Standard Test Method for Determination of Total Sediment in Residual Fuels

This standard is issued under the fixed designation D 4870; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This test method has been approved by the sponsoring committees and accepted by the cooperating societies in accordance with established procedures.

1. Scope

1.1 This test method covers the determination of total sediment up to 0.40 % m/m for distillate fuel oils containing residual components and to 0.50 % m/m in residual fuel oils having a maximum viscosity of 55 cSt (mm²/s) at 100°C. Some fuels can exceed the maximum filtration time specified in this test method due to factors other than the presence of significant quantities of insoluble organic or inorganic material. This test method can be used for the assessment of total sediment after regimes of fuel pretreatment designed to accelerate the aging process.

1.2 The values stated in acceptable SI units are to be regarded as the standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Note 1, Note 2, and Annex A1.

2. Referenced Documents

2.1 ASTM Standards:
D 362 Specification for Industrial Grade Toluene
D 2880 Specification for Gas Turbine Fuel Oils
D 4057 Practice for Manual Sampling of Petroleum and Petroleum Products
D 4177 Practice for Automatic Sampling of Petroleum and Petroleum Products
E 1 Specification for ASTM Thermometers

3. Terminology

3.1 Definitions of Terms Specific to This Standard:
3.1.1 total sediment—the sum of the insoluble organic and inorganic material that is separated from the bulk of the residual fuel oil by filtration through a Whatman GF/A filter medium, and that is also insoluble in a predominantly paraffinic solvent.

4. Summary of Test Method

4.1 A weighed quantity (10 g) of the oil sample is filtered through the prescribed apparatus at 100°C. After solvent washing and drying the total sediment on the filter medium is weighed. The test is to be carried out in duplicate.

5. Significance and Use

5.1 Appreciable amounts of sediment in a residual fuel oil can cause fouling of facilities for handling, and give problems in burner mechanisms. Sediment can accumulate in storage tanks, on filter screens, or on burner parts, resulting in obstruction of the flow of oil from the tank to the burner.

6. Apparatus

6.1 Filtration Apparatus, constructed of brass, with copper steam coils attached, suitably supported above a vacuum flask appropriately protected against the effects of implosion. See Figs. 1 and 2.
6.2 Thermometer, partial immersion type ranging from approximately 95 to 103°C. Maximum length 220 mm. Maximum graduation interval 0.5°C.
6.3 Oven, electric, capable of maintaining a temperature of 110 ± 1°C. The oven should be capable of safely evaporating the solvent without risk of fire.
6.4 Stirring Rod, glass or PTFE approximately 150 by 3 mm diameter.
6.5 Beaker, glass, 30 mL capacity, either squat form with lip or conical.
6.6 Weighing Bottles, with ground glass stoppers, numbered, 80 mm diameter by 40 mm.
6.7 Hotplate, electric.
6.8 Steam Generator, to provide steam at 100 ± 1°C.
6.9 Vacuum Source, capable of providing the specified vacuum.
6.10 Vacuum Gage, capable of measuring the specified vacuum.
6.11 Filter Medium, Whatman glass fiber filter medium, Grade GF/A, 47 mm diameter.
6.12 High Speed Mixer, any convenient type, minimum speed 400 rpm.
6.13 Desiccator.
6.14 Cooling Vessel, a desiccator or other type of tightly covered vessel for cooling the filter media before weighing. The use of a drying agent is not recommended.

6.15 Syringe or Graduated Wash Bottle, minimum capacity 25 mL, graduated in 0.5 mL increments.
6.16 Forceps, spade-ended.

7. Reagents and Materials
7.1 Normal Heptane, ASTM knock test grade, conforming to the requirements of Specification D 2880.
NOTE 1—Warning: Flammable, vapor harmful if inhaled. See A1.1.
7.2 Toluene, conforming to Specification D 362.
NOTE 2—Warning: Flammable, vapor harmful. See A1.2.
7.3 Wash Solvent, consisting of 85 volume % \(n \)-heptane (7.1) and 15 volume % toluene (see 7.2).

8. Sampling
8.1 Sample in accordance with Practice D 4057 or Practice D 4177.

9. Procedure
9.1 Sample Preparation—Mix the whole sample, as received, thoroughly using a high speed mixer when practicable, for 30 s. In all cases a sample taken on a glass or PTFE rod dipped to the bottom of the container must show a homogeneous appearance. For fuels with a high wax content (high pour point), or of very high viscosity, the sample must be heated before stirring. The temperature must be either 15°C above the pour point in the case of low viscosity fuels, or that equivalent...
to 150 to 250 cSt in the case of high viscosity fuels. In no case should the temperature exceed 80°C.

9.2 Filter Preparation—For each test, dry two filter media for 20 min in the oven at 110°C. Transfer each paper, separately, to a numbered weighing bottle and allow to cool in the cooling vessel to room temperature (5 to 10 min). Where two-pan balances are used, weigh each weighing bottle plus filter medium by the tare method against an empty similar bottle, to the nearest 0.001 g.

NOTE 3—Caution: The Whatman GF/A filter media are fragile and are to be handled with care. Before use, check each medium for consistency, and the possible presence of small defects (holes).

NOTE 4—For convenience, it is useful to have a number of weighing bottles dedicated to the procedure, the lightest of which is chosen as the tare. All weighing bottles should be stored in a desiccator in the vicinity of the balance. Do not place these weighing bottles in the oven since their weights are in equilibrium with the desiccant.

9.3 Apparatus Assembly—Before use, check that the filter support screen is clean. If necessary, the screen must be cleaned by boiling in a high boiling point aromatic solvent. When more than 2% of the sinter area remains blocked by particulate matter after such cleaning, discard the screen and install a new one.

9.3.1 The filtration unit must be clean and dry before assembly. Stack the two previously dried and weighed filter media on top of the sinter support with the mesh imprint side down, using forceps, placing the one from the lower numbered media on top of the sinter support with the mesh imprint side centering the filter media, and place the top portion of the filtration apparatus carefully on to the media before clamping. Shut off the vacuum and pass steam at 100°C through the heating/cooling coils for 10 min prior to sample addition.

9.4 Sample Addition—Into a 30 mL beaker, pour approximately 11 g of the fuel sample prepared as described in 9.1 and weigh to the nearest 0.01 g. Connect the vacuum source and apply vacuum to an absolute pressure of 40 ± 2 kPa minimum (61.3 kPa vacuum). Heat the contents of the beaker to 100 ± 2°C. Then transfer the contents at 100 ± 2°C (Note 5) to the center of the filter medium, taking care that no sample touches the walls during transfer (Note 6). Reweigh the beaker to the nearest 0.0001 g.

9.5 Filter Washing—When the filtration is complete and the upper filter medium appears dry, continue the steam and vacuum for a further 5 min. Discontinue the steam supply and cool the apparatus by passing tap water through the coils. Wash the filtration unit carefully with two portions of 25 ± 1 mL of the wash solvent from a syringe or graduated wash bottle with a fine nozzle, taking care to remove any adhered sample from the wall of the upper part of the apparatus. Carefully remove the top portion of the filtration unit and wash the rim of the filter with a further 10 ± 0.5 mL of the wash solvent in a similar manner. Finally wash the whole of the filter medium area with 10 ± 0.5 mL of n-heptane.

NOTE 7—If the sample filters very rapidly, the vacuum should be released before the first solvent washing, to ensure complete coverage of the filter medium area by solvent. The vacuum should then be gently reapplied for the subsequent operations.

9.6 Apparatus Disassembly—After the filter medium appears dry, discontinue the vacuum supply. Using the forceps, carefully remove each filter medium separately and transfer them to the oven at 110°C. Dry for 20 min and quickly transfer them to the same numbered weighing bottles as used in 9.2. Allow them to cool in the cooling vessel (6.13) to room temperature (5 to 10 min) and reweigh them (against tare) to the nearest 0.0001 g.

10. Calculation

10.1 Calculate the mass percentage of total sediment to the nearest 0.01 % m/m using the following equation:

\[
S = \frac{(M_5 - M_s) - (M_3 - M_2)}{10M_1}
\]

where:

- \(S\) = total sediment, % m/m,
- \(M_1\) = mass of sample, g,
- \(M_2\) = mass of lower filter medium before filtration, mg,
- \(M_3\) = mass of lower filter medium after filtration, mg,
- \(M_4\) = mass of upper filter medium before filtration, mg, and
- \(M_5\) = mass of upper filter medium after filtration, mg.

11. Report

11.1 Report the total sediment by hot filtration as the average of duplicate determinations, to the nearest 0.01 % m/m. If a 5-g sample has been used, report the results as total sediment (5 g) by hot filtration. If filtration is not complete within the specified 25 min, report the results as filtration time exceeds 25 min.

11.2 Test Report—The test report shall contain at least the following information:

11.2.1 The type and identification of the product tested,
11.2.2 A reference to this test method,
11.2.3 The result of the test (see 11.1),
11.2.4 Any deviation, by agreement or otherwise, from the standard procedures specified (see 11.1), and
11.2.5 The date of the test.

12. Precision and Bias

12.1 Precision—The precision of this test method as determined by the statistical examination of interlaboratory test results is as follows:

5 The results of cooperative test programs, from which these values have been derived, can be obtained from ASTM Headquarters. Request RR: D02–1238.
12.1.1 *Repeatability*—The difference between successive test results, expressed as the average of duplicate determinations, obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

\[
 r = 0.089 \sqrt{x} \text{ for residual fuels, and} \tag{2}
\]

\[
 r = 0.048 \sqrt{x} \text{ for distillate fuels containing residual components} \tag{3}
\]

where \(x \) = the average of the test results, % m/m.

12.1.2 *Reproducibility*—The difference between two test results, expressed as the average of duplicate determinations independently obtained by different operators operating in different laboratories on nominally identical test material would, in the long run, in the normal and correct operation of the test method, exceed the following values only one case in twenty:

\[
 R = 0.294 \sqrt{x} \text{ for residual fuels, and} \tag{4}
\]

\[
 R = 0.174 \sqrt{x} \text{ for distillate fuels containing residual components} \tag{5}
\]

where \(x \) = the average of the test results, % m/m.

12.2 *Bias*—Since there is no accepted reference material suitable for determining the bias for the procedure in this test method, bias cannot be determined.

13. **Keywords**

13.1 ageing; fuel oils; hot filtration; residual fuel; sediment; storage stability; total sediment

ANNEX

(Mandatory Information)

A1. **PRECAUTIONARY STATEMENTS**

A1.1 *n*-Heptane

Keep away from heat, sparks, and open flame.

Keep container closed.

Use with adequate ventilation.

Avoid prolonged or repeated skin contact.

A1.2 Toluene

Keep away from heat, sparks, and open flame.

Keep container closed.

Use with adequate ventilation.

Avoid prolonged or repeated skin contact.

APPENDIX

(Nonmandatory Information)

X1. **PREDICTION OF TOTAL SEDIMENT IN RESIDUAL FUEL OILS**

(STANDARD PROCEDURES FOR AGEING)

X1.1 Scope

X1.1.1 This test method describes two procedures for evaluating the sediment forming tendency of residual fuel oils during storage.

Note X1.1—Experience has shown that this test method can be applicable to other fuel oils as well, but precision is unknown and additional testing is required to determine that precision.

X1.1.2 Procedure A covers thermal ageing.

X1.1.3 Procedure B covers chemical ageing.

X1.2 Terminology

X1.2.1 Definitions of Terms Specific to This Standard:

X1.2.1.1 accelerated total sediment—the total sediment formed in a fuel when it is diluted with hexadecane and stressed at an elevated temperature.

X1.2.1.2 potential total sediment—the total sediment formed by stressing a fuel at an elevated temperature.

X1.3 Summary of Test Method

X1.3.1 Procedure A for Thermal Ageing—A sample of residual fuel oil is aged at 100°C for 24 h.

X1.3.2 Procedure B for Chemical Ageing—A sample of residual fuel oil is diluted with hexadecane (cetane) and then heated to 100°C for 1 h.

X1.3.3 Following ageing by the above procedures, the sample is then filtered at 100°C, solvent washed and dried, and total sediment on the filter medium weighed, in accordance with Test Method D 4870. The test is to be carried out in duplicate.

X1.4 Significance and Use

X1.4.1 The precipitation of asphaltenes from a residual fuel oil during storage and handling can cause severe difficulties which, in extreme cases, can render the fuel unfit for use. Once out of solution, it is extremely difficult to repeptize the asphaltenes into their original state.
X1.4.2 The procedures described in this test method are useful for determining whether sediment is likely to precipitate from a residual fuel oil during storage.

X1.4.3 Thermal ageing is a well established technique for determining whether sediment will precipitate from residual fuel oils during storage and handling.

X1.4.4 Chemical ageing looks at the balance between the required aromaticity of the asphaltenes and the available aromaticity of the oil phase, and tests whether a specified amount of a normal alkane disturbs this balance to the extent that asphaltene precipitation occurs. Experience has shown that such precipitation indicates that sediment can form in the residual fuel oil during storage and handling.

X1.5 Apparatus

X1.5.1 Oil Bath, a constant temperature bath capable of being maintained at a temperature of 100 ± 0.5°C, and large enough to hold two or more air wells through cover openings, and with an additional opening in the cover through which the oil bath thermometer can be suspended.

X1.5.2 Air Well, cylinder 55 mm in inside diameter and 120 mm in length, provided with a cover having a central opening approximately 10 mm in diameter for supporting the condenser tube in a vertical position.

Note X1.2—The air well and oil bath can be made in one assembly as shown in Fig. X1.1.

X1.5.3 Oil Bath Thermometer, Specification E 1, Type 22C.
X1.5.4 General Purpose Thermometer, Specification E 1, Type 1C, partial immersion.
X1.5.5 Glassware, is used to contain the test sample, deliver solvent into the flask, and collect and return condensable volatiles.

X1.5.5.1 Conical Flask, 50 mL capacity Erlenmeyer flask with narrow mouth.
X1.5.5.2 Condenser, air, of borosilicate glass tubing, 8 mm in outside diameter, wall thickness 1.0 mm, and 400 mm in length.
X1.5.5.3 Microburette, minimum capacity 5 mL, with a maximum graduation interval of 0.02 mL.
X1.5.5.4 Funnel, of borosilicate glass, capacity 5 to 10 mL, with an outlet orifice 0.4 ± 0.02 mm in diameter.

X1.5.6 Stoppers, size No. 1.
X1.5.6.1 Cork, bored centrally for the air condenser.
X1.5.6.2 Rubber, unbored.
X1.5.7 Stirring Rod, glass or polytetrafluoroethylene (PTFE) approximately 150 mm in length and 3 mm in diameter.
X1.5.8 Magnetic Stirrer/Hotplate, thermostatically controlled.
X1.5.9 Surface Temperature Thermometer, to cover the range 20 to 180°C.
X1.5.10 Stirring Bar, magnetic, PTFE-coated, 25 mm in length.
X1.5.11 Spatula, polypropylene, beveled ends, 200 mm in length.
X1.5.12 Warm Air Dryer, hand-held, electric.
X1.5.13 Stirrer, any convenient type, minimum speed 400 rpm.

X1.6 Reagents

X1.6.1 Hexadecane (cetane)—Commercial-grade normal hexadecane of 99% purity, minimum.

Note X1.3—Warning: Hexadecane is a mild eye and mucous membrane irritant, primarily a skin irritant, and central nervous system depressant.

Note X1.4—Hexadecane should be stored at or above 20°C, or brought to a minimum of this temperature before use. When stored at a temperature below 20°C, a hand-held warm air dryer can be used for warming the bulk hexadecane when it is needed for use.

X1.7 Sampling

X1.7.1 The sample aliquot for these procedures shall be taken, in accordance with Practice D 4057, from the same container as that taken for Test Method D 4870. It will be normally taken at the same time, and thus follow the same sample preparation.

X1.7.2 Sample Preparation—The whole sample, as received, shall be thoroughly mixed using a stirrer when practicable for 30 s. In all cases, a sample taken on a glass or PTFE rod dipped to the bottom of the container must show a homogeneous appearance. For fuels with a high wax content (high pour point), or of very high viscosity, the sample must be heated before stirring. The temperature, as measured with the general purpose thermometer, must be either 15°C above the pour point in the case of low viscosity fuels, or that equivalent to 150 to 250 cSt in the case of high viscosity fuels. In no case shall the temperature exceed 80°C.

X1.8 Procedure A for Thermal Ageing

X1.8.1 Pour duplicate 25 ± 1 g aliquots of the thoroughly mixed sample into each of two conical flasks, attach the air condenser by means of the cork stopper, and place the flasks in the air wells of the oil bath, maintained at 100 ± 0.5°C, for 24 h ± 15 min.

X1.8.2 Remove the flask from the bath, replace the air condenser and cork stopper by the rubber stopper and shake vigorously until all the sludge has been uniformly suspended. Invert the flask and examine its bottom and wall for any sludge deposits. Remove stubborn deposits from the wall or bottom of the conical flask by scraping with the spatula. Shake again
vigorously and initiate hot filtration in accordance with Test Method D 4870 within 1 min.

X1.9 Procedure B for Chemical Ageing

X1.9.1 Preheat the magnetic stirrer/hotplate, using the surface thermometer, to a surface temperature corresponding to the temperature at which the sample under investigation will have a kinematic viscosity of approximately 50 cSt.

X1.9.2 Weigh duplicate 25 ± 0.2 g aliquots of the thoroughly mixed sample into each of two conical flasks and add a PTFE-coated magnetic stirring bar. Place the flask in the center of the preheated magnetic stirrer/hotplate and adjust the stirring speed to approximately 200 rev/min. After 10 min, slowly add 2.5 ± 0.02 mL of hexadecane from the microburette to the flask at a maximum rate of 1.0 mL/min while continuously stirring.

NOTE X1.5—To prevent possible freezing of the hexadecane at test temperatures near 18°C, the microburette should be warmed slightly. The hand-held warm air dryer is suitable for this purpose.

NOTE X1.6—Caution: Avoid localized over-dilution during the addition step to preclude flocculation of asphaltenes. Asphaltenes which are flocculated during the addition of hexadecane owing to lack of homogeneity are not easily repelitized afterwards, and can produce anomalous results.

X1.9.3 The maximum rate of addition can be controlled by positioning the microburette above a funnel (X1.5.5.4) and discharging the 2.5 ± 0.02 mL directly into the funnel neck, and allowing the hexadecane to drip into the stirred sample by gravity. Direct addition of the hexadecane from the microburette is not recommended, but if carried out it is essential that the orifice diameter of the microburette should not exceed 1.0 mm and the overall tip diameter should not exceed 5.0 mm.

X1.9.4 The rate of addition can be calibrated by plotting mass transferred (hexadecane density at 20°C = 0.7733 g/mL) against volume measured from the microburette, and time of delivery.

X1.9.5 Pour the sample/hexadecane mixture into a clean 50 mL conical flask and attach the air condenser by means of the cork stopper. Place the flask in the air well of the oil bath at 100 ± 0.5°C. Allow the flask to remain in the bath for 60 ± 2 min.

X1.9.6 Remove the flask from the bath, replace the air condenser and cork stopper by the rubber stopper and shake vigorously until all the sludge has been uniformly suspended. Invert the flask and examine its bottom and wall for any sludge deposits. Remove stubborn deposits from the wall or bottom of the flask by scraping with the spatula. Shake again vigorously and initiate hot filtration in accordance with Test Method D 4870 within 1 min.

X1.10 Report

X1.10.1 Report the following information:

X1.10.1.1 Report the potential total sediment (Procedure A) as the average of duplicate determinations, to the nearest 0.01 % m/m.

X1.10.1.2 Report the accelerated total sediment (Procedure B) as the average of duplicate determinations, to the nearest 0.01 % m/m.

NOTE X1.7—When calculating the results of determinations of accelerated total sediment, account shall be taken of the hexadecane diluent. The divisor in the formula in Test Method D 4870 becomes 9.28 M₁ rather than the 10 M₁ given.

X1.10.1.3 The results obtained from the above procedures shall be compared with results obtained on an aliquot of the same sample in an unaged condition (existent total sediment), determined in accordance with Test Method D 4870. This comparison provides an indication of whether sediment is likely to precipitate from the fuel oil during storage.