) + HDJ(K-2) \* (.00005844 \* FLOAT(NCARB(K-2) \* (1-NCARB(K-2)) \* (1-NCARB(K-2) \* (1-NCARB(K-2)1))+.1125E-7\*FLOAT(NHYD(K-2)\*(1-NHYD(K-2)))-.162165E-5\*FLOAT(NCARB( 5K-5) #NHYD (K-5)))  $IF(HDI(K) \cdot LT \cdot 0 \cdot 0) + DI(K) = 0 \cdot 0$ 30 CONTINUE RETURN END

```
SUBROUTINE AROMTO
C THIS POUTINE GIVES THE ANALYSIS OF AROMATICS FRACTIONS FROM PETROLEUM
    USING THE PROCEDURE DESCRIBED IN ANAL CHEM 41. 1548-54 (1969)
      COMMON TITLE (20) + H(758) + HDI (758)
      DIMENSION AIN(7.7) + RA(7) + BB(7) + SR(758)
      DATA AIN /+1.8094,-.1952,+.0124,-.0027,-.0015,-.0011,-.0028,
                 -.1601.+2.0479.-.2806,-.0401.+.0082,+.0012,+.0000.
                  --0943,--2287,+2.3024,--4936,--0601,--0155,-.0089,
                  -.0292,+.0033,-.0580,+1.9404,-.1337,-.0117,-.0043,
                  -.0022,-.0003,-.0026,-.0195,+1.9773,-.1823,+.0123,
     5
                  --0420,+-0026,--0018,--0151,--0584,+2-0616,--4193,
     6
                  -.2346,-.1069,-.0267,-.0019,-.0057,-.0904,+1.9904/
C
С
      INITIALIZE SQUARE ROOT ARRAY
С
      DO 2132 I=12.750
2132 SR(I) = 0.0
С
      ASSEMBLE APPROPRIATE PEAKS IN MASS SPECTRUM OF AROMATIC FRACTION
C
C
       FOR PROCESSING IN A 7 X 7 MATRIX. QUANTITIES A6.47.48.ETC. REFER
        INITIALLY TO SUMS OF PEAKS AT Z NUMBERS 6,7,8,ETC. A6.48,ETC. ARE
C
       LATER REDEFINED TO INCLUDE THE ODD Z-NUMBER SUM CORRESPONDING TO
C
Ċ
       THE PARENT-1 SERIES (A6 = A6 + A7, A8 = A8 + A9, ETC.)
C
      A6 = 0.0
      DO 2106 M=78,750,14
 2106 \ A6 = A6 + H(M)
      A7 = 0.0
      DO 2107 M=91,750,14
 2107 A7 = A7 + HDI(M)
      A6 = A6 + A7
      A8 = 0.0
      DO 2108 M=104,750,14
 2108 A8 = A8 + H(M)
      A9 = 0.0
      DO 2109 M=117,750,14
 2109 A9 = A9 + HDI(M)
      A8 = A8 + A9
      A10 = 0.0
      DO 2110 M=130,750,14
 2110 \ A10 = A10 + H(M)
      A11 = 0.0
      DO 2111 M=129,750,14
 2111 \text{ All} = \text{All} + \text{HDI(M)}
      A10 = A10 + A11
      A12 = 0.0
      DO 2112 M=128,750,14
 2112 \text{ A12} = \text{A12} + \text{H(M)}
      A13 = 0.0
      DO 2113 M=141.750.14
 2113 \text{ A13} = \text{A13} + \text{HDI(M)}
      A12 = A12 + A13
      A14 = 0.0
      DO 2114 M=154,750,14
2114 \text{ A}14 = \text{A}14 + \text{H}(\text{M})
      A15 = 0.0
      DO 2115 M=167,750,14
2115 \text{ A15} = \text{A15} + \text{HDI}(\text{M})
      A14 = A14 + A15
      A16 = 0.0
      DO 2116 M=166.750,14
2116 \text{ A}16 = \text{A}16 + \text{H}(\text{M})
      A17 = 0.0
      DO 2117 M=179+750+14
2117 \text{ Al7} = \text{Al7} + \text{HDI(M)}
      A16 = A16 + A17
      A18 = 0.0
      DO 2118 M=178,750,14
2118 \text{ Al8} = \text{Al8} + \text{H(M)}
      A19 = 0.0
      DO 2119 M=191,750,14
```

```
2119 \text{ Al9} = \text{Al9} + \text{HDI(M)}
      A18 = A18+ A19
C
č
      CORRECT THE PEAK SUMS FOR THE PRESENCE OF IRRELEVANT IONS AT
        MASSES 175+176+189+190+200+213
С
C
      CDI175 =HDI(161) - (HDI(161) -HDI(203))/3.0
      IF (HDI (175) • GE • CDI175) GO TO 1046
      CDI175 = HDI(175)
C
      ABOVE STATEMENTS CORRECT HDI (175)
С
      NEXT STATEMENTS CORRECT H(176)
С
C
 1046 \text{ CH176} = \text{H}(162) - (\text{H}(162) - \text{H}(204))/3.0
      IF(H(176).GE.CH176)GO TO 1048
      CH176 = H(176)
С
С
      NEXT STATEMENTS CORRECT HDI(189)
С
 1048 CDI189 = CDI175 - (CDI175-HDI(203))/2.0
      IF (HDI (189) . GE. CDI189) GO TO 1049
      CDI189 = HDI(189)
C
С
      NEXT STATEMENTS CORRECT H(190)
C
 1049 \text{ CH190} = \text{CH176-(CH176-H(204))/2.0}
      IF(H(190).GE.CH190) GO TO 2101
      CH190 = H(190)
С
      NEXT STATEMENTS CORRECT H(200)
С
С
 2101 \text{ CH200} = (H(186) + H(214))/2 \cdot 0
      IF(H(200).GE.CH200) GO TO 2102
      CHS00 = H(500)
С
      NEXT STATEMENTS CORRECT HDI(213)
С
C
 2102 \text{ CDI213} = (HDI(199) + HDI(227))/2.0
       IF (HDI (213) . GE. CDI213) GO TO 2103
       CDI213 = HDI(213)
C
       NEXT STATEMENTS CORRECT THE A6.A8.ETC. SUMS
С
С
 2103 A6 =A6-(HDI(175)+HDI(189) +H(176)+H(190))
      1 +CDI175 +CDI189+ CH176+ CH190
       A10 = A10-(H(200)+HDI(213))+CH200+CDI213
С
       REDEFINE A5.48.ETC. AS SUBSCRIPTED VARIABLE AND MULTIPLY BY THE
       AROMATICS INVERSE AIN(I,J)
С
       BA(1) = A6
       BA(2) = A8
       BA(3) = A10
       BA(4) = A12
       BA(5) = A14
       BA(6) = A16
       BA(7) = A18
       DO 2125 J=1.7
       BB(J)=0.0
       DO 2124 I=1.7
 2124 RB(J)=BB(J)+BA(I)*AIN(J,I)
 2125 CONTINUE
       00 2127 J=1.7
IF(BB(J))2126.2127.2127
 2126 BB(J)=0.0
 2127 CONTINUE
       AA6 = BB(1)
       AAR = RR(2)
       AA10 = BB(3)
       AA12 = BB(4)
       AA14 = BB(5)
       AA16 = BB(6)
       AA18 = BB(7)
       SUMAA = 0.0
       DO 2128 J=1.7
```

```
2128 SUMAA = SUMAA+RB(J)
C
      VALUES OF AA6, AA8, ETC. ARE DIVISIONS CALCULATED FOR NOMINAL Z=-6,
       -A,ETC. SUMAA IS SUM OF THE AA VALUES AND REPRESENTS THE TOTAL
С
C
       DIVISIONS OF AROMATICS CALCULATED.
C
      THE FOLLOWING STATEMENTS RESOLVE OVERLAPPING TYPES IN Z = -6,
      A7 = A7-HDI(175)-HDI(189)+CDI175+CDI189
      HDI (175) = CDI175
      HDI(189)=CDI189
      DO 2130 M=105.750.14
      IF (HDI (M)) 2130,2131,2130
 2130 CONTINUE
 2131 \text{ MM} = M-14
     SLOPE = (((0.72*HDI(105))**0.5) + (HDI(MM))**0.5) /
     1 (90.71-(1000.0/FLOAT(MM))**2)
      B = (0.72*HDI(105))**0.5-90.71*SLOPE
       DO 2133 M=147.MM.14
       REALM = M
 2133 SR(M) = SLOPE*(1000.0/REALM)**2 +8
c
       AROVE IS FOR Z = -6 AND STORES SQUARE ROOTS OF ALKYL BENZENE PEAK
        HEIGHTS IN ARRAY SR(I) \cdot BELOW IS FOR Z = -8
       DO 2134 M=215.750,14
       IF (HDI (M))2134.2135.2134
 2134 CONTINUE
 2135 MN = M-14
       SLOPE = (((0.66*HDI(173))**0.5)-(HDI(MN))**0.5)/
      1 (34.12 -(1000.0/FLOAT(MN)) **2)
       B = (0.66*HDI(173))**0.5-34.12*SLOPE
       DO 2136 M=215+MN+14
       REALM = M
 2136 SR(M) = SLOPE*(1000.0/REALM)**2 +B
C
С
       BELOW IS FOR Z = -10
С
       A11 = A11 - HDI(213) + CDI213
       HDI(213) = CDI213
       DO 2137 M=241,750,14
       IF (HDI (M)) 2137-2138-2137
 2137 CONTINUE
 2138 M0 = M+14
       SLOPE = ((HDI(185))**0.5-(HDI(MO))**0.5)/
      1 (29.22-(1000.0/FLOAT(MO))**2)
       R= HDI(185)**0.5 - 29.22*SLOPE
       DO 2139 M=241,MO,14
       REALM = M
 2139 SR(M) = SLOPE*(1000.0/REALM)**2+B
C
       BELOW IS FOR Z = -12
C
       DO 2140 M=197.750.14
       IF (HDI (M)) 2140,2141,2140
 2140 CONTINUE
 2141 MP = M-14
       SLOPE = (((0.25*HDI(183))**0.5) - (HDI(MP))**0.5)/
      1 (29.86-(1000.0/FLOAT(MP))**2)
       B = (0.25 + HOI(183)) + 0.5 - 29.86 + SLOPE
       DO 2142 M=197.MP.14
       REALM = M
 2142 SR(M) = SLOPE*(1000.0/REALM)**2+B
c
C
       RELOW IS FOR Z = -14
       DO 2143 M=265,750,14
       IF (HDI (M))2143+2144+2143
 2143 CONTINUE
 2144 MQ = M-14
      SLOPE = (((0.64*HDI(251))**0.5)-(HDI(MQ))**0.5)/
      1 (15.87-(1000.0/FLOAT(MQ))**2)
       B = (0.64*HDI(251))**0.5 - 15.87*SLOPE
```

```
DO 2145 M=265,MQ,14
      REALM = M
 2145 SR(M) = SLOPE*(1000.0/REALM)**2+B
C
      RELOW IS FOR Z = -16
C
      DO 2146 M=291.750.14
      IF (HDI (M)) 2146+2147+2146
 2146 CONTINUE
 2147 MR = M-14
      SLOPE = (((0.7*HDI(277))**0.5)-(HDI(MR))**0.5)/
     1 (13.03-(1000.0/FLOAT(MR))**2)
      B = (0.7*HDI(277))**0.5-13.03*SLOPE
      DO 2148 M=291,MR,14
      REALM = M
 2148 SR(M) = SLOPE*(1000.0/REALM)**2+B
С
Č
      BELOW IS FOR Z = -18
C
      DO 2149 M=247,750,14
      IF(HDI(M) )2149,2150,2149
 2149 CONTINUE
 2150 MS = M-14
      SLOPE = (((0.58*HDI(233))**0.5)-(HDI(MS))**0.5)/
       (18.42-(1000.0/FLOAT(MS))**2)
      B = (0.58 + HDI(233)) + 0.5 - 18.42 + SLOPE
      DO 2151 M=247,MS,14
      REALM = M
 2151 SR(M) = SLOPE*(1000.0/REALM)**2+8
С
      THE SQUARE ROOT ARRAY HAS BEEN CALCULATED. FOR CERTAIN SPECTRA IT
       MAY BE POSSIBLE TO GET SLOPE AND INTERCEPT VALUES IN REGIONS OF
С
С
       ZERO PEAK HEIGHT. IF THIS OCCURS, ERRORS MIGHT BE ENTERED IN THE
C
       SR ARRAY. THE FOLLOWING SETS SR TO ZERO AT MASSES WHERE HOI=0.0
C
      DO 2153 I=12,750
      IF(HDI(I)) 2152,2152,2153
 2152 SR(I) = 0.0
 2153 CONTINUE
С
      THE SR ARRAY IS SQUARED TO GIVE UNCORRECTED PEAK HEIGHTS OF THE
C
       NOMINAL Z TYPES
С
      DO 2154 I=12,750
 2154 SR(I) = (SR(I)**2)
С
      CORRECT CERTAIN VALUES IN SR(I) FOR NONLINEARITY OF SQ RT RELATION
С
С
      SR(147) = SR(147)*1.44
      SR(197) = SR(197)*3.10
      SR(211) = SR(211)*2.52
      SR(225) = SR(225)*2.07
      SR(239) = SR(239)*1.83
      SR(253) = SR(253)*1.59
      SR(267) = SR(267)*1.39
      SR(281) = SR(281)*1.28
      SR(295) = SR(295)*1.26
      SR(309) = SR(309)*1.14
      SR(323) = SR(323)*1.06
      SR(265) = SR(265)*1.42
      SR(279) = SR(279)*1.24
      SR(293) = SR(293)*1.12
      SR(307) = SR(307)*1.06
      SR(291) = SR(291)*1.24
      SR(305) = SR(305)*1.15
      SR(319) = SR(319)*1.07
      SR(333) = SR(333)*1.06
      SR(347) = SR(347)*1.05
      SR(361) = SR(361)*1.03
      SR(247) = SR(247)*1.61
      SR(261) = SR(261)*1.50
      SR(275) = SR(275)*1.44
      SR(289) = SR(289)*1.37
      SR(303) = SR(303)*1.28
```

```
SR(317) = SR(317)*1.28
       SR(331) = SR(331)*1.21
       SR(345) = SR(345)*1.10
       SR(359) = SR(359)*1.09
       SR(373) = SR(373)*1.07
       SR(387) = SR(387)*1.05
С
       IT IS NECESSARY THAT NO VALUE SR(M) EXCEEDS THE CORRESPONDING
        VALUE HDI(M)
       DO 2156 M=12.750
       IF (SR(M)-HDI(M))2156,2156,2155
 2155 SR(M) = HDI(M)
 2156 CONTINUE
C
       CALCULATE PORTIONS OF A7 DUE TO A6A, A10S, A20A AND OTHER TYPES
C
       A6A = 0.0
       DO 2157 M=91+133+14
 2157 \text{ AGA} = \text{AGA+HDI(M)}
       DO 2158 M=147,MM,14
 2158 \text{ A6A} = \text{A6A+SR(M)}
       A10S = 0.0
       DO 2159 M=147.189.14
 2159 \text{ Alos} = \text{Alos} + \text{HDI(M)} - \text{SR(M)}
       A10S = A10S/.75
       A20A = A7-A6A-A10S
       IF (A20A) 2160 + 2161 + 2161
 2160 \ A20A = 0.0
       A10S = A7-A6A
 2161 CONTINUE
C
       CALCULATE DIVISIONS OF A6A, A10S, AND A20A
С
       TRASH = (A6-AA6*.5579)*(A7/A6)
       IF(TRASH.LT.0.0)TRASH = 0.0
A7 = A7 - TRASH
       IF(A7.LE.0.0)A7 = 1.0
       A6A = A6A - TRASH
       IF(A6A \cdot LT \cdot 0 \cdot 0)A6A = 0 \cdot 0
       IF (A6A.EQ.0.0) A7=A10S+A20A
       A64 = (A6A/A7) *AA6
       Alos = (Alos/A7)*AA6
       A20A = (A20A/A7)*AA6
C
       CALCULATE PORTIONS OF A9 DUE TO A8A, A22A, AND OTHER TYPES
       A8A = 0.0
       DO 2162 M=117,201,14
 2162 A8A = A8A+HDI(M)
       DO 2163 M=215,MN,14
 2163 A8A = A8A + SR(M)
       0.0 = ASSA
       DO 2164 M=215,257,14
 2164 \text{ A22A} = \text{A22A} + \text{HDI(M)} - \text{SR(M)}
       A22A = A22A/.75
       A36A = A9-A8A-A22A
       IF(A36A)2165+2166+2166
 2165 A36A = 0.0
       A8A-8A = A9-A8A
 2166 CONTINUE
C
       CALCULATE DIVISIONS OF ABA, A224, AND OTHER TYPES
       TRASH = (AR-AAR*.4997)*(A9/A8)
       IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
       A9 = A9 - TRASH
       IF(A9.LE.0.0)A9 = 1.0
       ABA = ABA - TRASH
       IF(A8A \cdot LT \cdot 0 \cdot 0)A8A = 0 \cdot 0
       IF (A8A.EQ.0.0) A9=A22A+A36A
       ARA = (A8A/A9) *AAR
       AZZA = (A2ZA/A9)*AAR
       A36A = (A36A/A9)*AAB
```

```
CALCULATE PORTIONS OF All DUE TO Aloa, A24A, AND OTHER TYPES
С
       A10A = 0.0
       DO 2167 M=129,227,14
 2167 A10A = A10A+HDI(M)
       DO 2168 M=241.MO.14
 2168 \text{ Aloa} = \text{Aloa+SR(M)}
       A24A = 0.0
       DO 2169 M=241.283.14
 2169 \text{ A24A} = \text{A24A} + \text{HDI(M)} - \text{SR(M)}
       A24A = A24A/.75
       A38A = A11-A10A-A24A
       IF (438A) 2170 • 2171 • 2171
 2170 \text{ A}38A = 0.0
       A24A = A11-A10A
 2171 CONTINUE
С
       CALCULATE DIVISIONS OF Aloa+A24A+AND OTHER TYPES
С
       TRASH = (A10-AA10*.4435)*(A11/A10)
       IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
       All = All - TRASH
       IF(A11.LE.0.0)A11 = 1.0
       Aloa = Aloa - TRASH
       IF(A10A.LT.0.0)A10A = 0.0
       IF (A10A.EQ.0.0) A11=A24A+A38A
       A10A = (A10A/A11) *AA10
       A24A = (A24A/A11) *A410
       A38A = (A38A/A11) *AA10
       CALCULATE PORTIONS OF A13 DUE TO A12A, A16S, AND OTHER TYPES
       A12A = 0.0
       DO 2172 M=141-183-14
 2172 \text{ A}12A = \text{A}12A + \text{HDI}(M)
       DO 2173 M=197.MP,14
 2173 \text{ A}12A = \text{A}12A+\text{SR}(M)
       A16S = 0.0
       DO 2174 M=197,225,14
 2174 \text{ A16S} = \text{A16S} + \text{HDI(M)} - \text{SR(M)}
       A16S = A165/.625
       A26A = A13-A12A-A16S
       IF (A26A) 2175+2176+2176
 2175 \text{ A26A} = 0.0
       A165 = A13-A12A
 2176 CONTINUE
       CALCULATE DIVISIONS OF A12A, A16S, A26A
С
       TRASH = (A12-AA12*.5192)*(A13/A12)
       IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
       A13 = A13 - TRASH
       IF(A13.LE.0.0)A13 = 1.0
       A12A = A12A - TRASH
       IF(A12A.LT.0.0)A12A = 0.0
       IF (A12A.EQ.0.0) A13=A165+A26A
       A12A = (A12A/A13)*AA12
       A16S = (A16S/A13)*AA12
       A26A = (A26A/A13)*AA12
С
       CALCULATE PORTION OF 415 DUE TO A14A, A28A, AND OTHER TYPES
       A14A = 0.0
       DO 2177 M=167.251.14
 2177 \text{ A14A} = \text{A14A+HDI(M)}
       DO 2178 M=265,MQ,14
 2178 \text{ A}14A = \text{A}14A+\text{SR}(M)
       0.0 = A88A
       DO 2179 M=265+307+14
 2179 \text{ A28A} = \text{A28A} + \text{HDI(M)} - \text{SR(M)}
       A28A = A28A/.75
       A42A = A15-A14A-A28A
```

```
IF (A42A) 2180 + 2181 + 2181
  2180 \text{ A42A} = 0.0
        A28A = A15-A14A
  2181 CONTINUE
С
C
        CALCULATE DIVISIONS OF A14A.A28A.AND OTHER TYPES
С
        TRASH = (A14-AA14*.5075)*(A15/A14)
        IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
        A15 = A15 - TRASH
        IF(A15 \cdot LE \cdot 0 \cdot 0)A15 = 1 \cdot 0
        A14A = A14A - TRASH
        IF(A14A.LT.0.0)A14A = 0.0
        IF (A14A.EQ.0.0) A15=A28A+A42A
        A14A = (A14A/A15)*AA14
        A28A = (A28A/A15)*AA14
        A42A = (A42A/A15)*AA14
С
        CALCULATE PORTIONS OF A17 DUE TO A16A,A30A,AND OTHER TYPES
        A16A = 0.0
        DO 2182 M=179,277,14
  2182 \text{ A16A} = \text{A16A+HDI(M)}
        DO 2183 M=291,MR,14
 2183 A16A = A16A+SR(M)
A30A = 0.0
        DO 2184 M=291+333+14
  2184 \text{ A30A} = \text{A30A} + \text{HDI(M)} + \text{SR(M)}
        A30A = A30A/.75
        A44A = A17-A16A-A30A
        IF (A44A) 2185+2186+2186
  2185 A44A = 0.0
        A30A = A17-A16A
 2186 CONTINUE
C
        CALCULATE DIVISIONS OF A16A+A30A+AND OTHER TYPES
С
        TRASH = (A16-AA16*.4910)*(A17/A16)
        IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
        A17 = A17 - TRASH
        IF(A17 \cdot LE \cdot 0 \cdot 0) A17 = 1 \cdot 0
        A16A = A16A - TRASH
        IF(A16A \cdot LT \cdot 0 \cdot 0) A16A = 0 \cdot 0
        IF (A16A.EQ.0.0) A17=A30A+A44A
        A16A = (A16A/A17)*AA16
        A30A = (A30A/A17)*AA16
        A44A = (A44A/A17)*AA16
C
        CALCULATE PORTIONS OF A19 DUE TO A18A.A22S.A32A
С
        A18A = 0.0
        DO 2187 M=191,233,14
 2187 A18A = A18A+HDI(M)
        DO 2188 M=247.MS.14
 2188 \text{ A18A} = \text{A18A+SR(M)}
        A225 = 0.0
       DO 2189 M=247+289+14
 2189 \text{ A22S} = \text{A22S} + \text{HDI(M)} - \text{SR(M)}
        A225 = A225/.75
       A32A = A19-A18A-A22S
       IF (A32A) 2190 + 2191 + 2191
 2190 \text{ A}32A = 0.0
       ARIA-PIA = RESSA
 2191 CONTINUE
C
C
       CALCULATE DIVISIONS OF A18A.A225.AND OTHER TYPES
C
       TRASH = (A18-AA18*.5073)*(A19/A18)
       IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
       A19 = A19 - TRASH
       IF(A19.LE.0.0)A19 = 1.0
       A18A = A18A - TRASH
       IF(A18A \cdot LT \cdot 0 \cdot 0)A18A = 0 \cdot 0
       IF (A18A.EQ.0.0) A19=A22S+A32A
       A18A = (A18A/A19)*A418
       A225 = (A225/A19)*AA18
       A32A = (A32A/A19)*AA18
```

```
С
C
      THIS COMPLETES CALCULATION OF AROMATICS BREAKDOWN
      VOLUME PERCENTS ARE NEXT CALCULATED
C
      V6A = 100.0*A6A/SUMAA
      V105 = 100.0*A105/SUMAA
      V204 = 100.0*A20A/SUMAA
      V8A = 100.0*A8A/SUMAA
      V22A = 100.0*A22A/SUMAA
      V364 = 100.0*A36A/SUMAA
      V10A = 100.0*A10A/SUMAA
      V24A = 100.0*A24A/SUMAA
      V38A = 100.0*A38A/SUMAA
      V12A = 100.0*A12A/SUMAA
      V165 = 100.0*A165/SUMAA
      V26A = 100.0*A26A/SUMAA
      V14A = 100.0*A14A/SUMAA
      V28A = 100.0*A28A/SUMAA
      V42A = 100.0*A42A/SUMAA
      V16A = 100.0*A16A/SUMAA
      V30A = 100.0*A30A/SUMAA
      V44A = 100.0*A44A/SUMAA
      V18A = 100.0*A18A/SUMAA
      V225 = 100.0 # A225/SUMAA
      V32A = 100.0*A32A/SUMAA
C
      AMONO = A6A+A8A+A10A
      VMONO = V6A+V8A+V10A
      ADI = A12A+A14A+A16A
      VDI = V12A+V14A+V16A
      ATRI = A18A+A20A
      VTRI = V18A+V20A
      ATETRA = A22A+A24A
      VTETRA = V22A+V24A
      APENTA = A28A+A30A
      VPENTA = V28A+V30A
      ATHIO = A10S+A16S+A22S
      VTHIO = V10S+V16S+V22S
      AUNID = A36A+A38A+A26A+A42A+A44A+A32A
      VUNID = V36A+V38A+V26A+V42A+V44A+V32A
C
      WRITE (6,2500)
      WRITE (6,2501)(TITLE(I),I=1,20)
WRITE (6,2502)AMONO,VMONO,464,V64,A84,V84,A104,V10A
      WRITE (6,2503) ADI, VDI, A12A, V12A, A14A, V14A, A16A, V16A
      WRITE (6,2504) ATRI, VTRI, A184, V184, A204, V20A
      WRITE (6,2505) ATETRA, VTETRA, A22A, V22A, A24A, V24A
      WRITE (6,2506) APENTA. VPENTA. A28A. V28A. A30A. V30A
      WRITE (6,2507) ATHIO, VTHIO, A10S, V10S, A16S, V16S, A22S, V22S
      WRITE (6,2508) AUNID, VUNID, A36A, V36A, A38A, V38A, A26A, V26A, A42A, V42A,
     1 A44A.V44A.A32A.V32A
 2500 FORMAT (1H1 9X,44HMASS SPECTRAL ANALYSIS OF AROMATIC FRACTIONS)
 2501 FORMAT (1H0+20A4//38X+27HCALC. ION SUMS
                                                  VOLUME PCT)
 2502 FORMAT (1H0.8x.13HMONOAROMATICS.24x,F7.0,6x,F7.1/10x.13HALKYLBENZE
     1NES+15X+F7.0+6X+F7.1/10X+17HNAPHTHENEBENZENES+11X+F7.0+6X+F7.1/
     210X.19HDINAPHTHENEBENZENES,9X.F7.0.6X,F7.1)
 2503 FORMAT (1H0.8X.11HDIAROMATICS.26X.F7.0.6X.F7.1/10X.12HNAPHTHALENES 1.16X.F7.0.6X.F7.1/10X.28HACENAPHTHENES. DIBENZOFURANS.F7.0.6X.F7.1
     2/10X.9HFLUORENES,19X,F7.0.6X,F7.1)
 2504 FORMAT (1H0,8X,12HTRIAPOMATICS,25X,F7.0,6X,F7.1/10X,13HPHENANTHREN
     1ES.15X.F7.0.6X.F7.1/10X.22HNAPHTHENEPHENANTHRENES.6X.F7.0.6X.F7.1)
 2505 FORMAT (1H0,8X,14HTETRAAROMATICS,23X,F7.0,6X,F7.1/10X,7HPYRENES,21
     1X.F7.0.6X.F7.1/10X.9HCHRYSENES.19X.F7.0.6X.F7.1)
 2506 FORMAT (1H0.8X.14HPENTAAROMATICS.23X.F7.0.6X.F7.1/10X.9HPERYLENES.
     119X.F7.0,6X.F7.1/10X.17HDIBENZANTHRACENES,11X.F7.0.6X,F7.1)
 2507 FORMAT (1H0+8X+19HTHIOPHENO AROMATICS+18X+F7+0+6X+F7+1/10X+15HBENZ
     10THIOPHENES+13X+F7.0+6X+F7.1/10X+17HDIBENZOTHIOPHENES+11X+F7.0+6X+
     2F7.1/10X,22HNAPHTHOBENZOTHIOPHENES,6X,F7.0,6X,F7.1)
 2508 FORMAT (1H0.8X,22HUNIDENTIFIED AROMATICS,15X,F7.0,6X,F7.1/10X,37HC
     1LASS I INCL WITH NAPH PHENANTHRENES/10X+8HCLASS II+20X+F7.0+6X+F7
     2.1/10X.9HCLASS III.19XF7.0.6X.F7.1/10X.8HCLASS IV.20X.F7.0.6X.F7.1
     3/10X.7HCLASS V.21X.F7.0,6X.F7.1/10X,8HCLASS VI.20X,F7.0,6X,F7.1/10
     4x,9HCLASS VII,19X,F7.0.6X,F7.1)
      RFTURN
      END
```

- 8.1.2.1 *Data Input Format*—The input format suggested in the main program may be changed to suit the needs of individual laboratories provided that true masses and peak heights are stored in the H(M) array.
- 8.1.2.2 FORTRAN IV Language—Changes in the program may be required for compatibility with the particular computing system to be used. These are permitted provided that the altered program gives the results shown in Table 4 with the input data of Table 3.

Note 4—The program, as shown in Table 2, has run satisfactorily on IBM System 360 computers.

#### 9. Procedure

9.1 If the mass spectrometer has been in continuous operation, no additional preparation is necessary before analyzing samples. However, if the spectrometer has been turned on only recently, check its operation according to the manufacturer's instructions to ensure stability before proceeding.

9.2 Obtain the mass spectrum of the sample, scanning from mass 76 to the high-mass end of the spectrum.

### 10. Calculations

10.1 *Recording Mass Spectrum*—Read peak heights and the corresponding masses for all peaks in the spectrum of the sample. Use the data, along with sample identification, as input to the computer.

### 11. Precision and Bias

11.1 The precision of this test method as obtained by statistical examination of interlaboratory test results on a sample having the composition given in Table 5, is as follows:

TABLE 3 PC-69-378 Test Spectrum for Gas Oil Aromatics Analysis

|            |            | IA         | DLE 3      | PC-0       | 9-3/0      | iesi ə     | Jecuru     | 1111 101 ( | Gas U      | II AIOII   | iatics     | Allalys    | 15         |            |          |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|
| MASS       | ΗŤ         | MASS       | ΗT         | MASS       | нТ         | MASS       | нТ         | MASS       | ΗT         | MASS       | нТ         | MASS       | нт         | MASS       | нт       |
| 78         |            | 79         | _          | 80         |            |            | 610        |            | 128        | 83         | 532        | 84         | 76         | 85         | 181      |
| 86<br>94   | -          | 87         |            | 88         |            |            | 140        | 90         |            |            | 694        |            | 210        |            | 216      |
| 102        |            |            | 480<br>127 |            | 108<br>174 |            | 301<br>984 | 98         | _          | 99         | 53         | 100        | 54         |            | 158      |
| 110        | 68         |            | 143        | 112        |            |            | 132        |            | 387<br>117 |            | 187<br>402 |            | 107<br>194 |            | 264      |
|            |            |            |            |            |            | 115        | 100        | 117        | 117        | 115        | 402        | 110        | 194        | 11/        | 400      |
|            | 270        |            | 1045       | 120        |            | 121        | 164        | 122        | 70         | 123        | 152        | 124        | 48         | 125        | 104      |
|            | 134        |            | 175        |            | 407        |            | 482        | 130        | 287        | 131        | 655        |            | 272        |            | 662      |
|            | 225        | -          | 112        | 136        | 47         | 137        | 98         | 138        |            |            | 146        | 140        | 72         | 141        | 406      |
| 150        | 297<br>83  |            | 496<br>140 |            | 289        |            | 739        |            | 212        |            | 289        |            | 102        | 149        | 94       |
| 150        | 73         | 151        | 140        | 152        | 247        | 153        | 559        | 154        | 163        | 155        | 486        | 156        | 264        | 157        | 438      |
| 158        | 226        | 159        | 533        | 160        | 144        | 161        | 161        | 162        | 70         | 163        | 119        | 164        | 76         | 165        | 477      |
|            | 204        |            | 268        |            | 180        |            | 434        |            | 209        |            | 318        |            | 140        |            | 316      |
|            | 106        | _          | 125        |            | 129        |            | 104        |            | 334        |            | 414        |            | 204        |            | 312      |
|            | 160<br>143 |            | 280        |            | 134        |            | 556        | 186        | 98         |            | 218        | 188        | 96         |            | 306      |
| 170        | 143        | 191        | 297        | 192        | 262        | 193        | 380        | 194        | 200        | 195        | 318        | 196        | 132        | 197        | 191      |
| 198        | 98         | 199        | 179        | 200        | 112        | 201        | 158        | 202        | 300        | 202        | 253        | 20%        | 144        | 205        | 307      |
| 206        | 255        |            | 316        |            | 171        |            | 240        |            | 117        |            | 168        | 212        | 90         | 213        |          |
| 214        | 93         |            | 374        |            | 213        |            | 225        |            | 156        |            | 269        |            | 216        |            | 238      |
|            | 133        |            | 169        |            | 124        |            | 154        |            | 184        | 227        | 181        |            | 200        | 229        | 320      |
| 230        | 206        | 231        | 244        | 535        | 171        | 533        | 197        | 234        | 165        | 235        | 172        | 236        | 112        | 237        | 150      |
| 238        | 113        | 239        | 257        | 240        | 136        | 241        | 189        | 242        | 174        | 24.2       | 251        | 344        | 106        | 245        | <b></b>  |
|            | 167        |            | 153        |            | 130        |            | 134        |            | 132        |            | 118        |            | 196<br>192 | 253        | 214      |
| 254        | 124        | 255        | 178        |            | 172        |            | 190        |            | 173        |            | 156        |            | 152        | 261        |          |
|            | 121        |            | 145        |            | 124        | 265        | 162        |            | 156        |            | 153        |            | 128        | 269        |          |
| 270        | 155        | 271        | 144        | 272        | 144        | 273        | 114        |            | 142        | 275        | 105        |            | 149        | 277        |          |
| 278        | 130        | 270        | 136        | 200        | 143        | 201        |            |            |            |            |            |            |            |            |          |
|            | 127        | 287        | 97         |            | 124        |            | 133<br>114 |            | 132        |            | 127        |            | 133        | 285        |          |
|            | 134        |            | 115        | 296        |            | 297        |            |            | 123<br>122 | 291<br>299 | 94<br>95   |            | 125<br>130 | 293        | -        |
| 302        | 127        | 303        | 93         | 304        |            | 305        | 85         |            | 122        | 307        | 93         |            | 123        | 301<br>309 | 82<br>95 |
| 310        | 120        | 311        | 95         | 312        | 116        | 313        | 91         |            | 120        | 315        | 78         |            | 116        | 317        | 77       |
| 210        | 106        | 210        | 70         | 224        |            |            |            |            |            |            |            |            |            |            |          |
| 326        |            | 319<br>327 | 78<br>78   | 320        |            | 321        | 81         |            | 115        | 323        | 80         | 324        |            | 325        | 82       |
|            | 109        | 335        | 75         | 328<br>336 |            | 329<br>337 | 69<br>73   |            | 112<br>108 | 331        | 68         | 332        |            | 333        | 68       |
| 342        |            | 343        | 62         | 344        |            | 345        | 61         | 346        | 98         | 339<br>347 | 75<br>61   | 340        |            | 341        | 67       |
| 350        |            | 351        | 69         | 352        |            | 353        | 67         | 354        | 100        | 355        | 57         | 348<br>356 |            | 349<br>357 | 75<br>56 |
| 358        | 102        | 359        | 54         | 360        | 92         | 361        | 54         |            |            |            |            |            |            |            |          |
| 366        |            | 367        | 63         | 368        | 96         | 369        | 56         | 362<br>370 | 96<br>98   | 363<br>371 | 69<br>50   | 364<br>372 | 102<br>95  | 365<br>373 | 73<br>49 |
| 374        | 84         | 375        | 47         | 376        | 88         | 377        | 54         | 378        | 90         | 379        | 55         | 380        | 90         | 381        | 54       |
| 382        | 88         | 383        | 49         | 384        | 91         | 385        | 46         | 386        | 87         | 387        | 44         | 388        | 76         | 389        | 43       |
| 390        | 80         | 391        | 47         | 392        | 84         | 393        | 48         | 394        | 84         | 395        | 48         | 396        | 80         | 397        | 45       |
| 200        | ٠,         | 300        | 4.5        |            |            |            |            |            |            |            |            |            |            |            |          |
| 398<br>406 | 84<br>76   | 399<br>407 | 42<br>42   | 400<br>408 | 81<br>75   | 401<br>409 | 41         | 402        | 67         | 403        | 38         | 404        | 70         | 405        | 41       |
| 414        | 76         | 415        | 38         | 416        | 60         | 417        | 42<br>34   | 410<br>418 | 72<br>63   | 411<br>419 | 40<br>34   | 412<br>420 | 77         | 413<br>421 | 38       |
| 422        | 66         | 423        | 38         | 424        | 64         | 425        | 36         | 426        | 68         | 427        | 34         | 428        | 66<br>66   | 421        | 38<br>33 |
| 430        | 54         | 431        | 30         | 432        | 56         | 433        | 33         | 434        | 59         | 435        | 33         | 436        | 59         | 437        | 34       |
|            |            |            | 20         |            |            |            |            |            | _          |            |            |            |            |            |          |
| 438<br>446 | 57<br>49   | 439<br>447 | 32<br>28   | 440<br>448 | 61<br>52   | 441        | 30         | 442        | 58         | 443        | 30         | 444        | 47         | 445        | 27       |
| 454        | 54         | 455        | 27         | 456        | 53<br>50   | 449<br>457 | 30<br>26   | 450<br>458 | 54<br>41   | 451<br>459 | 30<br>23   | 452<br>460 | 52<br>44   | 453<br>461 | 28<br>25 |
| 462        | 46         | 463        | 26         | 464        | 47         | 465        | 26         | 466        | 45         | 467        | 25         | 468        | 48         | 469        | 24       |
| 470        | 44         | 471        | 23         | 472        | 36         | 473        | 21         | 474        | 38         | 475        | 22         | 476        | 40         | 477        | 55       |
| ,          | , .        | ,          | 22         |            |            |            |            |            |            |            |            |            |            |            |          |
| 478        | 41         | 479        | 23         | 480        | 40         | 481        | 55         | 482        | 40         | 483        | 21         | 484        | 38         | 485        | 20       |
| 486<br>494 | 31<br>34   | 487<br>495 | 17<br>18   | 488<br>496 | 33         | 489        | 19         | 490        | 35         | 491        | 19         | 492        | 35         | 493        | 20       |
| 502        | 28         | 503        | 15         | 504        | 35<br>30   | 497<br>505 | 18<br>17   | 498<br>506 | 33<br>30   | 499<br>507 | 17<br>18   | 500<br>508 | 26         | 501        | 15       |
| 510        | 30         | 511        | 16         | 512        | 28         | 513        | 18         | 514        | 55<br>20   | 515        | 13         | 516        | 29<br>24   | 509<br>517 | 17<br>14 |
|            |            |            |            |            |            |            |            | •          |            |            | • •        |            |            | J.,        | 1-7      |
| 518        | 25         | 519        | 14         | 520<br>520 | 26         | 521        | 14         | 522        | 24         | 523        | 14         | 524        | 24         | 525        | 14       |
| 526<br>534 | 24<br>21   | 527<br>535 | 13<br>12   | 528<br>536 | 18         | 529<br>527 | 11         | 530        | 20         | 531        | 12         | 532        | 50         | 533        | 12       |
| 542        | 15         | 543        | 9          | 544        | 20<br>16   | 537<br>545 | 11         | 538<br>546 | 20         | 539<br>547 | 11         | 540        | 18         | 541        | 11       |
| 550        | 16         | 551        | 9          | 552        | 16         | 553        | 9          | 554        | 18<br>14   | 555        | 10<br>8    | 548<br>556 | 18<br>11   | 549<br>557 | 10<br>7  |
|            |            |            |            |            |            |            |            |            | • **       |            | -          | - ,,,      | 11         | 33.        | •        |
| 558        | 11         | 559        | 8          | 560        | 13         | 561        | 8          | 562        | 14         | 563        | 8          | 564        | 12         | 565        | А        |
| 566<br>574 | 12         | 567        | 9          | 568        | 11         | 569        | 8          | 570        | 9          | 571        | 6          | 572        | 10         | 573        | 8        |
| 574<br>582 | 10<br>8    | 575<br>583 | 6<br>5     | 576<br>584 | 10<br>7    | 577<br>505 | 6          | 578<br>586 | 9          | 579        | 6          | 580        | 9          | 581        | 6        |
| 590        | 8          | 591        | 5<br>6     | 592        | 8          | 585<br>593 | 5<br>4     | 586<br>594 | 7<br>7     | 587<br>595 | 5<br>4     | 588<br>596 | 7          | 589<br>597 | 5        |
|            |            | ~          |            |            |            | 2,0        | ~          | 774        | '          | 377        | ~          | מצנ        | 6          | 597        | 4        |
| 598        | 5          | 599        | 4          | 600        | 6          | 601        | 4          | 602        | 6          | 603        | 4          | 604        | 6          | 605        | 4        |
| 606        | 5          | 607        | 3          | 608        | 5          | 609        | 3          | 610        | 4          | 611        | 3          | 612        | 4          | 613        | 3        |
| 614        | 4          | 615        | 4          | 616        | 4          | 617        | 3          | 618        | 4          | 619        | 3          | 620        | 4          | 621        | 3        |
| 625        | 7          | 624        | 3          | 626        | 3          | 628        | 3          | 630        | 3          | 632        | 390        | 9999       |            |            |          |

TABLE 4 Mass Spectral Analysis of Aromatic Fractions PC-69-378 Test Spectrum for Gas Oil Aromatics Analysis

|     |                         | Calc. Ion | Sums   | Volume | %    |
|-----|-------------------------|-----------|--------|--------|------|
|     | Monoaromatics:          |           | 28498. |        | 38.9 |
|     | Alkylbenzenes           | 9703.     |        | 13.3   |      |
|     | Naphthenebenzenes       | 9017.     |        | 12.3   |      |
|     | Dinaphthenebenzenes     | 9778.     |        | 13.4   |      |
|     | Diaromatics:            |           | 19158. |        | 26.2 |
|     | Naphthalenes            | 4774.     |        | 6.5    |      |
|     | Acenaphthenes,          | 6576.     |        | 9.0    |      |
|     | dibenzofurans           |           |        |        |      |
|     | Fluorenes               | 7809.     |        | 10.7   |      |
|     | Triaromatics:           |           | 9625.  |        | 13.1 |
|     | Phenanthrenes           | 6156.     |        | 8.4    |      |
|     | Naphthenephenanthrenes  | 3470.     |        | 4.7    |      |
|     | Tetraaromatics:         |           | 6070.  |        | 8.3  |
|     | Pyrenes                 | 3980.     |        | 5.4    |      |
| 90. | Chrysenes               | 2090.     |        | 2.9    |      |
|     | Pentaaromatics:         |           | 1658.  |        | 2.3  |
|     | Perylenes               | 1293.     |        | 1.8    |      |
|     | Dibenzanthracenes       | 366.      |        | 0.5    |      |
|     | Thiopheno Aromatics:    |           | 1872.  |        | 2.6  |
|     | Benzothiophenes         | 565.      |        | 8.0    |      |
|     | Dibenzothiophenes       | 968.      |        | 1.3    |      |
|     | Naphthobenzothiophenes  | 339.      |        | 0.5    |      |
|     | Unidentified Aromatics: |           | 6322.  |        | 8.6  |
|     | Class I incl with       |           |        |        |      |
|     | Naphthenephenanthrene   | es        |        |        |      |
|     | Class II                | 614.      |        | 0.8    |      |
|     | Class III               | 838.      |        | 1.1    |      |
|     | Class IV                | 3431.     |        | 4.7    |      |
|     | Class V                 | 546.      |        | 0.7    |      |
|     | Class VI                | 281.      |        | 0.4    |      |
|     | Class VII               | 612.      |        | 0.8    |      |

TABLE 5 Precision Summary Based on Cooperative Data

|                             | Vol %        | $\sigma_r$ | $\sigma_R$ | r   | R          |
|-----------------------------|--------------|------------|------------|-----|------------|
| Alle dhanzanaa              | 13.7         | 0.3        | 1.0        | 1.2 | 3.0        |
| Alkylbenzenes               |              | 0.3        | 1.0        | 0.5 | 3.3        |
| Naphthenebenzenes           | 13.3<br>13.7 | 0.1        | 0.4        | 0.5 | ა.ა<br>1.1 |
| Dinaphthenebenzenes         | 13.7         | 0.2        | 0.4        | 0.9 | 1.1        |
| Naphthalenes                | 6.7          | 0.2        | 0.8        | 0.9 | 2.3        |
| Acenaphthenes/dibenzofurans | 9.0          | 0.1        | 0.2        | 0.5 | 0.5        |
| Fluorens                    | 10.7         | 0.1        | 0.2        | 0.3 | 0.6        |
| Phenanthrenes               | 8.6          | 0.1        | 0.3        | 0.2 | 1.0        |
| Naphthenephenanthrenes      | 4.5          | 0.2        | 0.4        | 0.7 | 1.2        |
|                             |              |            |            |     |            |
| Pyrenes                     | 5.7          | 0.1        | 0.5        | 0.3 | 1.6        |
| Chrysenes                   | 2.8          | 0.2        | 0.4        | 0.5 | 1.1        |
| Perylenes                   | 1.7          | 0.1        | 0.2        | 0.3 | 0.6        |
| Dibenzanthracenes           | 0.4          | 0.1        | 0.1        | 0.2 | 0.4        |
| Benzothiophenes             | 1.0          | 0.2        | 0.4        | 0.8 | 1.1        |
| Dibenzothiophenes           | 1.5          | 0.1        | 0.3        | 0.3 | 0.8        |
| Naphthabenzothiophenes      | 0.5          | 0.1        | 0.3        | 0.3 | 1.0        |
| Naphinabonzounophonoo       | 0.0          | 0.1        | 0.0        | 0.0 | 1.0        |
| Class II Unidentified       | 0.4          | 0.1        | 0.4        | 0.3 | 1.1        |
| Class III Unidentified      | 0.6          | 0.1        | 0.4        | 0.4 | 1.2        |
| Class IV Unidentified       | 4.1          | 0.2        | 0.5        | 0.6 | 1.6        |
| Class V Unidentified        | 0.5          | 0.1        | 0.3        | 0.5 | 0.8        |
| Class VI Unidentified       | 0.2          | 0.1        | 0.1        | 0.3 | 0.4        |
| Class VII Unidentified      | 0.4          | 0.2        | 0.2        | 0.5 | 0.7        |

 $<sup>\</sup>sigma_r$  = repeatability standard deviation

11.1.1 Repeatability—The difference between successive test results obtained by the same operator with the same

apparatus under constant operating conditions on identical test material, would in the long run, in the normal and correct

 $<sup>\</sup>sigma_R$  = reproducibility standard deviation

r = repeatability

R = reproducibility



operation of the test method, exceed the values shown in Table 5 only in one case in twenty.

11.1.2 Reproducibility—The difference between two single and independent results, obtained by different operators working in different laboratories on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the values shown in Table 5 only in one case in twenty.

Note 5—If samples are analyzed that differ appreciably in composition

from the sample used for the interlaboratory study, this precision statement may not apply.

11.2 *Bias*—The quantities determined are defined by the conditions employed in this empirical method, and a statement of bias is therefore not appropriate.

### 12. Keywords

12.1 aromatic; gas oil; mass spectrometry; petroleum

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).