1. Scope

1.1 This test method covers a procedure for the determination of the microbial condition (contamination or sterility) of raw materials used in the manufacture of paint, and the microbial condition of paint and paint manufacturing areas.

1.2 The values in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Summary of Test Method

2.1 This test method outlines procedures to (1) obtain samples for sterility testing from wet or dry materials and plant sites, (2) conduct the sterility testing on those samples to see if they are contaminated, (3) evaluate the degree of contamination, if any, and (4) provide a guide for some indication of the type of contamination present (bacterial, fungal, yeast, etc.). This test method is not designed to include all the necessary precautions to maintain the level of sterility required to provide the most accurate results. Some familiarity with microbiological techniques is recommended.

3. Significance and Use

3.1 Spoilage of paint in the container is often related to the use of contaminated raw materials, water (particularly recycled washwater), vessels, piping, and equipment in the manufacturing plant. There is a need for a simple method to determine the microbial condition (contamination or sterility) of raw materials used in the manufacture of paint, and the microbial condition of paint and paint manufacturing areas. There is a need for a simple method to determine the point of contamination (that is, raw materials or problem housekeeping areas in the plant) to help in solving the spoilage problem.

NOTE 1—Some contamination in plant areas is to be expected, since microorganisms are ubiquitous and cannot generally be eliminated practically (it is what an in-can preservative is supposed to control). Excessive levels of contamination or contaminated raw materials can exceed the capability of the preservative. If you have excessive contamination in the plant, there are methods for decontamination including steam, preservatives, bleach, etc. These should be discussed with your biocide supplier and used with care. Recovery of spoiled or contaminated products is often not feasible, so an adequate level of the appropriate biocide in conjunction with good plant housekeeping practices is essential. Your biocide supplier can also help here.

3.2 This test method may be used by persons without basic microbiological training, but some training on aseptic techniques would be recommended.

NOTE 2—The reliability of the results obtained from this test method is extremely dependent on the techniques employed. Improper techniques can result in a sterile sample appearing to be contaminated, and even worse, a contaminated sample appearing to be sterile (see also 5.1). It is recommended that you consult with your biocide supplier, raw material supplier, or an independent testing laboratory to confirm questionable results.

4. Apparatus and Materials

4.1 Balance, capable of weighing to 0.10 g.

4.2 Incubator, or other device capable of maintaining a constant temperature between 28 and 32°C.

4.3 Refrigerator.

4.4 Tryptic Soy Agar (TSA) Plates, pre-prepared. (See Note 3).

4.5 Potato Dextrose Agar (PDA) Plates, or Malt Agar Plates, acidified to pH 3.5 with lactic acid, pre-prepared.

NOTE 3—If preparing plates, Tryptic Soy Agar media with TTC (triphenyltetrazolium chloride) indicator dye may also be used. In general, the TTC helps visualize contamination, but it has been reported on...
occasionally to inhibit the growth of some bacteria. Interferences from pigments in materials being tested may make the color change difficult to see. If self-prepared plates are used with the TTC indicator, 0.01 % TTC indicator should be used and it must be added after autoclaving.

4.6 Lactic Acid.

4.7 Sterile Swabs in tubes, pre-prepared.

4.8 Swab tubes, Culturette Tubes, or a similar system (swab in a test tube with a transport medium), all sterile, pre-prepared can be used if transport of collected samples to the laboratory testing area is required.

4.9 Sterile Diluent (9 mL) in tubes, pre-prepared (0.85 % saline or other suitable diluent). These can be prepared from sterile tubes and sterile saline solution then stored in a refrigerator.

4.10 Laminar Flow Hood, Sterile Room, or at least a laboratory testing area that is relatively clean, free of blowing dust and dirt, etc., which can be used for streaking plates.

4.11 Antiseptic Solution, to help maintain sterility of testing area surfaces (4.10) (For example, 70 % ethanol solution.).

5. General Sampling Guidelines

5.1 Take all reasonable precautions to avoid microbial contamination while obtaining samples. You may choose to wear a facial mask and sterilized gloves. (Warning—Do not touch the swab anywhere near the cotton tip, or near parts of the swab which could be immersed in the test sample. Microorganisms from the skin, clothing, and even air if exposed too long, can contaminate the sample. If the swab has a cap, do not touch any part of the swab except that cap. Confirm suspicious results with additional testing.)

5.2 Use a new sterile swab, tongue depressor or spatula for each sample. Do not reuse any sampling devices. If using gloves, dispose after use.

5.3 When taking samples, be sure to minimize the time sterile items are exposed to the air to avoid false contamination results.

5.4 Liquid materials may be sampled as outlined in Section 6. Alternately, a sterilized container may be used to transport the liquid sample to the sterile testing area. Be sure that no non-sterile items contact the liquid sample during sampling, handling, and movement to the testing area (for example, use sterile pipet, etc. for transfer of material to container, etc.).

5.5 Dry materials may be sampled as in 6.3 or 9.1. To sample unopened, dry raw materials in bags, wipe a large area of the outside of the bag clean with a clean rag or paper towel. Using a clean knife, cut open the bag within the cleaned area. Sample as in 9.1, or using a sterile tongue depressor or sterile spatula, scoop 10 to 15 g into a sterile plastic bag, close and seal bag for transport to sterile testing area.

6. Sampling Procedure for Plant Areas

6.1 Establish a protocol for surveying probable areas of contamination. Make sure that such areas include pipes and hoses, especially if left with water standing, any storage and mixing vessels, pumps, drains, sumps, etc. Because recycled washwater is particularly susceptible to contamination, be sure to include it.

6.2 Sampling is best carried out when the area to be tested is wet. In wet areas, the swab is dipped into or wiped on the area (see Note 3), and then returned to a sterile tube (with or without transport media). This swab is then used for testing as described in Section 8 (see also Section 7).

6.3 Sampling dry areas provides information that is less conclusive, but can be carried out by swabbing the dry area with a sterile swab that has previously been dipped into sterile diluent. This swab is then used as described in Section 8.

7. Testing Transported Samples

7.1 If transport of collected samples to the laboratory testing area is required, then use the swab contained in the swab tubes, culturette tubes, or similar system (swab in a test tube with a transport medium), in place of the dry swab as described in 4.7. Any transport medium transferred to the agar or broth should not adversely affect the results.

7.2 Test swabs in tubes without media as soon as possible to avoid drying of swab and possibly killing any contaminating microorganisms. Test swabs in tubes with media within the time specified by the manufacturer (generally 48 to 72 h).

8. Testing Procedure for Liquid Samples or Swabs, or Both

8.1 Grasping the opposite end, dip the cotton end of a dry sterile swab into the liquid (or mixture from Procedure 9), remove the cover from a sterile tryptic soy agar (TSA) plate, and streak the agar surface with the wet swab. Make sure that this is done so that the streaks are in a set pattern (for example, three streaks from left to right with 12.7-mm, (½-in.) spacing, criss crossed by three streaks from top to bottom, also with 12.7-mm (½-in.) spacing). Replace the cover. Do this as quickly as possible to avoid introducing airborne contamination to the plates.

Note: 5—Optimally, these procedures should be carried out in a laminar flow hood or other sterile environment. Minimally, a relatively clean area as specified in 4.10 must be used. The use of antiseptic solution (see 4.11) to regularly sanitize countertops and other work surfaces is recommended.
Unfiltered air, hands, unsanitized surfaces and equipment may introduce contamination during the transfer and give a false indication of contamination. The use of aseptic technique during transfer is very important in ensuring the reliability of these tests (see also 10.5 and the appendix to detect anaerobic bacteria).

8.2 Dip the swab again into the mixture and repeat the streaking as in 8.1 using an acidified potato dextrose agar (PDA) plate or malt agar plate.

8.3 Turn the streaked TSA plates upside down, and the PDA or malt agar plates right side up. Place all streaked plates in an incubator, and incubate at 30°C for the specified time. Make sure that the incubation time for fungi (PDA or malt agar plates) is 3 to 7 days, and for bacteria (TSA plates), 24 to 48 h.

Note 6—The 30°C temperature is generally appropriate for detecting environmental contaminants. If two incubators are available, use 28°C for the fungi and 32°C for the bacteria. If humidity control is available, use 95% relative humidity (rh) for the fungi and 50% rh for the bacteria.

Note 7—To achieve some degree of humidity control in a non-humidity controlled incubator or oven, place a container (such as a borosilicate baking dish) filled with distilled water at the bottom of the incubator. This helps to prevent the drying out of the plates (which could inhibit the growth of any microorganisms and give a false indication of sterility). Change this water regularly to avoid growth of bacteria, etc. (or a piece of copper wool can be used to help control microorganism growth).

9. Testing Procedure for Dry Materials

9.1 Obtain or weigh out a suitable amount of dry material (0.1 to 0.5 g) using sterilized equipment (either a sterile spatula or sterile wooden tongue depressor) and add this to a tube of sterile diluent (see 4.9). Recap the tube and shake vigorously.

Note 8—If the material does not go into solution, shake or swirl the tube so that a uniform mixture is obtained just prior to the streaking procedure (8.1) (see also 5.1, Note 2, and Note 5).

9.2 Using the resulting liquid, continue as listed in 8.1 for liquid materials.

9.3 For each additional dry sample use a new sterile spatula or tongue depressor.

10. Evaluation of Results

10.1 Bacterial contamination (aerobic) is generally characterized by milky spots of varying size (bacterial colonies) on the agar surface. These are usually slimy or shiny in appearance.

10.2 Fungal contamination is generally characterized by spots that are usually filamentous and more fuzzy in appearance, with the exception of yeasts which normally look similar to the bacterial colonies.

Note 9—if present, bacteria should grow on the TSA plates, but bacteria can also grow on the PDA or malt extract plates, particularly if they are not acidified. Fungi can also grow on the TSA plates, and yeast in particular can look like a bacterial contamination. Differentiation between bacterial and fungal growth can require more sophisticated techniques than are covered in this test method. Assistance can be obtained from your biocide supplier.

10.3 If there are no spots appearing on the agar surface by the end of the incubation period, then the test sample or area was most likely sterile (free of contamination).

Note 10—Very low levels of contamination or inhomogeneity of a sample may lead to false indications of sterility. Be certain samples are as homogeneous as possible prior to sampling or streaking, or both.

10.4 If spots are observed on or just against the streaks at the end of the incubation period, then the tested material was contaminated (not sterile). A rating system is described (see Section 11) for the degree of contamination.

10.5 If there are several colonies that are not on, or do not touch the streaks, this indicates that contamination may have occurred from the air during the streaking process, and a new sample should be obtained and retested for confirmation of any contamination.

11. Rating System

11.1 A rating system helps in evaluation of the relative degree of contamination of areas and materials. The streaked plates can be evaluated based on the number of colonies (spots):

0 = no contamination,
1 = trace of contamination (1 to 9 colonies),
2 = light contamination (10 to 99 colonies),
3 = moderate contamination (>100 distinct colonies), and
4 = heavy contamination (continuous smear of growth, colonies have grown together and are indistinguishable).

11.2 The ratings for growth of 1 to 4 should be made as soon as practical after growth is observed. This avoids having the colonies become too large for making comparisons of the degree of contamination.

11.3 A rating of 0 (sterile) should only be confirmed if there are no colonies observed through end of the incubation period. For bacteria, >48 h, and for fungi within >7 days.

12. Report

12.1 Report the following information or as otherwise agreed upon between the parties involved in the testing:

12.1.1 The time, date, location, lot number, and other means of identification from each sample, and

12.1.2 The corresponding results of daily observations, including: notation of sterility or contamination; identity of contamination (bacteria, fungi, yeast); rating of degree of contamination; notation of possible contamination during streaking (off-streak spots); and any other observations.

13. Precision and Bias

13.1 Precision—It is not practical to specify the precision of the procedure in this test method for determining the microbial condition of samples because the actual rating numbers for samples tested at different times or in different laboratories will be affected by changes in the amount of material transferred in a streak, substrates tested, handling prior to streaking, and other conditions that effect the growth during incubation. In addition, differences in the perception and experience of the individual determining the growth ratings may effect the actual rating numbers assigned. Comparisons may be made between samples tested at the same time within a given laboratory. A relative ranking in order of the contamination (that is, bad, worse, worst) should remain the same between samples tested at different times or in different laboratories. Only general comparisons of the degree of contamination (actual rating
numbers) between samples tested at different times or in different laboratories should be made.

13.2 Bias—No information can be presented on the bias of the procedure in this test method for determining the microbial condition of samples because materials having acceptable reference values are not available.

14. Keywords

14.1 bacteria; contamination; fungi; microorganism; plant housekeeping; sterility; yeast

APPENDIX

(Nonmandatory Information)

X1. DETECTION OF ANAEROBIC BACTERIA

X1.1 Scope

X1.1.1 Strictly anaerobic bacteria are not generally a problem in most paint related manufacturing environments. However, if the other tests (Sections 8 and 9) indicate sterility while there is obviously contradictory information as to contamination (strong odors, viscosity loss, etc.), testing for anaerobic bacteria should be considered. Other possibilities for viscosity loss include chemical oxidants or enzymes, or both, (contact Subcommittee D01.28 for further information for determining the presence of these).

X1.2 Significance and Use

X1.2.1 These tests require additional skills relating to the handling and use of anaerobic test equipment. The test results can also be somewhat misleading.

X1.3 Additional Apparatus

X1.3.1 Bacto Fluid Thioglycollate Medium,\(^8\) or Bacto NIH Thioglycollate Broth,\(^9\) in screw cap borosilicate test tubes, pre-prepared. (See Note X1.1).

Note X1.1—This medium includes dextrose and an oxygen indicator.

\(^8\) Pre-prepared tubes, are available from various microbiological supply companies (see also Footnote 3).

\(^9\) Pre-prepared broth is not available (see Footnote 3).

X1.4 Procedure

X1.4.1 Use general techniques as indicated in Procedure 5. Dip a new, dry sterile swab into the mixture. Remove the cap from a thioglycollate tube, swirl the swab in the broth, remove the swab, and screw the cap back on tightly. Do not touch the swab near any portion that will be immersed in the broth. Be careful not to swirl the swab too vigorously or otherwise introduce oxygen into the tube.

X1.4.2 Place the thioglycollate tube in the incubator and incubate at 30°C for 48 h.

X1.5 Results

X1.5.1 If the thioglycollate broth turns cloudy, this is a positive test generally indicating anaerobic or facultative anaerobic bacterial contamination. If the broth remains clear, no such contamination was found.

Note X1.2—The results from this test may be difficult to interpret, particularly if the material tested imparts cloudiness to the broth that does not settle out. A positive test normally has cloudiness from the bottom spreading upward. A positive test may still have a clear area at the top of the tube. If the indicator turns red or pink, the test is not valid (too much oxygen was introduced to the tube). The use of the bacto NIH thioglycollate broth may help.

Note X1.3—Bacto anaerobic agar or bacto brewer anaerobic agar may be used in conjunction with an anaerobic jar and the appropriate oxygen exclusion equipment as an alternate method for the detection of anaerobic bacteria.