

Designation: D 6082 - 01

Standard Test Method for High Temperature Foaming Characteristics of Lubricating Oils¹

This standard is issued under the fixed designation D 6082; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method describes the procedure for determining the foaming characteristics of lubricating oils (specifically transmission fluid and motor oil) at 150°C.
- 1.2 Foaming characteristics of lubricating oils at temperatures up to 93.5°C are determined by Test Method D 892 or IP 146.
- 1.3 The values stated in SI units are to be regarded as the standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 8.

2. Referenced Documents

- 2.1 ASTM Standards:
- D 892 Test Method for Foaming Characteristics of Lubricating Oils²
- E 1 Specification for ASTM Thermometers³
- E 128 Test Method for Maximum Pore Diameter and Permeability of Rigid Porous Filters for Laboratory Use⁴
- 2.2 Institute of Petroleum Standards:⁵
- IP146 Standard Method of Test for Foaming Characteristics of Lubricating Oils

3. Terminology

- 3.1 *Definitions:*
- 3.1.1 *diffuser*, *n*—*for gas*, a device for dispersing gas into a liquid (Test Method D 892).
- 3.1.1.1 *Discussion*—Although diffusers can be made of either metallic or non-metallic materials, in this test method the diffuser is sintered stainless steel.
- ¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.06on Analysis of Lubricants.
- Current edition approved Nov. 10, 2001. Published January 2002. Originally published as D 6082-97. Last previous edition D 6082-00.
 - ² Annual Book of ASTM Standards, Vol 05.01.
 - ³ Annual Book of ASTM Standards, Vol 14.03.
 - ⁴ Annual Book of ASTM Standards, Vol 14.02.
- ⁵ Available from Institute of Petroleum, 61 New Cavendish St., London, WIG 7AR, U.K.

- 3.1.2 entrained air (or gas), n—in liquids, a two-phase mixture of air (or gas) dispersed in a liquid in which the liquid is the major component on a volumetric basis.
- 3.1.2.1 *Discussion*—The air (or gas) is in the form of discrete bubbles of about 10 to 1000 µm in diameter. The bubbles are not uniformly dispersed. In time, they rise to the surface to coalesce to form larger bubbles which break or form foam. Subsurface coalescence can also occur, in which case, the bubbles will rise more rapidly.
- 3.1.3 *foam*, *n*—*in liquids*, a collection of bubbles formed in or on the surface of a liquid in which the air or gas is the major component on a volumetric basis.
- 3.1.4 *gas*, *n*—a fluid (such as air) that has neither independent shape nor volume but tends to expand indefinitely.
- 3.1.5 *lubricant*, *n*—any material interposed between two surfaces that reduces friction or wear between them.
- 3.1.5.1 *Discussion*—In this test method, the lubricant is an oil which may or may not contain additives such as foam inhibitors.
- 3.1.6 maximum pore diameter, n—in gas diffusion, the diameter of a capillary of circular cross-section which is equivalent (with respect to surface tension effects) to the largest pore of the diffuser under consideration. The pore dimension is expressed in micrometers (µm).
- 3.1.7 *permeability*, *n*—*in gas diffusion*, the rate of a substance that passes through a material (diffuser) under given conditions.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *collapse time*, *n*—*in foam testing*, the time in seconds, for zero foam to appear after the air is disconnected at the end of the five minute air blowing time.
- 3.2.2 *dynamic bubble*, *n*—the first bubble to pass through and escape from the diffuser followed by a continuous succession of bubbles when testing for the pore diameter in Annex A1.
- 3.2.2.1 *Discussion*—When a diffuser is immersed in a liquid such as propan-2-ol, air can be trapped in the pores. It can escape eventually or as soon as a pressure is applied to the diffuser. When testing for pore diameter (Annex A1), the escape of such bubbles is to be ignored.
- 3.2.3 foam stability, n—in foam testing, the amount of static foam remaining at specified times following the disconnecting of the air supply.

- 3.2.3.1 *five-second foam stability*—the amount of static foam present 5 s after disconnecting the air supply.
- 3.2.3.2 *fifteen-second foam stability*—the amount of static foam present 15 s after disconnecting the air supply.
- 3.2.3.3 *one-minute foam stability*—the amount of static foam present 1 min after disconnecting the air supply.
- 3.2.3.4 *five-minute foam stability*—the amount of static foam present 5 min after disconnecting the air supply.
- 3.2.3.5 *ten-minute foam stability*—the amount of static foam present 10 min after disconnecting the air supply.
- 3.2.4 *foaming tendency*, *n*—*in foam testing*, the amount of static foam immediately before the cessation of air flow.
- 3.2.5 *kinetic foam*, *n*—entrained air that has been created by the passage of air through the diffuser during the test (see Fig. 1).
- 3.2.5.1 *Discussion*—Because the process of passing air through the diffuser and the oil sample during the test has resulted in an increase in volume and because such entrained air can be considered as foam on its way to being made, the term kinetic foam has been introduced.
- 3.2.6 percent volume increase, n—in foam testing, the increase in total volume expressed as a percentage of the initial total volume with diffuser in place at test temperature.
- 3.2.7 *static foam*, *n*—foam that has been created by the passage of air through the diffuser during the test (see Fig. 1).
- 3.2.8 *total volume*, *n*—*in foam testing*, the volume of foam, liquid, diffuser, and submersed portion of delivery tube (see Fig. 1).
- 3.2.8.1 initial total volume (V_I) , n—in foam testing, the volume of the foam, liquid, diffuser, and submersed portion of the delivery tube at test temperature prior to connecting the air supply.
- 3.2.8.2 final total volume (V_2) , n—in foam testing, the volume of the foam, liquid, diffuser, and submersed portion of

- the delivery tube just before disconnecting the air supply.
- 3.2.9 *top volume*, *n*—the volume of the foam (if any), liquid, diffuser, and the submersed portion of the delivery tube (see Fig. 1).
- 3.2.10 *zero foam*, *n*—*in foam testing*, occurs when any portion of the top surface of the liquid is free of bubbles.
- 3.2.11 *bottom volume*—the volume of liquid sample, that is, sample substantially free of air, at any given time during the test.

4. Summary of Test Method

4.1 A measured quantity of sample is heated to 49°C for 30 min and allowed to cool to room temperature. The sample is transferred to a 1000 mL graduated cylinder, heated to 150°C, and aerated at 200 mL/min with dry air for 5 min with a metal diffuser. The amount of foam generated before disconnecting the air, the amount of static foam at optional times after disconnecting the air (list of options in Section 10); and the time for the foam to collapse are measured and the percent increase in total volume calculated.

5. Significance and Use

- 5.1 The tendency of oils to foam at high temperature can be a serious problem in systems such as high-speed gearing, high volume pumping, and splash lubrication. Foaming can cause inadequate lubrication, cavitation, and loss of lubricant due to overflow, and these events can lead to mechanical failure.
- 5.2 Correlation between the amount of foam created or the time for foam to collapse, or both, and actual lubrication failure has not been established. Such relations should be empirically determined for foam sensitive applications.

6. Apparatus

6.1 *Heating Bath*, any heating system capable of maintaining a sample temperature of $150 \pm 1^{\circ}\text{C}$ (see Fig. 2).

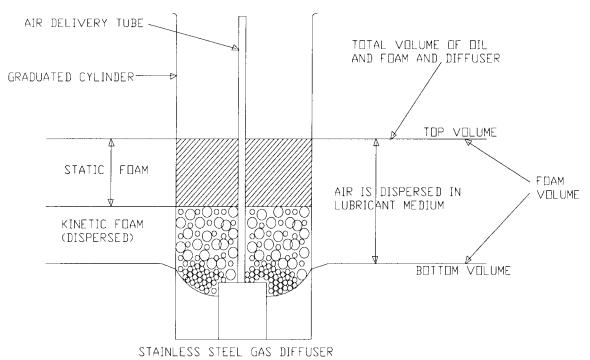


FIG. 1 Terminology Diagram

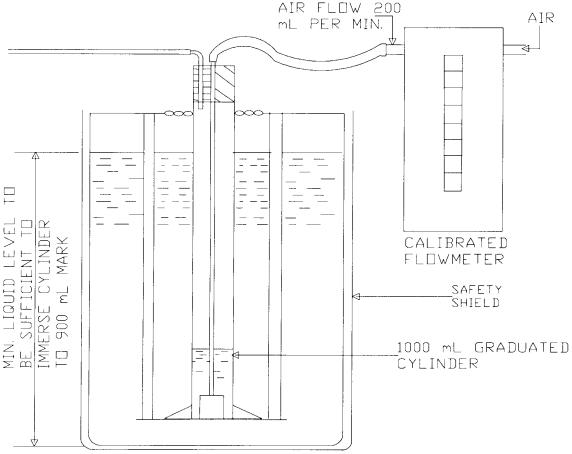


FIG. 2 Typical Liquid Bath

Note 1—The precision of this test method was determined using only liquid baths.

6.1.1 *Heating Transfer Fluid*, any liquid with low volatility, at the test temperature, chemical stability and sufficient low viscosity to permit stirring.

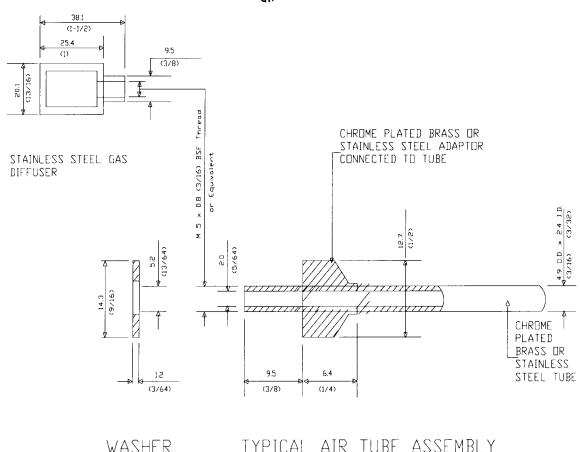
Note 2—A 4 to 7 mm²/s (cSt) polyalphaolefin has been found to be a suitable fluid. Silicone fluids are foam inhibitors and their use may alter the foam characteristics of the test sample and should be discouraged.

Note 3—A slow purge of nitrogen gas through the fluid, or as a blanket over the bath fluid, reduces darkening (oxidation) of the bath fluid.

6.2 Graduated Cylinder, 1000 mL, fitted with a device to overcome buoyancy if a liquid bath is used and modified to have a circular top. It shall be capable of withstanding the extreme temperature conditions of this test method.

Note 4—A heavy metal ring large enough to fit over the outside and rest on the bottom of the cylinder has been found to be suitable to overcome buoyancy.

Note 5—Graduated cylinders having a pouring spout can be prepared for this test method by making a horizontal cut below the spout and removing the part above the cut. The cut edges of the cylinder should be fire-polished or smoothed by grinding.


- 6.3 Flow Meter and Regulator, calibrated and capable of maintaining air flow volume of 200 \pm 5 mL/min.
- 6.3.1 A gas volume meter graduated in hundredths of a litre, or a technically equivalent flow measuring device, with sufficient capacity to measure a flow rate of at least 6000 mL/min, while generating a back pressure of no more than 10 mm of water, is required.

- 6.4 Laboratory Oven, without fan, capable of maintaining 49 ± 1 °C.
- 6.5 *Stirrer*, capable of 500 rpm \pm 100 rpm, fitted with a $1\frac{1}{2}$ -in., 3-blade, 1.5-pitch marine propeller.
- 6.6 Stainless Steel Diffuser, 5 μ m stainless steel diffuser meeting the specifications of pore size 15 to 60 μ m and permeability between 3000 to 6000 mL/min when tested according to the method given in Annex A1 (see Fig. 3).
- 6.6.1 Calibration verification of new diffusers and calibration after each set (10 samples or less) of evaluations is required.
- 6.7 Thermometer, or other temperature sensing device capable of measuring 150 ± 0.2 °C. An ASTM thermometer Specification E 1 No. 41C-86, or equivalent, is suitable.
- 6.8 Timing Device, capable of measuring minutes and seconds (± 1 s).
- 6.9 *High Speed Blender*, with a container capacity of one litre, capable of maintaining a speed of 22 000 rpm (±2000).

7. Reagents

7.1 Purity of Reagents—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society where

Dimensions are Millimeters (Inches)

FIG. 3 Gas Diffuser and Air Tube Dimensions

such specifications are available.⁶ Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

- 7.2 Acetone, (Warning— Extremely flammable. Vapors may cause flash fire.)
- 7.3 Compressed Air, hydrocarbon free and dry to a dew point of -60° C or lower.
 - 7.4 *Heptane*, (Warning Flammable. Vapor harmful.)
 - 7.5 *Propan-2-ol*, (Warning Flammable. Vapor harmful.)
 - 7.6 *Toluene*, (Warning Flammable. Vapor harmful.)

Note 6—Solvents with equivalent cleaning characteristics can be substituted for toluene.

8. Hazards

8.1 Warning—Users of this test method shall be fully

trained and familiar with all normal laboratory practice, or under the immediate supervision of such a person. It is the responsibility of the operator to ensure that all local legislative and statutory requirements are met.

- 8.2 **Warning**—Cleaning solvents have flash points lower than usual laboratory ambient temperatures. Avoid the possibility of a fire or explosion.
- 8.3 **Precaution**—The fumes from the test oil and bath must be vented in a manner compatible with local environmental regulations.
- 8.4 **Warning**—Some apparatus assemblies can have as much as 20 L of bath oil at 150°C. Therefore, in the event of a breakage of the containing vessel, suitable containment of the spill is advisable.

9. Preparation of Apparatus

- 9.1 Thorough cleansing of the test cylinder, gas diffuser, and air-inlet tube is essential after each use to remove any additive remaining from previous tests which can seriously interfere with results of subsequent tests.
- 9.1.1 *Cylinder*—Rinse the cylinder with heptane (**Warning** Flammable. Vapor harmful.), followed by directing a current of compressed air into the cylinder. Wash the cylinder

⁶ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.

with a suitable detergent. Rinse the cylinder in turn with distilled water, then acetone (**Warning** —Extremely flammable. Vapors may cause flash fire.), and dry with a current of compressed air or in a drying oven. Interior cylinder walls that drain distilled water cleanly, that is without drops forming, are adequately cleaned.

Note 7—Certain detergents are notorious for adhering to glass, therefore it is important to realize that such a circumstance can affect the test result. Several rinsings with water and acetone may be required.

9.1.2 Gas Diffuser and Air Tube—Clean the gas diffuser by washing it with toluene (Warning — Flammable. Vapor harmful.) and heptane. Immerse the gas diffuser in about 300 mL of toluene. Flush a portion of the toluene back and forth through the gas diffuser at least five times with vacuum and air pressure. Repeat the process with heptane. After the final washing, dry both tube and gas diffuser thoroughly by forcing clean air through them. Wipe the outside of the air-inlet tube first with toluene, then with a clean cloth moistened with heptane, and finally with a clean dry cloth. Do not wipe the diffuser.

Note 8—Certain samples may contain ingredients which may not be adequately removed by this process and, because these can affect the next test, more rigorous cleaning may be required; this is recommended. When alternate diffuser cleaning methods are used certain cautions should be observed: (1) Non-metallic diffusers may have absorbed as well as adsorbed these interfering ingredients or the cleaners, or both, and this shall be considered before proceeding to the next test; (2) So that all tests performed start off under the same circumstances, when alternate diffuser cleaning methods are used, the final rinsing process shall be as detailed in 9.1.2; (3) See also Note 1. Gas diffuser permeability and porosity can change during use; therefore it is recommended that diffusers be tested when new and periodically thereafter, preferably after each use.

Note 9—It is useful to measure the total exit air volume to detect leaks in the system. See Test Method D 892 for details of this apparatus.

10. Procedure

10.1 Proceed to 10.2.1 if optional blending is explicitly required by the lubricant specification (see Note 10).

Note 10—Lubricant specifications that require optional blending use the term "Option A" to identify this process.

10.2 Vigorously hand shake the container for 1 min before decanting approximately 200 mL of sample into a 400-mL beaker. Mix the sample with the lab mixer (see 6.5) for 60 \pm 10 s at 500 \pm 100 rpm. If optional blending is not required, proceed to 10.3.

10.2.1 Optional Blending—Clean the container of the 1 L (1 qt), high-speed blender (see 6.9). Vigorously hand shake the sample container for 1 min. Place 500 mL of sample into the container, cover, and blend at maximum speed for 1 min. Because it is normal for considerable air to be entrained during this agitation, allow to stand in a temperature controlled environment of $24 \pm 3^{\circ}$ C until entrained bubbles have dispersed and the temperature of the oil has reached $24 \pm 3^{\circ}$ C. Within 3 h following the agitation, continue testing at 10.3.

10.2.2 In case of viscous oils, 3 h can be insufficient time to eliminate the entrained air. If a longer time is required, record the time as a note on the results.

10.3 Heat the sample for 30 min in a convection oven set at 49 ± 3 °C.

10.4 Allow the sample to cool to room temperature ($23\pm4^{\circ}$ C). The test shall be performed within 3 h of the heating step. 10.5 Fill the 1000 mL graduated cylinder to the 180 mL

10.6 Lower the cylinder into the bath to at least the 900 mL mark in a bath capable of maintaining the sample at 150 \pm 1°C. Proceed with 10.9 within 1 h of this step. Exercise care in lowering the cylinder into the hot oil. Lower the cylinder slowly to avoid cracking of the bottom of the cylinder.

10.7 Temporarily immerse a thermometer or other temperature sensor into the oil sample to determine correct sample temperature. Allow sufficient time for the sample to warm up to $150\pm1^{\circ}\mathrm{C}$.

10.8 With the air inlet disconnected, immerse the gas diffuser into the sample. Adjust the position of the diffuser, touching the center of the bottom of the cylinder. Allow the diffuser to soak for at least 5 min and proceed only when the sample temperature reaches $150^{\circ}\text{C} \pm 1^{\circ}\text{C}$.

10.9 After the 5 min soak, record the level of the initial top volume (V_1), if required, to the nearest 10 mL, connect the air inlet to the gas diffuser and adjust the entering flow rate to 200 \pm 5 mL/min. Force compressed air through the gas diffuser at this rate for 5 min \pm 10 s.

10.10 Just before disconnecting the air source, record the final total volume (V_2), the static foam volume, and the kinetic foam volume to the nearest 10 mL as shown in Fig. 1.

10.11 After disconnecting the air supply, record the static foam volume in mL, as shown in Fig. 1, at any of the time(s) selected from the following list of options. ⁷

Option 1 ⁷	5 s (±1.0 s)	
Option 2 ⁷	15 s (±1.0 s)	
Option 3	1 min (±1.0 s)	
Option 4	5 min (±1.0 s)	
Option 5	10 min (±1.0 s)	

10.12 Record the seconds (±1 s) required for the foam to collapse to "0" after the 5 min blowing period.

11. Calculations and Results

11.1 Total Volume Increase:

$$V_{\text{increase}} = V_2 - V_1 \tag{1}$$

11.2 Percent Total Volume Increase:

%
$$V_{\text{increase}} = \frac{V_2 - V_1}{V_1} \times 100$$
 (2)

12. Report

- 12.1 Report the following information:
- 12.1.1 Report optional blending if implemented.
- 12.1.2 Foaming tendency (static foam).
- 12.1.3 Volume of kinetic foam immediately before air disconnect.
 - 12.1.4 Total volume immediately before air disconnect.
 - 12.1.5 Foam stability.
- 12.1.5.1 Volume of static foam for selected Option after air disconnect.
 - 12.1.6 Collapse time.

 $^{^{7}}$ Option 1 and 2 readings may be difficult to obtain due to rapid foam collapse for some oils.

TABLE 1 Repeatability and Reproducibility of High Temperature Foaming Test

	Repeatability	Reproducibility	Range
Foaming Tendency (5 min)	3.0 X ^{.5}	8.2 X ^{.5}	8.1-440 mL
Total Volume Increase	0.82 X ^{.8}	1.8 X ^{.8}	17-270 mL
Total Foam	2.3 X ^{.5}	10. X ^{.5}	99-530 mL
Static Foam	1.4 X ^{.6}	5.8 X ^{.6}	48-510 mL
Kinetic Foam	0.60 (X-150)	0.63 (X + 150)	12-160 mL
Foam Stability			
5 s (after air disconnect)	2.3 X ^{.5}	10. X ^{.5}	11-480 mL
15 s (after air disconnect)	2.3 X ^{.5}	10. X ^{.5}	0-440 mL
1 min (after air disconnect)	2.3 X. ⁵	10. X ^{.5}	0-300 mL
10 min (after air disconnect)			0 mL
Collapse Time	0.34 X	0.83 X	9-460 s

- 12.1.7 Total volume increase.
- 12.1.8 Percent total volume increase.

13. Precision and Bias 8

- 13.1 *Precision*—The precision of this test method, as determined by statistical examination of interlaboratory results, is as follows (see Note 8):
- 13.1.1 Repeatability (r)—The difference between two successive results obtained by the same operator with the same apparatus under constant operating conditions on identical test material would, in the long run, in the normal and correct operation of the test method exceed the following values in only one case in twenty. See Table 1.

13.1.2 *Reproducibility* (r)—The difference between two single and independent results obtained by different operators working in different laboratories on identical test material would, in the long run, in the normal and correct operation of the test method exceed the following values in only one case in twenty. See Table 1.

Note 11—These values are applicable to passenger car motor oils only.

13.2 *Bias*—The procedure in Test Method D 6082 for measuring high temperature foaming has no bias because the value of the foaming tendency is defined only in terms of this test method.

14. Keywords

14.1 foaming; high temperature lubrication; lubricants

ANNEX

(Mandatory Information)

A1. TEST FOR MAXIMUM PORE DIAMETER AND PERMEABILITY OF GAS DIFFUSERS (Based on Test Method E 128)

A1.1 Apparatus

A1.1.1 Apparatus for the maximum pore diameter determination consists of a regulated source of clean, dry compressed air, a U-tube water manometer of sufficient length (500 mm, min) to read a pressure differential of 7.85 kPa (800 mm of water) and a cylinder of a size sufficient (250 mL is suitable) to conveniently immerse a gas diffuser to a depth of 100 mm (see Fig. A1.1).

A1.1.2 Additional apparatus for permeability determination consists of a gas volume meter of sufficient capacity to measure flow rates of at least 6000 mL/min while generating a back pressure of no more than 10 mm of water. A filtering flask large enough that the 25.4-mm (1-in.) diameter diffuser will pass through the neck. This flask shall be fitted with a rubber stopper with a single hole to admit the air-inlet tube (see Fig. A1.2). A supply of tubing having an internal diameter of 8 mm (0.3 in.) shall be used to make the connections between the various parts of the apparatus as shown in Fig. A1.1 and Fig. A1.2.

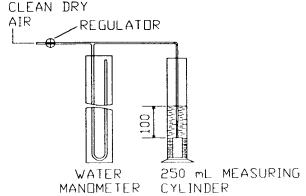


FIG. A1.1 Apparatus for Measuring Maximum Pore

A1.2 Procedure

A1.2.1 Maximum Pore Diameter—Connect the diffuser to the manometer using a 1.0-m length of 8-mm bore tubing. Support the clean diffuser at a depth of 100 mm, as measured

⁸ Round robin data for this test method has been compiled in a research report which is available from ASTM International Headquarters. Request RR:D02-1392.

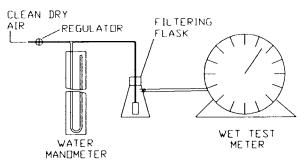


FIG. A1.2 Apparatus for Measuring Permeability

to the top of the diffuser in propan-2-ol in a cylinder and allow it to soak for 2 min (± 5 s). Connect the air-inlet tube to a controllable source of clean, compressed air as shown in Fig. A1.1. Increase the air pressure at a rate of about 490 Pa (50 mm of water)/min until the first dynamic bubble passes through the filter and rises through the propan-2-ol. The first dynamic bubble is recognized by being followed by a succession of additional bubbles. Read the water level in both legs of the manometer and record the difference, p. The uniformity of

distribution of pores approaching maximum pore size may be observed by gradually increasing the air pressure and noting the uniformity with which streams of bubbles are distributed over the surface.

A1.2.1.1 Calculate the maximum pore diameter, D, in micrometres, as follows:

$$D = 8930/(p - 80) \tag{A1.1}$$

where:

p = water, mm.

A1.2.2 *Permeability*—Connect the clean, dry diffuser with a controllable source of clean, dry, compressed air, again using a 1-m length of 8-mm-bore tubing, and place it in a filtering flask connected to a suitable flowmeter using a further 0.5-m length of tubing as shown in Fig. A1.2. Adjust the pressure differential to 2.45 kPa (250 mm of water) and measure the rate of flow of air through the gas diffuser in millilitres per minute. Depending on the sensitivity of the flowmeter used, this observation may be made for a suitably longer period of the average flow rate per minute recorded.

APPENDIX

(Nonmandatory Information)

X1. HELPFUL HINTS FOR THE ANALYST

- X1.1 The cylinders, tubes, thermometer, and diffuser must be scrupulously clean and dry prior to each test. Any present anti-foam agents will want to cling to these elements. In particular, the diffuser must be cleaned at least five times, as described in 9.1.2. All apparatus must be thoroughly dry before use.
- X1.2 Vigorous pre-shaking of test sample, before pouring into blender, is very important. Anti-foam agents in the oil have a large effect on the foaming tendency. These agents tend to migrate to the "outer surfaces" of the contained oil, and have a strong affinity for the container walls. It is imperative that these agents are homogeneously dispersed throughout the oil before testing, and that they are well mixed into the sample before pouring from the sample container. It may be more difficult than one might expect to "break up" these agents from the container sides and get them back into the oil sample.
- X1.3 Likewise, these anti-foam agents tend to want to migrate to the container sides again after blending. It is essential to complete the test within the prescribed times, so that the anti-foam agents do not get a chance to migrate.
- X1.4 Thermometer calibration should be verified at least twice a year.
- X1.5 Test sample temperature must be controlled within the ± 1.0 °C as prescribed by the method.
- X1.6 Frequent testing of diffuser porosity and permeability is highly recommended. Weekly testing, or once every ten test

samples, has been suggested.

- X1.7 Testing the diffuser permeability and porosity when the stone is new, then comparing this value to frequent re-calibrations of the diffuser will show if the diffuser is becoming clogged or damaged, and might need replacement.
- X1.8 The connection between the gas diffuser and the air inlet must be airtight.
- X1.9 Dryness of inlet air is critical. Specified dryness must be assured.
- X1.10 Air flow rate measurement is crucial. Air flow rate must be precisely controlled. Properly calibrated flow meters are essential.
- X1.11 Stopwatches should be calibrated against a national standard at least once a year.
- X1.12 The blending "option" (Option A) is required (and is not an option at all) for the High Temperature Foam Test, as monitored by the TMC.
 - X1.13 Option A blender speed is crucial.
- X1.14 The test is to be run without the thermometer in place in the cylinder. Some labs have indicated they are running the test with the temperature probe in. This *might* interfere with the foaming kinetics.
 - X1.15 The diffuser must be inserted into the test sample,

and the sample must be up to temperature prior to reading initial volume.

X1.16 Record total volume 5 to 10 s before air is disconnected.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).