
Designation: D 6300 – 03 An American National Standard

Standard Practice for
Determination of Precision and Bias Data for Use in Test
Methods for Petroleum Products and Lubricants 1

This standard is issued under the fixed designation D 6300; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

Both Research Report RR:D02–1007,Manual on Determining Precision Data for ASTM Methods
on Petroleum Products and Lubricants2 and the ISO 4259, benefitted greatly from more than 50 years
of collaboration between ASTM and the Institute of Petroleum (IP) in the UK. The more recent work
was documented by the IP and has become ISO 4259.

ISO 4259 encompasses both the determination of precision and the application of such precision
data. In effect, it combines the type of information in RR:D02–10072 regarding the determination of
the precision estimates and the type of information in Practice D 3244 for the utilization of test data.
The following practice, intended to replace RR:D02–1007,2 differs slightly from related portions of
the ISO standard. This new practice is consistent with the computer software, ADJD6300 D2PP,
Version 4.43, Determination of Precision and Bias Data for Use in Test Methods for Petroleum
Products.

1. Scope

1.1 This practice covers the necessary preparations and
planning for the conduct of interlaboratory programs for the
development of estimates of precision (determinability, repeat-
ability, and reproducibility) and of bias (absolute and relative),
and further presents the standard phraseology for incorporating
such information into standard test methods.

1.2 This practice is generally limited to homogeneous prod-
ucts with which serious sampling problems do not normally
arise.

1.3 This practice may not be suitable for solid or semisolid
products such as petroleum coke, industrial pitches, paraffin
waxes, greases, or solid lubricants when the heterogeneous
properties of the substances create sampling problems. In such
instances, use Practice E 691 or consult a trained statistician.

1.4 A software program (ADJD6300) performs the neces-
sary computations prescribed by this practice.

2. Referenced Documents

2.1 ASTM Standards:
D 123 Terminology Relating to Textiles3

D 3244 Practice for Utilization of Test Data to Determine
Conformance with Specifications4

E 29 Practice for Using Significant Digits in Test Data to
Determine Conformance with Specifications5

E 456 Terminology Relating to Quality and Statistics5

E 691 Practice for Conducting an Interlaboratory Study to
Determine the Precision of a Test Method5

2.2 ISO Standards:
ISO 4259 Petroleum Products-Determination and Applica-

tion of Precision Data in Relation to Methods of Test6

2.3 ASTM Adjuncts:
ADJD6300 D2PP, Version 4.43, Determination of Preci-

sion and Bias Data for Use in Test Methods for Petroleum
Products7

3. Terminology

3.1 Definitions:
3.1.1 analysis of variance (ANOVA), n—a procedure for

dividing the total variation of a set of data into two or more
parts, one of which estimates the error due to selecting and
testing specimens and the other part(s) possible sources of
added variation. D 123

1 This practice is under the jurisdiction of ASTM Committee D02 on Petroleum
Products and Lubricants and is the direct responsibility of Subcommittee D02.94 on
Quality Assurance and Statistics.
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3.1.2 bias, n—the difference between the population mean
of the test results and an accepted reference value.E 456

3.1.3 bias, relative, n—the difference between the popula-
tion mean of the test results and an accepted reference value,
which is the agreed upon value obtained using an accepted
reference method for measuring the same property.

3.1.4 degrees of freedom, n—the divisor used in the calcu-
lation of variance.

3.1.4.1 Discussion—This definition applies strictly only in
the simplest cases. Complete definitions are beyond the scope
of this practice. ISO 4259

3.1.5 determinability, n—a quantitative measure of the vari-
ability associated with the same operator in a given laboratory
obtaining successive determined values using the same appa-
ratus for a series of operations leading to a single result; it is
defined as that difference between two such single determined
values as would be exceeded in the long run in only one case
in 20 in the normal and correct operation of the test method.

3.1.5.1 Discussion—This definition implies that two deter-
mined values, obtained under determinability conditions,
which differ by more than the determinability value should be
considered suspect. If an operator obtains more than two
determinations, then it would usually be satisfactory to check
the most discordant determination against the mean of the
remainder, using determinability as the critical difference(1).8

3.1.6 mean square, n— in analysis of variance, a contrac-
tion of the expression “mean of the squared deviations from the
appropriate average(s)” where the divisor of each sum of
squares is the appropriate degrees of freedom. D 123

3.1.7 normal distribution, n—the distribution that has the
probability function:

f~x! 5 ~1/s! ~2p!21/2exp@2 ~x–µ! 2/2s2# (1)

where:
x = a random variate,
µ = the mean distribution, and
s = the standard deviation of the distribution.

(Syn.Gaussian distribution, law of error) D 123
3.1.8 outlier, n—a result far enough in magnitude from

other results to be considered not a part of the set.
RR:D02–1007

3.1.9 precision, n—the degree of agreement between two or
more results on the same property of identical test material. In
this practice, precision statements are framed in terms of
repeatabilityand reproducibility of the test method.

3.1.9.1 Discussion—The testing conditions represented by
repeatability and reproducibility should reflect the normal
extremes of variability under which the test is commonly used.
Repeatability conditions are those showing the least variation;
reproducibility, the usual maximum degree of variability. Refer
to the definitions of each of these terms for greater detail.

RR:D02–1007
3.1.10 random error, n—the chance variation encountered

in all test work despite the closest control of variables.
RR:D02–1007

3.1.11 repeatability, n—the quantitative expression of the
random error associated with a single operator in a given
laboratory obtaining repetitive results by applying the same test
method with the same apparatus under constant operating
conditions on identical test material within a short interval of
time on the same day. It is defined as the difference between
two such results at the 95 % confidence level.RR:D02–1007

3.1.11.1Discussion—Interpret as the value equal to or
below which the absolute difference between two single test
results obtained in the above conditions may expect to lie with
a probability of 95 %. ISO 4259

3.1.11.2Discussion—The difference is related to the repeat-
ability standard deviation but it is not the standard deviation or
its estimate. RR:D02–1007

3.1.12 reproducibility, n—a quantitative expression of the
random error associated with different operators from different
laboratories using different apparatus, each obtaining a single
result by applying the same test method on an identical test
sample. It is defined as the 95 % confidence limit for the
difference between two such single and independent results.

3.1.12.1Discussion—Interpret as the value equal to or
below which the absolute difference between two single test
results on identical material obtained by operators in different
laboratories, using the standardized test, may be expected to lie
with a probability of 95 %. ISO 4259

3.1.12.2Discussion—The difference is related to the repro-
ducibility standard deviation but is not the standard deviation
or its estimate. RR:D02–1007

3.1.12.3Discussion—In those cases where the normal use
of the test method does not involve sending a sample to a
testing laboratory, either because it is an in-line test method or
because of serious sample instabilities or similar reasons, the
precision test for obtaining reproducibility may allow for the
use of apparatus from the participating laboratories at a
common site (several common sites, if feasible). The statistical
analysis is not affected thereby. However, the interpretation of
the reproducibility value will be affected, and therefore, the
precision statement shall, in this case, state the conditions to
which the reproducibility value applies.

3.1.13 standard deviation, n—the most usual measure of the
dispersion of observed values or results expressed as the
positive square root of the variance. E 456

3.1.14 sum of squares, n—in analysis of variance, a con-
traction of the expression “sum of the squared deviations from
the appropriate average(s)” where the average(s) of interest
may be the average(s) of specific subset(s) of data or of the
entire set of data. D 123

3.1.15 variance, n—a measure of the dispersion of a series
of accepted results about their average. It is equal to the sum of
the squares of the deviation of each result from the average,
divided by the number of degrees of freedom.

RR:D02–1007
3.1.16 variance, between-laboratory, n—that component of

the overall variance due to the difference in the mean values
obtained by different laboratories. ISO 4259

3.1.16.1Discussion—When results obtained by more than
one laboratory are compared, the scatter is usually wider than
when the same number of tests are carried out by a single

8 The bold numbers in parentheses refer to a list of references at the end of this
practice.
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laboratory, and there is some variation between means obtained
by different laboratories. Differences in operator technique,
instrumentation, environment, and sample “as received” are
among the factors that can affect the between laboratory
variance. There is a corresponding definition for between-
operator variance.

3.1.16.2Discussion—The term “between-laboratory” is of-
ten shortened to “laboratory” when used to qualify represen-
tative parameters of the dispersion of the population of results,
for example as “laboratory variance.”

3.2 Definitions of Terms Specific to This Standard:
3.2.1 determination, n—the process of carrying out a series

of operations specified in the test method whereby a single
value is obtained.

3.2.2 operator, n—a person who carries out a particular test.
3.2.3 probability density function, n—function which yields

the probability that the random variable takes on any one of its
admissible values; here, we are interested only in the normal
probability.

3.2.4 result, n—the final value obtained by following the
complete set of instructions in the test method.

3.2.4.1 Discussion—It may be obtained from a single de-
termination or from several determinations, depending on the
instructions in the method. When rounding off results, the
procedures described in Practice E 29 shall be used.

4. Summary of Practice

4.1 A draft of the test method is prepared and a pilot
program can be conducted to verify details of the procedure
and to estimate roughly the precision of the test method.

4.2 A plan is developed for the interlaboratory study using
the number of participating laboratories to determine the
number of samples needed to provide the necessary degrees of
freedom. Samples are acquired and distributed. The interlabo-
ratory study is then conducted on an agreed draft of the test
method.

4.3 The data are summarized and analyzed. Any depen-
dence of precision on the level of test result is removed by
transformation. The resulting data are inspected for uniformity
and for outliers. Any missing and rejected data are estimated.
The transformation is confirmed. Finally, an analysis of vari-
ance is performed, followed by calculation of repeatability,
reproducibility, and bias. When it forms a necessary part of the
test procedure, the determinability is also calculated.

5. Significance and Use

5.1 ASTM test methods are frequently intended for use in
the manufacture, selling, and buying of materials in accordance
with specifications and therefore should provide such precision
that when the test is properly performed by a competent

operator, the results will be found satisfactory for judging the
compliance of the material with the specification. Statements
addressing precision and bias are required in ASTM test
methods. These then give the user an idea of the precision of
the resulting data and its relationship to an accepted reference
material or source (if available). Statements addressing deter-
minability are sometimes required as part of the test method
procedure in order to provide early warning of a significant
degradation of testing quality while processing any series of
samples.

5.2 Repeatability and reproducibility are defined in the
precision section of every Committee D02 test method. Deter-
minability is defined above in Section 3. The relationship
among the three measures of precision can be tabulated in
terms of their different sources of variation (see Table 1).

5.2.1 When used, determinability is a mandatory part of the
Procedure section. It will allow operators to check their
technique for the sequence of operations specified. It also
ensures that a result based on the set of determined values is
not subject to excessive variability from that source.

5.3 A bias statement furnishes guidelines on the relationship
between a set of test results and a related set of accepted
reference values. When the bias of a test method is known, a
compensating adjustment can be incorporated in the test
method.

5.4 This practice is intended for use by D02 subcommittees
in determining precision estimates and bias statements to be
used in D02 test methods. Its procedures correspond with ISO
4259 and are the basis for the Committee D02 computer
software,Calculation if Precision Data: Petroleum Test Meth-
ods. The use of this practice replaces that of Research Report
RR:D02–1007.2

5.5 Standard practices for the calculation of precision have
been written by many committees with emphasis on their
particular product area. One developed by Committee E11 on
Statistics is Practice E 691. Practice E 691 and this practice
differ as outlined in Table 2.

6. Stages in Planning of an Interlaboratory Test Program
for the Determination of the Precision of a Test
Method

6.1 The stages in planning an interlaboratory test program
are: preparing a draft method of test (see 6.2), planning and
executing a pilot program with at least two laboratories
(optional but recommended for new test methods) (see 6.3),
planning the interlaboratory program (see 6.4), and executing
the interlaboratory program (see 6.5). The four stages are
described in turn.

6.2 Preparing a Draft Method of Test—This shall contain
all the necessary details for carrying out the test and reporting

TABLE 1 Sources of Variation

Method Apparatus Operator Laboratory Time

Reproducibility Complete Different Different Different Specified
(Result)

Repeatability Complete Same Same Same Almost same
(Result)

Determinability Incomplete Same Same Same Almost same
(Part result)
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the results. Any condition which could alter the results shall be
specified. The section on precision will be included at this stage
only as a heading.

6.3 Planning and Executing a Pilot Program with at Least
Two Laboratories:

6.3.1 A pilot program is recommended to be used with new
test methods for the following reasons: (1) to verify the details
in the operation of the test; (2) to find out how well operators
can follow the instructions of the test method; (3) to check the
precautions regarding sample handling and storage; and (4) to
estimate roughly the precision of the test.

6.3.2 At least two samples are required, covering the range
of results to which the test is intended to apply; however,
include at least 12 laboratory-sample combinations. Test each
sample twice by each laboratory under repeatability conditions.
If any omissions or inaccuracies in the draft method are
revealed, they shall now be corrected. Analyze the results for
precision, bias, and determinability (if applicable) using this
practice. If any are considered to be too large for the technical
application, then consider alterations to the test method.

6.4 Planning the Interlaboratory Program:
6.4.1 There shall be at least five participating laboratories,

but it is preferable to exceed this number in order to reduce the
number of samples required and to make the precision state-
ment as representative as possible of the qualified user popu-
lation.

6.4.2 The number of samples shall be sufficient to cover the
range of the property measured, and to give reliability to the
precision estimates. If any variation of precision with level was
observed in the results of the pilot program, then at least five
samples shall be used in the interlaboratory program. In any
case, it is necessary to obtain at least 30 degrees of freedom in
both repeatability and reproducibility. For repeatability, this
means obtaining a total of at least 30 pairs of results in the
program.

6.4.3 For reproducibility, Fig. 1 gives the minimum number
of samples required in terms ofL, P, andQ, whereL is the
number of participating laboratories, andP andQ are the ratios
of variance component estimates (see 8.3.1) obtained from the
pilot program. Specifically,P is the ratio of the interaction
component to the repeats component, andQ is the ratio of the
laboratories component to the repeats component.

NOTE 1—Appendix X1 gives the derivation of the equation used. IfQ
is much larger thanP, then 30 degrees of freedom cannot be achieved; the
blank entries in Fig. 1 correspond to this situation or the approach of it
(that is, when more than 20 samples are required). For these cases, there
is likely to be a significant bias between laboratories. The program
organizer shall be informed; further standardization of the test method
may be necessary.

6.5 Executing the Interlaboratory Program:
6.5.1 One person shall oversee the entire program, from the

distribution of the texts and samples to the final appraisal of the
results. He or she shall be familiar with the test method, but
should not personally take part in the actual running of the
tests.

6.5.2 The text of the test method shall be distributed to all
the laboratories in time to raise any queries before the tests
begin. If any laboratory wants to practice the test method in
advance, this shall be done with samples other than those used
in the program.

6.5.3 The samples shall be accumulated, subdivided, and
distributed by the organizer, who shall also keep a reserve of
each sample for emergencies. It is most important that the
individual laboratory portions be homogeneous. Instructions to
each laboratory shall include the following:

6.5.3.1 The agreed draft method of test;
6.5.3.2 Material Safety Data Sheets, where applicable, and

the handling and storage requirements for the samples;
6.5.3.3 The order in which the samples are to be tested (a

different random order for each laboratory);
6.5.3.4 The statement that two test results are to be obtained

in the shortest practical period of time on each sample by the
same operator with the same apparatus. For statistical reasons
it is imperative that the two results are obtained independently
of each other, that is, that the second result is not biased by
knowledge of the first. If this is regarded as impossible to
achieve with the operator concerned, then the pairs of results
shall be obtained in a blind fashion, but ensuring that they are

TABLE 2 Differences in Calculation of Precision in Practices
D 6300 and E 691

Element This Practice Practice E 691

Applicability Limited in general to
homogeneous samples for
which serious sampling
problems do not normally
arise.

Permits heterogeneous
samples.

Number of duplicates Two Any number

Precision is written
for

Test method Each sample

Outlier tests:
Within laboratories
Between

laboratories

Sequential
Cochran test
Hawkins test

Simultaneous
k-value
h-value

Outliers Rejected, subject to
subcommittee approval.

Rejected if many
laboratories or for cause
such as blunder or not
following method.

Retesting not generally
permitted.

Laboratory may retest
sample having rejected
data.

Rejection limit 20 % 5 %

Analysis of variance Two-way, applied globally
to all the remaining data
at once.

One-way, applied to each
sample separately.

Precision multiplier t =2 , where t is the two-
tailed Student’s t for 95 %
probability.

2.8=1.96 =2

Increases with decreasing
laboratories 3 samples
particularly below 12.

Constant.

Variation of precision
with level

Minimized by data
transformation. Equations
for repeatability and
reproducibility are generated
in the retransformation
process.

User may assess from
individual sample
precisions.
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carried out in a short period of time (preferably the same day).
The termblind fashionmeans that the operator does not know
that the sample is a duplicate of any previous run.

6.5.3.5 The period of time during which repeated results are
to be obtained and the period of time during which all the
samples are to be tested;

6.5.3.6 A blank form for reporting the results. For each
sample, there shall be space for the date of testing, the two

results, and any unusual occurrences. The unit of accuracy for
reporting the results shall be specified. This should be, if
possible, more digits reported than will be used in the final test
method, in order to avoid having rounding unduly affect the
estimated precision values.

6.5.3.7 When it is required to estimate the determinability,
the report form must include space for each of the determined
values as well as the test results.

FIG. 1 Determination of Number of Samples Required (see 6.4.3)
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6.5.3.8 A statement that the test shall be carried out under
normal conditions, using operators with good experience but
not exceptional knowledge; and that the duration of the test
shall be the same as normal.

6.5.4 The pilot program operators may take part in the
interlaboratory program. If their extra experience in testing a
few more samples produces a noticeable effect, it will serve as
a warning that the test method is not satisfactory. They shall be
identified in the report of the results so that any such effect may
be noted.

6.5.5 It can not be overemphasized that the statement of
precision in the test method is to apply to test results obtained
by running the agreed procedure exactly as written. Therefore,
the test method must not be significantly altered after its
precision statement is written.

7. Inspection of Interlaboratory Results for Uniformity
and for Outliers

7.1 Introduction:
7.1.1 This section specifies procedures for examining the

results reported in a statistically designed interlaboratory
program (see Section 6) to establish:

7.1.1.1 The independence or dependence of precision and
the level of results;

7.1.1.2 The uniformity of precision from laboratory to
laboratory, and to detect the presence of outliers.

NOTE 2—The procedures are described in mathematical terms based on
the notation of Annex A1 and illustrated with reference to the example
data (calculation of bromine number) set out in Annex A2. Throughout
this section (and Section 8), the procedures to be used are first specified
and then illustrated by a worked example using data given in Annex A2.

NOTE 3—It is assumed throughout this section that all the deviations are
either from a single normal distribution or capable of being transformed
into such a distribution (see 7.2). Other cases (which are rare) would
require different treatment that is beyond the scope of this practice. See(2)
for a statistical test of normality.

NOTE 4—Although the procedures shown here are in a form suitable for
hand calculation, it is strongly advised that an electronic computer be used
to store and analyze interlaboratory test results, based on the procedures of
this practice. ADJD6300 D2PP, Version 4.43, Determination of Precision
and Bias Data for Use in Test Methods for Petroleum Products, has been
designed for this purpose.

7.2 Transformation of Data:
7.2.1 In many test methods the precision depends on the

level of the test result, and thus the variability of the reported
results is different from sample to sample. The method of
analysis outlined in this practice requires that this shall not be
so and the position is rectified, if necessary, by a transforma-
tion.

7.2.2 The laboratories’ standard deviationsDj, and the
repeats standard deviationsdj (see Annex A1) are calculated
and plotted separately against the sample meansmj. If the
points so plotted may be considered as lying about a pair of

lines parallel to them-axis, then no transformation is necessary.
If, however, the plotted points describe non-horizontal straight
lines or curves of the formD = f1(m) and d = f2(m), then a
transformation will be necessary.

7.2.3 The relationshipsD = f1(m) andd = f2(m) will not in
general be identical. The statistical procedures of this practice
require, however, that the same transformation be applicable
both for repeatability and for reproducibility. For this reason
the two relationships are combined into a single dependency
relationshipD = f (m) (whereD now includesd) by including
a dummy variableT. This will take account of the difference
between the relationships, if one exists, and will provide a
means of testing for this difference (see A4.1).

7.2.4 The single relationship D = f(m) is best estimated by
weighted linear regression analysis. Strictly speaking, an
iteratively weighted regression should be used, but in most
cases even an unweighted regression will give a satisfactory
approximation. The derivation of weights is described in A4.2,
and the computational procedure for the regression analysis is
described in A4.3. Typical forms of dependence D = f(m) are
given in A3.1. These are all expressed in terms of at most two
(2) transformation parameters, B and B0.

7.2.5 The typical forms of dependence, the transformations
they give rise to, and the regressions to be performed in order
to estimate the transformation parametersB, are all summa-
rized in A3.2. This includes statistical tests for the significance
of the regression (that is, is the relationshipD = f(m) parallel
to them-axis), and for the difference between the repeatability
and reproducibility relationships, based at the 5 % significance
level. If such a difference is found to exist, or if no suitable
transformation exists, then the alternative methods of Practice
E 691 shall be used. In such an event it will not be possible to
test for laboratory bias over all samples (see 7.6) or separately
estimate the interaction component of variance (see 8.2).

7.2.6 If it has been shown at the 5 % significance level that
there is a significant regression of the formD = f(m), then the
appropriate transformationy = F(x), wherex is the reported
result, is given by the equation

F~x! 5 K* dx
f~x!

(2)

where K = a constant. In that event, all results shall be
transformed accordingly and the remainder of the analysis
carried out in terms of the transformed results. Typical trans-
formations are given in A3.1.

7.2.7 The choice of transformation is difficult to make the
subject of formalized rules. Qualified statistical assistance may
be required in particular cases. The presence of outliers may
affect judgement as to the type of transformation required, if
any (see 7.7).

7.2.8 Worked Example:
7.2.8.1 Table 3 lists the values ofm, D, andd for the eight

TABLE 3 Computed from Bromine Example Showing Dependence of Precision on Level

Sample Number 3 8 1 4 5 6 2 7

m 0.756 1.22 2.15 3.64 10.9 48.2 65.4 114
D 0.0669 (14) 0.159 (9) 0.729 (8) 0.211 (11) 0.291 (9) 1.50 (9) 2.22 (9) 2.93 (9)
d 0.0500 (9) 0.0572 (9) 0.127 (9) 0.116 (9) 0.0943 (9) 0.527 (9) 0.818 (9) 0.935 (9)
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samples in the example given in Annex A2, correct to three
significant digits. Corresponding degrees of freedom are in
parentheses. Inspection of the values in Table 3 shows that both
D andd increase withm, the rate of increase diminishing asm
increases. A plot of these figures on log-log paper (that is, a
graph of logD and log d againstlog m) shows that the points
may reasonably be considered as lying about two straight lines
(see Fig. A4.1 in Annex A4). From the example calculations
given in A4.4, the gradients of these lines are shown to be the
same, with an estimated value of 0.638. Bearing in mind the
errors in this estimated value, the gradient may for convenience
be taken as 2/3.

*x–
2

3 dx5 3x
1

3 (3)

7.2.8.2 Hence, the same transformation is appropriate both
for repeatability and reproducibility, and is given by the
equation. Since the constant multiplier may be ignored, the
transformation thus reduces to that of taking the cube roots of
the reported bromine numbers. This yields the transformed
data shown in Table A1.3, in which the cube roots are quoted
correct to three decimal places.

7.3 Tests for Outliers:
7.3.1 The reported data or, if it has been decided that a

transformation is necessary, the transformed results shall be
inspected for outliers. These are the values which are so
different from the remainder that it can only be concluded that
they have arisen from some fault in the application of the test
method or from testing a wrong sample. Many possible tests
may be used and the associated significance levels varied, but
those that are specified in the following subsections have been
found to be appropriate in this practice. These outlier tests all
assume a normal distribution of errors.

7.3.2 Uniformity of Repeatability—The first outlier test is
concerned with detecting a discordant result in a pair of repeat
results. This test(3) involves calculating theeij

2 over all the
laboratory/sample combinations. Cochran’s criterion at the 1 %
significance level is then used to test the ratio of the largest of
these values over their sum (see A1.5). If its value exceeds the
value given in Table A2.2, corresponding to one degree of
freedom,n being the number of pairs available for comparison,
then the member of the pair farthest from the sample mean
shall be rejected and the process repeated, reducingn by 1,
until no more rejections are called for. In certain cases,
specifically when the number of digits used in reporting results
leads to a large number of repeat ties, this test can lead to an
unacceptably large proportion of rejections, for example, more
than 10 %. If this is so, this rejection test shall be abandoned
and some or all of the rejected results shall be retained. A
decision based on judgement will be necessary in this case.

7.3.3 Worked Example— In the case of the example given in
Annex A2, the absolute differences (ranges) between trans-
formed repeat results, that is, of the pairs of numbers in Table
A1.3, in units of the third decimal place, are shown in Table 4.
The largest range is 0.078 for Laboratory G on Sample 3. The
sum of squares of all the ranges is

0.0422 + 0.0212 + . . . + 0.0262 + 02 = 0.0439.
Thus, the ratio to be compared with Cochran’s criterion is

0.0782

0.04395 0.138 (4)

where 0.138 is the result obtained by electronic calculation of
unrounded factors in the expression. There are 72 ranges and
as, from Table A2.2, the criterion for 80 ranges is 0.1709, this
ratio is not significant.

7.3.4 Uniformity of Reproducibility:
7.3.4.1 The following outlier tests are concerned with es-

tablishing uniformity in the reproducibility estimate, and are
designed to detect either a discordant pair of results from a
laboratory on a particular sample or a discordant set of results
from a laboratory on all samples. For both purposes, the
Hawkins’ test(4) is appropriate.

7.3.4.2 This involves forming for each sample, and finally
for the overall laboratory averages (see 7.6), the ratio of the
largest absolute deviation of laboratory mean from sample (or
overall) mean to the square root of certain sums of squares
(A1.6).

7.3.4.3 The ratio corresponding to the largest absolute
deviation shall be compared with the critical 1 % values given
in Table A1.5, wheren is the number of laboratory/sample cells
in the sample (or the number of overall laboratory means)
concerned and wherev is the degrees of freedom for the sum
of squares which is additional to that corresponding to the
sample in question. In the test for laboratory/sample cellsv will
refer to other samples, but will be zero in the test for overall
laboratory averages.

7.3.4.4 If a significant value is encountered for individual
samples the corresponding extreme values shall be omitted and
the process repeated. If any extreme values are found in the
laboratory totals, then all the results from that laboratory shall
be rejected.

7.3.4.5 If the test leads to an unacceptably large proportion
of rejections, for example, more than 10 %, then this rejection
test shall be abandoned and some or all of the rejected results
shall be retained. A decision based on judgement will be
necessary in this case.

7.3.5 Worked Example:
7.3.5.1 The application of Hawkins’ test to cell means

within samples is shown below.
7.3.5.2 The first step is to calculate the deviations of cell

means from respective sample means over the whole array.
These are shown in Table 5, in units of the third decimal place.

TABLE 4 Absolute Differences Between Transformed Repeat
Results: Bromine Example

Laboratory Sample

1 2 3 4 5 6 7 8

A 42 21 7 13 7 10 8 0
B 23 12 12 0 7 9 3 0
C 0 6 0 0 7 8 4 0
D 14 6 0 13 0 8 9 32
E 65 4 0 0 14 5 7 28
F 23 20 34 29 20 30 43 0
G 62 4 78 0 0 16 18 56
H 44 20 29 44 0 27 4 32
J 0 59 0 40 0 30 26 0
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The sum of squares of the deviations are then calculated for
each sample. These are also shown in Table 5 in units of the
third decimal place.

7.3.5.3 The cell to be tested is the one with the most extreme
deviation. This was obtained by Laboratory D from Sample 1.
The appropriate Hawkins’ test ratio is therefore:

B* 5
0.314

=0.1171 0.0151 . . . 1 0.017
5 0.7281 (5)

7.3.5.4 The critical value, corresponding ton = 9 cells in
sample 1 andv = 56 extra degrees of freedom from the other
samples is interpolated from Table A1.5 as 0.3729. The test
value is greater than the critical value, and so the results from
Laboratory D on Sample 1 are rejected.

7.3.5.5 As there has been a rejection, the mean value,
deviations, and sum of squares are recalculated for Sample 1,
and the procedure is repeated. The next cell to be tested will be
that obtained by Laboratory F from Sample 2. The Hawkins’
test ratio for this cell is:

B* 5
0.097

=0.0061 0.0151 . . . 1 0.017
5 0.3542 (6)

7.3.5.6 The critical value corresponding ton = 9 cells in
Sample 2 andv = 55 extra degrees of freedom is interpolated
from Table A1.5 as 0.3756. As the test ratio is less than the
critical value there will be no further rejections.

7.4 Rejection of Complete Data from a Sample:
7.4.1 The laboratories standard deviation and repeats stan-

dard deviation shall be examined for any outlying samples. If
a transformation has been carried out or any rejection made,
new standard deviations shall be calculated.

7.4.2 If the standard deviation for any sample is excessively
large, it shall be examined with a view to rejecting the results
from that sample.

7.4.3 Cochran’s criterion at the 1 % level can be used when
the standard deviations are based on the same number of
degrees of freedom. This involves calculating the ratio of the

largest of the corresponding sums of squares (laboratories or
repeats, as appropriate) to their total (see A1.5). If the ratio
exceeds the critical value given in Table A2.2, withn as the
number of samples andv the degrees of freedom, then all the
results from the sample in question shall be rejected. In such an
event care should be taken that the extreme standard deviation
is not due to the application of an inappropriate transformation
(see 7.1), or undetected outliers.

7.4.4 There is no optimal test when standard deviations are
based on different degrees of freedom. However, the ratio of
the largest variance to that pooled from the remaining samples
follows an F-distribution with v1 and v2 degrees of freedom
(see A1.7). Herev1 is the degrees of freedom of the variance in
question andv2 is the degrees of freedom from the remaining
samples. If the ratio is greater than the critical value given in
A2.6, corresponding to a significance level of 0.01/SwhereS is
the number of samples, then results from the sample in
question shall be rejected.

7.4.5 Worked Example:
7.4.5.1 The standard deviations of the transformed results,

after the rejection of the pair of results by Laboratory D on
Sample 1, are given in Table 6 in ascending order of sample
mean, correct to three significant digits. Corresponding degrees
of freedom are in parentheses.

7.4.5.2 Inspection shows that there is no outlying sample
among these. It will be noted that the standard deviations are
now independent of the sample means, which was the purpose
of transforming the results.

7.4.5.3 The values in Table 7, taken from a test program on
bromine numbers over 100, will illustrate the case of a sample
rejection.

7.4.5.4 It is clear, by inspection, that the laboratories stan-
dard deviation of Sample 93 at 15.76 is far greater than the
others. It is noted that the repeats standard deviation in this
sample is correspondingly large.

7.4.5.5 Since laboratory degrees of freedom are not the
same over all samples, the variance ratio test is used. The
variance pooled from all samples, excluding Sample 93, is the
sum of the sums of squares divided by the total degrees of
freedom, that is

~8 3 5.102 1 9 3 4.202 1 ... 1 83 3.852!

~8 1 9 1 ... 1 8!
5 19.96 (7)

7.4.5.6 The variance ratio is then calculated as

15.262

19.96 5 11.66 (8)

where 11.66 is the result obtained by electronic calculation
without rounding the factors in the expression.

7.4.5.7 From Table A1.8 the critical value corresponding to
a significance level of 0.01/8 = 0.00125, on 8 and 63 degrees

TABLE 5 Deviations of Cell Means from Respective Sample
Means: Transformed Bromine Example

Sample

Laboratory 1 2 3 4 5 6 7 8

A 20 8 14 15 10 48 6 3
B 75 7 20 9 10 47 6 3
C 64 35 3 20 30 4 22 25
D 314 33 18 42 7 39 80 50
E 32 32 30 9 7 18 18 39
F 75 97 31 20 30 8 74 53
G 10 34 32 20 20 61 9 62
H 42 13 4 42 13 21 8 50
J 1 28 22 29 14 8 10 53

Sum of Squares 117 15 4 6 3 11 13 17

TABLE 6 Standard Deviations of Transformed Results: Bromine Example

Sample number 3 8 1 4 5 6 2 7

m 0.9100 1.066 1.240 1.538 2.217 3.639 4.028 4.851
D 0.0278 0.0473 0.0354 0.0297 0.0197 0.0378 0.0450 0.0416

(14) (9) (13) (11) (9) (9) (9) (9)
d 0.0214 0.0182 0.028 0.0164 0.0063 0.0132 0.0166 0.0130

(9) (9) (8) (9) (9) (9) (9) (9)
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of freedom, is approximately 4. The test ratio greatly exceeds
this and results from Sample 93 shall therefore be rejected.

7.4.5.8 Turning to repeats standard deviations, it is noted
that degrees of freedom are identical for each sample and that
Cochran’s test can therefore be applied. Cochran’s criterion
will be the ratio of the largest sum of squares (Sample 93) to
the sum of all the sums of squares, that is

2.972/~1.13210.9921...11.362! 5 0.510 (9)

This is greater than the critical value of 0.352 corresponding to
n = 8 andv = 8 (see Table A2.2), and confirms that results from
Sample 93 shall be rejected.

7.5 Estimating Missing or Rejected Values:
7.5.1 One of the Two Repeat Values Missing or Rejected—If

one of a pair of repeats (Yij1 or Yij2) is missing or rejected, this
shall be considered to have the same value as the other repeat
in accordance with the least squares method.

7.5.2 Both Repeat Values Missing or Rejected:
7.5.2.1 If both the repeat values are missing, estimates ofaij

(= Yij1+Yij2) shall be made by forming the laboratories3
samples interaction sum of squares (see Eq 17), including the
missing values of the totals of the laboratories/samples pairs of
results as unknown variables. Any laboratory or sample from
which all the results were rejected shall be ignored and new
values ofL andSused. The estimates of the missing or rejected
values shall be those that minimize the interaction sum of
squares.

7.5.2.2 If the value of single pair sumaij has to be estimated,
the estimate is given by the equation:

aij 5
1

~L–1! ~S8–1!
~LL1 1 S8S1 – T1! (10)

where:
L1 = total of remaining pairs in theith laboratory,
S1 = total of remaining pairs in thejth sample,
S8 = S – number of samples rejected in 7.4, and
T1 = total of all pairs exceptaij .

7.5.2.3 If more estimates are to be made, the technique of
successive approximation can be used. In this, each pair sum is
estimated in turn from Eq 10, usingL1, S1, and T1, values,
which contain the latest estimates of the other missing pairs.
Initial values for estimates can be based on the appropriate
sample mean, and the process usually converges to the required
level of accuracy within three complete iterations(5).

7.5.3 Worked Example:

7.5.3.1 The two results from Laboratory D on Sample 1
were rejected (see 7.3.4) and thusa41 has to be estimated.

Total of remaining results in Laboratory 4 = 36.354
Total of remaining results in Sample 1 = 19.845
Total of all the results except a41= 348.358
Also S8 = 8 and L = 9.

Hence, the estimate ofa41 is given by

aij 5
1

~9–1! ~8–1! @~9 3 36.354! 1 ~8 3 19.845! – 348.358# (11)

Therefore,

aij 5
137.588

56 5 2.457 (12)

7.6 Rejection Test for Outlying Laboratories:
7.6.1 At this stage, one further rejection test remains to be

carried out. This determines whether it is necessary to reject the
complete set of results from any particular laboratory. It could
not be carried out at an earlier stage, except in the case where
no individual results or pairs are missing or rejected. The
procedure again consists of Hawkins’ test (see 7.3.4), applied
to the laboratory averages over all samples, with any estimated
results included. If any laboratories are rejected on all samples,
new estimates shall be calculated for any remaining missing
values (see 7.5).

7.6.2 Worked Example:
7.6.2.1 The procedure on the laboratory averages shown in

Table 8 follows exactly that specified in 7.3.4. The deviations
of laboratory averages from the overall mean are given in Table
9 in units of the third decimal place, together with the sum of
squares. Hawkins’ test ratio is therefore:

B* 5 0.026/=0.002225 0.5518 (13)

Comparison with the value tabulated in Table A1.5, forn = 9
andv = 0, shows that this ratio is not significant and therefore
no complete laboratory rejections are necessary.

7.7 Confirmation of Selected Transformation:
7.7.1 At this stage it is necessary to check that the rejections

carried out have not invalidated the transformation used. If
necessary, the procedure from 7.2 shall be repeated with the
outliers replaced, and if a new transformation is selected,
outlier tests shall be reapplied with the replacement values
reestimated, based on the new transformation.

7.7.2 Worked Example:
7.7.2.1 It was not considered necessary in this case to repeat

the calculations from 7.2 with the outlying pair deleted.

TABLE 7 Example Statistics Indicating Need to Reject an Entire Sample

Sample number 90 89 93 92 91 94 95 96

m 96.1 99.8 119.3 125.4 126.0 139.9 139.4 159.5
D 5.10 4.20 15.26 4.40 4.09 4.87 4.74 3.85

(8) (9) (8) (11) (10) (8) (9) (8)
d 1.13 0.99 2.97 0.91 0.73 1.32 1.12 1.36

(8) (8) (8) (8) (8) (8) (8) (8)

TABLE 8 Averages of All Transformed Results from Each Laboratory

Laboratory A B C D E F G H J
Grand

Average
Average 2.437 2.439 2.424 2.426A 2.444 2.458 2.410 2.428 2.462 2.436

A Including estimated value.
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8. Analysis of Variance and Calculation of Precision
Estimates

8.1 After the data have been inspected for uniformity, a
transformation has been performed, if necessary, and any
outliers have been rejected (see Section 7), an analysis of
variance shall be carried out. First an analysis of variance table
shall be constructed, and finally the precision estimates de-
rived.

8.2 Analysis of Variance:
8.2.1 Forming the Sums of Squares for the Laboratories3

Samples Interaction Sum of Squares—The estimated values, if
any, shall be put in the array and an approximate analysis of
variance performed.

M 5 mean correction5 T2/2L8S8 (14)

where:
L8 = L – number of laboratories rejected in 7.6 – number of

laboratories with no remaining results after rejections
in 7.3.4,

S8 = total of remaining pairs in thejth sample, and
T = the total of all duplicate test results.

Samples sum of squares5 @(
j51

S8

~gj
2/2L8!# – M (15)

wheregj is the sum of samplej test results.

Laboratories sum of squares5 @(
i51

L8

~hi
2/2S8!# – M (16)

wherehi is the sum of laboratoryi test results.

Pairs sum of squares5 ~1/2! @(
i51

L8

(
j51

S8

aij
2# – M (17)

I = Laboratories3 samples interaction sum of squares
= (pairs sum of squares) – (laboratories sum of squares)

– (sample sum of squares)
Ignoring any pairs in which there are estimated values,

repeats sum of squares,

E 5 ~1/2! (
i51

L8

(
j51

S8

eij
2 (18)

The purpose of performing this approximate analysis of
variance is to obtain the minimized laboratories3 samples
interaction sum of squares,I. This is then used as indicated in
8.2.2, to obtain the laboratories sum of squares. If there were
no estimated values, the above analysis of variance is exact and
paragraph 8.2.2 shall be disregarded.

8.2.1.1 Worked Example:

Mean correction5
350.8152

144 (19)

5 854.6605

where 854.6605 is the result obtained by electronic calculation
without rounding the factors in the expression.

Samples sum of squares

5
22.3022 1 72.5122 1 ... 1 19.1922

18 – 854.6605

(20)

5 293.5409

Laboratories sum of squares

5
38.9922 1 39.0202 1 ... 1 39.3872

16
– 854.6605 (21)

5 0.0356

Pairs sum of squares5 ~1/2! ~2.5202 1 8.0412 1 ...

1 2.2382! – 854.6605 (22)

5 293.6908

Repeats sum of squares5 ~1/2! ~0.0422 1 0.0212 1 ... 1 02!
(23)

5 0.0219

Table 10 can then be derived.
8.2.2 Forming the Sum of Squares for the Exact Analysis of

Variance:
8.2.2.1 In this subsection, all the estimated pairs are disre-

garded and new values ofgj are calculated. The following sums
of squares for the exact analysis of variance(6) are formed.

Uncorrected sample sum of squares5 (
j51

S8 gj
2

Sj
(24)

where:
Sj = 2(L8 – number of missing pairs in that sample).

Uncorrected pairs sum of squares5 ~1/2! (
i51

L8

(
j51

S8

aij
2 (25)

The laboratories sum of squares is equal to (pairs sum of
squares) – (samples sum of squares) – (the minimized labora-
tories3 samples interaction sum of squares)

5 ~1/2! @(
i51

L8

(
j51

S8

aij
2# –F(

j51

S8 gj
2

Sj
G– I (26)

8.2.2.2 Worked Example:

Uncorrected samples sum of squares

TABLE 9 Absolute Deviations of Laboratory Averages from Grand Average 3 1000

Laboratory A B C D E F G H J
Sum of
Squares

Deviation 1 3 12 10 8 22 26 8 26 2.22

TABLE 10 Sums of Squares: Bromine Example

Sources of Variation Sum of Squares

Samples 293.5409
Laboratories 0.0356
Laboratories 3 samples interaction 0.1143
Pairs 293.6908
Repeats 0.0219
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5
19.8452

16 1
72.5122

18 1 ... 1
19.1922

18 (27)

5 1145.1834

Uncorrected pairs sum of squares5
2.5202

2 1
8.0412

2 1 ... 1
2.2382

2
(28)

5 1145.3329

Therefore, laboratories sum of squares

5 1145.3329– 1145.18341 0.1143 (29)

5 0.0352

8.2.3 Degrees of Freedom:
8.2.3.1 The degrees of freedom for the laboratories are

(L8–1). The degrees of freedom for laboratories3 samples
interaction are (L8–1)(S8–1) for a complete array and are
reduced by one for each pair which is estimated. The degrees
of freedom for repeats are (L8S8) and are reduced by one for
each pair in which one or both values are estimated.

8.2.3.2 Worked Example—There are eight samples and nine
laboratories in this example. As no complete laboratories or
samples were rejected, thenS8 = 8 andL8 = 9.

Laboratories degrees of freedom =L–1 = 8.

Laboratories3 samples interaction degrees of freedom if there
had been no estimates, would have been (9–1)(8–1) = 56. But
one pair was estimated, hence laboratories3 samples interac-
tion degrees of freedom = 55. Repeats degrees of freedom
would have been 72 if there had been no estimates. In this case
one pair was estimated, hence repeats degrees of freedom = 71.

8.2.4 Mean Squares and Analysis of Variance:
8.2.4.1 The mean square in each case is the sum of squares

divided by the corresponding degrees of freedom. This leads to
the analysis of variance shown in Table 11. The ratioML/MLS

is distributed asF with the corresponding laboratories and
interaction degrees of freedom (see A1.7). If this ratio exceeds
the 5 % critical value given in Table A1.6, then serious bias
between the laboratories is implied and the program organizer
shall be informed (see 6.5); further standardization of the test
method may be necessary, for example, by using a certified
reference material.

8.2.4.2 Worked Example— The analysis of variance is
shown in Table 12. The ratioML/MLS = 0.0044/0.002078 has a
value 2.117. This is greater than the 5 % critical value obtained
from Table A1.6, indicating bias between laboratories.

8.3 Expectation of Mean Squares and Calculation of Preci-
sion Estimates:

8.3.1 Expectation of Mean Squares with No Estimated
Values—For a complete array with no estimated values, the
expectations of mean squares are

Laboratories: so
2 + 2s1

2+ 2S8 s2
2

Laboratories 3 samples: so
2+ 2s1

2

Repeats: so
2

where:
s1

2 = the component of variance due to interaction be-
tween laboratories and samples, and

s2
2 = the component of variance due to differences be-

tween laboratories.
8.3.2 Expectation of Mean Squares with Estimated Values:
8.3.2.1 The coefficients ofs1

2 ands2
2 in the expectation of

mean squares are altered in the cases where there are estimated
values. The expectations of mean squares then become

Laboratories: aso
2+ 2s1

2+ b s2
2

Laboratories 3 samples:gs o
2+ 2s1

2

Repeats: so
2

where:

b 5 2
K – S8

L8 – 18
(30)

where:
K = the number of laboratory3 sample cells containing at

least one result, anda andg are computed as in 8.3.2.5
8.3.2.2 If there are no cells with only a single estimated

result, thena = g = 1.
8.3.2.3 If there are no empty cells (that is, every lab has

tested every sample at least once, andK = L83 S8), thena and
g are both one plus the proportion of cells with only a single
result.

8.3.2.4 If there are both empty cells and cells with only one
result, then, for each lab, compute the proportion of samples
tested for which there is only one result,pi, and the sum of
these proportions over all labs,P. For each sample, compute
the proportion of labs that have tested the sample for which
there is only one result on it,qj, and the sum of these
proportions over samples,Q. Compute the total number of cells
with only one result,W, and the proportion of these among all
nonempty cells,W/K. Then

a 5 1 1
P – W/K

L8–1 (31)

and

g 5 1 1
W – P – Q 1 W/K

K – L8–S811 (32)

TABLE 11 Analysis of Variance Table

Sources of Variation Degrees of Freedom Sum of Squares
Mean

Square

Laboratories L8 − 1 Laboratories sum of
squares

ML

Laboratories 3
samples

(L8 − 1) (S8 − 1) − number
of estimated pairs

I MLS

Repeats L8S8 − number of pairs in
which one or both values
are estimated

E Mr

TABLE 12 Analysis of Variance Table: Transformed Benzene
Example

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean Square F

Laboratories 0.0352 8 0.004400 2.117

Laboratories 3
samples

0.1143 55 0.002078

Repeats 0.0219 71 0.000308 ...
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NOTE 5—These subsections are based upon the assumptions that both
samples and laboratories are random effects.

8.3.2.5 Worked Example—For the example, which has eight
samples and nine laboratories, one cell is empty (Laboratory D
on Sample 1), soK = 71 and

b 5 2
71 – 8
~9 – 1! 5 15.75 (33)

None of the nonempty cells has only one result, soa = g =
1. To make the example more interesting, assume that only one
result remains from Laboratory A on Sample 1. ThenW = 1, p1

= 1⁄8 , p2= p3= ... = p9= 0, andP = 0.125. We computeq1= 1⁄8
(we don’t count Laboratory D in the denominator), q2= q3=...=
q8= 0, andQ = 0.125. Consequently,

a 5 1 1
0.125 – 1/71

9 – 1 5 1.014 (34)

and

g 5 1 1
1 – 0.125 – 0.1251 1/71

55 5 1.014 (35)

8.3.3 Calculation of Precision Estimates:
8.3.3.1 Repeatability—The repeatability variance is twice

the mean square for repeats. The repeatability estimate is the
product of the repeatability standard deviation and the “t-
value” with appropriate degrees of freedom (see Table A2.3)
corresponding to a two-sided probability of 95 %. Round
calculated estimates of repeatability in accordance with Prac-
tice E 29, specifically paragraph 7.6 of that practice. Note that
if a transformationy = f(x) has been used, then

r~x! ' Udx
dyU r~y! (36)

wherer(x), r(y) are the corresponding repeatability functions
(see). A similar relationship applies to the reproducibility
functionsR(x), R(y).

8.3.3.2 Worked Example:

Repeatability variance5 2so
2 (37)

5 0.000616

Repeatability ofy 5 t71=0.000616

5 1.994x 0.0428

5 0.0495

Repeatability ofx 5 3x2/3 3 0.0495

5 0.148x2/3

8.3.3.3 Reproducibility—Reproducibility variance = 2
(so

2+ s1
2+ s2

2) and can be calculated using Eq 38.

Reproducibility variance (38)

5
2
b ML 1 S1 –

2
bD MLS 1 S2 –g 1

2
b ~g – a! Mr

where the symbols are as set out in 8.2.4 and 8.3.2. The
reproducibility estimate is the product of the reproducibility
standard deviation and the “t-value” with appropriate degrees
of freedom (see Table A2.3), corresponding to a two-sided
probability of 95 %. An approximation(7) to the degrees of
freedom of the reproducibility variance is given by Eq 39.

v 5
~Reproducibility variance!2

r1
2

L8 – 11
r2

2

vLS
1

r3
2

vr

(39)

where:
r1, r2, and r3 = the three successive terms in Eq 38,
vLS = the degrees of freedom for laboratories3

samples, and
vr = the degrees of freedom for repeats.

(1) Round calculated estimates of reproducibility in accor-
dance with Practice E 29, specifically paragraph 7.6 of that
practice.

(2) Substantial bias between laboratories will result in a loss
of degrees of freedom estimated by Eq 39. If reproducibility
degrees of freedom are less than 30, then the program organizer
shall be informed (see 6.5); further standardization of the test
method may be necessary.

8.3.3.4 Worked Example—Recalling thata = g = 1 (not
1.014, as shown in Eq 34 and 35):

Reproducibility variance (40)

5 S 2
15.753 0.00440D 1 S13.75

15.753 0.002078D 1 0.000308

5 0.0005591 0.0018141 0.000308

5 0.002681

v 5
0.0026812

0.0005592

8 1
0.0018142

55 1
0.0003082

71

(41)

5 72

Reproducibility ofy 5 t72= 0.002681 (42)

5 0.1034

Reproducibility of x 5 0.310x2/3

8.3.3.5 Determinability—When determinability is relevant,
it shall be calculated by the same procedure as is used to
calculate repeatability except that pairs of determined values
replace test results. This will as much as double the number of
“laboratories” for the purposes of this calculation.

8.3.4 Bias:
8.3.4.1 Bias equals average sample test result minus its

accepted reference value. In the ideal case, average 30 or more
test results, measured independently by processes in a state of
statistical control, for each of several relatively uniform mate-
rials, the reference values for which have been established by
one of the following alternatives, and subtract the reference
values. In practice, the bias of the test method, for a specific
material, may be calculated by comparing the sample average
with the accepted reference value.

8.3.4.2 Accepted reference values may be one of the fol-
lowing: an assigned value for a Standard Reference Material, a
consensus value based on collaborative experimental work
under the guidance of a scientific or engineering organization,
an agreed upon value obtained using an accepted reference
method, or a theoretical value.

8.3.4.3 Where possible, one or more materials with ac-
cepted reference values shall be included in the interlaboratory
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program. In this way sample averages free of outliers will
become available for use in determining bias.

8.3.4.4 Because there will always be at least some bias
because of the inherent variability of test results, it is recom-
mended to test the bias value by applying Student’st test using
the number of laboratories degrees of freedom for the sample
made available during the calculation of precision. When the
calculatedt is less than the critical value at the 5 % confidence
level, the bias should be reported as not significant.

8.4 Precision and Bias Section for a Test Method—When
the precision of a test method has been determined, in
accordance with the procedures set out in this practice, it shall
be included in the test method as illustrated in these examples:

8.4.1 Precision—The precision of this test method, which
was determined by statistical examination of interlaboratory
results using Practice D 6300, is as follows.

8.4.1.1 Repeatability—The difference between successive
results obtained by the same operator with the same apparatus
under constant operating conditions on identical test material
would in the long run, in the normal and correct operation of
the test method exceed the following values only in one case in
20.

Repeatability5 0.148x2/3 (43)

wherex is the average of two results.

8.4.1.2 Reproducibility—The difference between two single
and independent results obtained by different operators work-
ing in different laboratories on identical test material would in
the long run exceed the following values only in one case in 20.

Reproducibility5 0.310x2/3 (44)

wherex is the average of two results.
8.4.1.3 If determinability is relevant, it shall precede repeat-

ability in the statement above. The unit of measurement shall
be specified when it differs from that of the test result:

8.4.1.4 Determinability—The difference between the pair of
determined values averaged to obtain a test result would, in the
long run, in the normal and correct operation of the test

method, exceed the following value in only one case in 20.
When this occurs, the operator must take corrective action:

Determinability5 0.59=m (45)

wherem is the mean of the two determined values in mL.

8.4.2 A graph or table may be used instead of, or in addition
to, the equation format shown above. In any event, it is helpful
to include a table of typical values like Table 13.

8.4.3 The wording to be used for test methods where the
statistical treatment applied is unknown is: “The precision of
this test is not known to have been obtained in accordance with
currently accepted guidelines (for example, in Committee D02,
Practice D 6300).” The existing statement of precision would
then follow.

8.5 Data Storage:
8.5.1 The interlaboratory program data should be preserved

for general reference. Prepare a research report containing
details of the test program, including description of the
samples, the raw data, and the calculations described herein.
Send the file to ASTM Headquarters and request a File
Reference Number.

8.5.2 Use the following footnote style in the precision
section of the test method. “The results of the cooperative test
program, from which these values have been derived, are filed
at ASTM Headquarters as RR:D02–XXXX.”

9. Keywords

9.1 interlaboratory; precision; repeatability; reproducibility;
round robin

ANNEXES

(Mandatory Information)

A1. NOTATION AND TESTS

A1.1 The Following Notation Is Used Throughout This
Practice:

a = the sum of duplicate test results,
e = the difference between duplicate test results,
g = the sum of sample test results,
h = the sum of laboratory test results,
i = the suffix denoting laboratory number,
j = the suffix denoting sample number,
S = the number of samples,
T = the total of all duplicate test results,
L = the number of laboratories,

m = the mean of sample test results,
x = the mean of a pair of test results in repeatability and

reproducibility statements,
x... = an individual test result,
y... = a transformed value of x..., and
v = the degrees of freedom.

A1.2 Array of Duplicate Results from Each of L
Laboratories on S Samples and Corresponding
Means mj

A1.2.1 See Table A1.1.

NOTE A1.1—If a transformationy = F(x) of the reported data is

TABLE 13 Typical Precision Values: Bromine Example

Average Value Repeatability Reproducibility
Bromine Numbers Bromine Numbers Bromine Numbers

1.0 0.15 0.31
2.0 0.23 0.49

10.0 0.69 1.44
20.0 1.09 2.28

100.0 3.19 6.68
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necessary (see 7.2), then corresponding symbolsyij1 andyij2 are used in
place ofxij1 andxij2.

A1.3 Array of Sums of Duplicate Results, of Laboratory
Totals hi and Sample Totalsgj

A1.3.1 See Table A1.2.
A1.3.2 If any results are missing from the complete array,

then the divisor in the expression formj will be correspond-
ingly reduced.

A1.4 Sums of Squares and Variances (7.2)

A1.4.1 Repeats Variance for Sample j:

dj
2 5

(
i51

L

eij
2

2L (A1.1)

where:
L = the repeats degrees of freedom for Samplej, one degree

of freedom for each laboratory pair. If either or both of
a laboratory/sample pair of results is missing, the
corresponding term in the numerator is omitted and the
factor L is reduced by one.

A1.4.2 Between Cells Variance for Sample j:

Cj
2 5 F(

i51

L aij
2

nij
–

gj
2

Sj
G/~L–1! (A1.2)

A1.4.3 Laboratories Variance for Sample j:

Dj
2 5

1
Kj

@Cj
2 1 ~Kj – 1! dj

2# (A1.3)

where:

Kj 5 ~Sj
2 – (

i51

L

nij
2! / @Sj ~L–1!# (A1.4)

nij = number of results obtained by Laboratoryi from
Samplej,

Sj = total number of results obtained from Samplej, and
L = number of cells in Samplej containing at least one

result.
A1.4.4 Laboratories degrees of freedom for Samplej is

given approximately(6) by:

vj 5
~KjDj

2!2

~Cj
2!2

L–1 1
@~Kj–1!dj

2#2

L

(A1.5)

(rounded to the nearest integer)
A1.4.5 If either or both of a laboratory/sample pair of results

is missing, the factorL is reduced by one.
A1.4.6 If both of a laboratory/sample pair of results is

missing, the factor (L – 1) is reduced by one.

A1.5 Cochran’s Test

A1.5.1 The largest sum of squares,SSk, out of a set ofn
mutually independent sums of squares each based onv degrees
of freedom, can be tested for conformity in accordance with:

Cochran’s criterion5
SSk

(
i51

n

SSi

(A1.6)

A1.5.2 The test ratio is identical if sum of squares values are
replaced by mean squares (variance estimates). If the calcu-
lated ratio exceeds the critical value given in Table A1.3, then
the sum of squares in question,SSk, is significantly greater than
the others with a probability of 99 %. Examples ofSSi include
eij

2 anddj
2(Eq A1.1).

A1.6 Hawkins’ Test

A1.6.1 An extreme value in a data set can be tested as an
outlier by comparing its deviation from the mean value of the
data set to the square root of the sum of squares of all such
deviations. This is done in the form of a ratio. Extra informa-
tion on variability can be provided by including independent
sums of squares into the calculations. These will be based onv
degrees of freedom and will have the same population variance
as the data set in question. Table A1.4 shows the values that are
required to apply Hawkins’ test to individual samples. The test
procedure is as follows:

A1.6.1.1 Identify the samplek and cell meanaik/nik, which
has the most extreme absolute deviation?aik/nik – mk? . The cell
identified will be the candidate for the outlier test, be it high or
low.

A1.6.1.2 Calculate the total sum of squares of deviations

SS5 (
i51

S

SSj (A1.7)

A1.6.1.3 Calculate the test ratio

TABLE A1.1 Typical Layout of Data from Round Robin

Sample
Laboratory 1 2 j S

1 x111 x121 x1j1 x1S1

x112 x122 x1j2 x1S2

2 x211 x221 x2j1 x2S1

x212 x222 x2j2 x2S2

i xi11 xi21 xij1 xiS1

xi12 xi22 xij2 xiS2

L xL11 xL21 xLj1 xLS1

xL12 xL22 xLj2 xLS2

Total g1 g2 gj gs

Mean m1 m2 mj ms

TABLE A1.2 Typical Layout of Sums of Duplicate Results A

Sample
Laboratory 1 2 j S Total

1 a11 a12 a1j aiS h1

2 a21 a22 a2j a2S h2

i ai1 ai2 aij ai1 hi

L aL1 aL2 aLj aLS hL

Total g1 g2 gj gS T
A aij = xij1 + xij2 (or aij = yij1 + y ij2, if a transformation has been used)
eij = x ij1 – x ij2 (or aij = yij1 – yij2, if a transformation has been used)

gj 5 (
i51

L

aij hi 5 (
j51

S

aij

mj 5 gj / 2L
T 5 (

i51

L

hi 5 (
j51

S

gj
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B* 5
?aik/nik – mk?

=SS
(A1.8)

A1.6.1.4 Compare the test ratio with the critical value from
Table A1.5, forn = nk and extra degrees of freedomv where

v 5 (
j51

S

~nj – 1!, j fi k. (A1.9)

A1.6.1.5 IfB* exceeds the critical value, reject results from
the cell in question (Samplek, Laboratoryi), modify nk, mk and
SSk values accordingly, and repeat from A1.6.1.1.

NOTE A1.2—Hawkins’ test applies theoretically to the detection of only
a single outlier laboratory in a sample. The technique of repeated tests for
a single outlier, in the order of maximum deviation from sample mean,
implies that the critical values in Table A1.5 will not refer exactly to the
1 % significance level. It has been shown by Hawkins, however, that ifn
$ 5 and the total degrees of freedom (n + v) are greater than 20, then this
effect is negligible, as are the effects of masking (one outlier hiding
another) and swamping (the rejection of one outlier leading to the
rejection of others).

A1.6.1.6 When the test is applied to laboratories averaged
over all samples, Table A1.4 will reduce to a single column

containing:
n = number of laboratories =L,
m = overall mean =T/N, whereN is the total number of results
in the array, and
SS= sum of squares of deviations of laboratory means from the
overall mean, and is given by

SS5 (
i51

L Shi

ni
– mD 2

(A1.10)

where:
ni = the number of results in Laboratoryi.

In the test procedure, therefore, identify the laboratory mean
h

i
/ni which differs most from the overall mean,m. The

corresponding test ratio then becomes:

B* 5
? hi/ni – m?

= SS
(A1.11)

A1.6.1.7 This shall be compared with the critical value from
Table A1.5 as before, but now with extra degrees of freedomv
= 0. If a laboratory is rejected, adjust the values ofn, m,andSS
accordingly and repeat the calculations.

A1.7 Variance Ratio Test (F-Test)

A1.7.1 A variance estimateV1, based onv1 degrees of
freedom, can be compared with a second estimateV2, based on
v2 degrees of freedom, by calculating the ratio

F 5
V1

V2
(A1.12)

A1.7.2 If the ratio exceeds the appropriate critical value
given in Tables A1.6-A1.9, wherev1 corresponds to the
numerator andv2 corresponds to the denominator, thenV1 is
greater thanV2 at the chosen level of significance.

TABLE A1.3 Cube Root of Bromine Number for Low Boiling Samples

Sample
Laboratory 1 2 3 4 5 6 7 8

A 1.239 4.010 0.928 1.547 2.224 3.586 4.860 1.063
1.281 4.031 0.921 1.560 2.231 3.596 4.852 1.063

B 1.193 4.029 0.884 1.547 2.231 3.691 4.856 1.063
1.216 4.041 0.896 1.547 2.224 3.682 4.853 1.063

C 1.216 3.990 0.913 1.518 2.183 3.647 4.826 1.091
1.216 3.996 0.913 1.518 2.190 3.639 4.830 1.091

D 1.601 3.992 0.928 1.587 2.210 3.674 4.774 1.000
1.578 3.998 0.928 1.574 2.210 3.682 4.765 1.032

E 1.281 3.998 0.940 1.547 2.217 3.619 4.871 1.091
1.216 3.994 0.940 1.547 2.231 3.624 4.864 1.119

F 1.216 4.135 0.896 1.504 2.257 3.662 4.946 1.119
1.193 4.115 0.862 1.533 2.237 3.632 4.903 1.119

G 1.239 3.996 0.917 1.518 2.197 3.586 4.850 1.032
1.301 3.992 0.839 1.518 2.197 3.570 4.832 0.976

H 1.260 4.051 0.921 1.474 2.204 3.674 4.860 1.032
1.216 4.031 0.892 1.518 2.204 3.647 4.856 1.000

J 1.281 4.086 0.932 1.587 2.231 3.662 4.873 1.119
1.281 4.027 0.932 1.547 2.231 3.632 4.847 1.119

TABLE A1.4 Calculations for Hawkins’ Test for Outliers A

Sample
1 2 j S

No. of cells n1 n2 nj ns

Sample mean m1 m2 mj ms

Sum of squares SS1 SS2 SSj SSs

A nj = the number of cells in Sample j which contains at least one result,
mj = the mean of Sample j, and
SSj = the sum of squares of deviations of cell means a ij/nij from sample mean

m j, and is given by
SS j 5 ~L – 1! Cj

2

(L–1) is the between cells (laboratories) degrees of freedom, and shall be
reduced by 1 for every cell in Sample j which does not contain a result.
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TABLE A1.5 Critical Values of Hawkins’ 1 % Outlier Test for n = 3 to 50 and y = 0 to 200

Degrees of Freedom y
n 0 5 10 15 20 30 40 50 70 100 150 200

3 0.8165 0.7240 0.6100 0.5328 0.4781 0.4049 0.3574 0.3233 0.2769 0.2340 0.1926 0.1674
4 0.8639 0.7505 0.6405 0.5644 0.5094 0.4345 0.3850 0.3492 0.3000 0.2541 0.2096 0.1824
5 0.8818 0.7573 0.6530 0.5796 0.5258 0.4510 0.4012 0.3647 0.3142 0.2668 0.2204 0.1920
6 0.8823 0.7554 0.6571 0.5869 0.5347 0.4612 0.4115 0.3749 0.3238 0.2755 0.2280 0.1988
7 0.8733 0.7493 0.6567 0.5898 0.5394 0.4676 0.4184 0.3819 0.3307 0.2819 0.2337 0.2039
8 0.8596 0.7409 0.6538 0.5901 0.5415 0.4715 0.4231 0.3869 0.3358 0.2868 0.2381 0.2079
9 0.8439 0.7314 0.6493 0.5886 0.5418 0.4738 0.4262 0.3905 0.3396 0.2906 0.2416 0.2112

10 0.8274 0.7213 0.6439 0.5861 0.5411 0.4750 0.4283 0.3930 0.3426 0.2936 0.2445 0.2139
11 0.8108 0.7111 0.6380 0.5828 0.5394 0.4753 0.4295 0.3948 0.3448 0.2961 0.2469 0.2162
12 0.7947 0.7010 0.6318 0.5790 0.5373 0.4750 0.4302 0.3960 0.3466 0.2981 0.2489 0.2181
13 0.7791 0.6910 0.6254 0.5749 0.5347 0.4742 0.4304 0.3968 0.3479 0.2997 0.2507 0.2198
14 0.7642 0.6812 0.6189 0.5706 0.5319 0.4731 0.4302 0.3972 0.3489 0.3011 0.2521 0.2212
15 0.7500 0.6717 0.6125 0.5662 0.5288 0.4717 0.4298 0.3973 0.3496 0.3021 0.2534 0.2225
16 0.7364 0.6625 0.6061 0.5617 0.5256 0.4701 0.4291 0.3972 0.3501 0.3030 0.2544 0.2236
17 0.7235 0.6535 0.5998 0.5571 0.5223 0.4683 0.4282 0.3968 0.3504 0.3037 0.2554 0.2246
18 0.7112 0.6449 0.5936 0.5526 0.5189 0.4665 0.4272 0.3964 0.3505 0.3043 0.2562 0.2254
19 0.6996 0.6365 0.5876 0.5480 0.5155 0.4645 0.4260 0.3958 0.3506 0.3047 0.2569 0.2262
20 0.6884 0.6286 0.5816 0.5436 0.5120 0.4624 0.4248 0.3951 0.3505 0.3051 0.2575 0.2269
21 0.6778 0.6209 0.5758 0.5392 0.5086 0.4603 0.4235 0.3942 0.3503 0.3053 0.2580 0.2275
22 0.6677 0.6134 0.5702 0.5348 0.5052 0.4581 0.4221 0.3934 0.3500 0.3055 0.2584 0.2280
23 0.6581 0.6062 0.5647 0.5305 0.5018 0.4559 0.4206 0.3924 0.3496 0.3056 0.2588 0.2285
24 0.6488 0.5993 0.5593 0.5263 0.4984 0.4537 0.4191 0.3914 0.3492 0.3056 0.2591 0.2289
25 0.6400 0.5925 0.5540 0.5221 0.4951 0.4515 0.4176 0.3904 0.3488 0.3056 0.2594 0.2293
26 0.6315 0.5861 0.5490 0.5180 0.4918 0.4492 0.4160 0.3893 0.3482 0.3054 0.2596 0.2296
27 0.6234 0.5798 0.5440 0.5140 0.4885 0.4470 0.4145 0.3881 0.3477 0.3053 0.2597 0.2299
28 0.6156 0.5737 0.5392 0.5101 0.4853 0.4447 0.4129 0.3870 0.3471 0.3051 0.2599 0.2302
29 0.6081 0.5678 0.5345 0.5063 0.4821 0.4425 0.4113 0.3858 0.3464 0.3049 0.2600 0.2304
30 0.6009 0.5621 0.5299 0.5025 0.4790 0.4403 0.4097 0.3846 0.3458 0.3047 0.2600 0.2306
35 0.5686 0.5361 0.5086 0.4848 0.4641 0.4294 0.4016 0.3785 0.3421 0.3031 0.2600 0.2312
40 0.5413 0.5136 0.4897 0.4688 0.4504 0.4191 0.3936 0.3722 0.3382 0.3010 0.2594 0.2314
45 0.5179 0.4939 0.4728 0.4542 0.4377 0.4094 0.3859 0.3660 0.3340 0.2987 0.2586 0.2312
50 0.4975 0.4764 0.4577 0.4410 0.4260 0.4002 0.3785 0.3600 0.3299 0.2962 0.2575 0.2308

TABLE A1.6 Critical 5 % Values of F

y1

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 `

y2

3 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.62 8.58 8.55 8.54 8.53 8.53
4 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.75 5.70 5.66 5.65 5.64 5.63
5 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.50 4.44 4.41 4.39 4.37 4.37
6 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.81 3.75 3.71 3.69 3.68 3.67
7 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.38 3.32 3.27 3.25 3.24 3.23
8 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.08 3.02 2.97 2.95 2.94 2.93
9 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.86 2.80 2.76 2.73 2.72 2.71

10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.70 2.64 2.59 2.56 2.55 2.54
15 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.25 2.18 2.12 2.10 2.08 2.07
20 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.04 1.97 1.91 1.88 1.86 1.84
30 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.84 1.76 1.70 1.66 1.64 1.62
50 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.69 1.60 1.52 1.48 1.46 1.44

100 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.68 1.57 1.48 1.39 1.34 1.31 1.28
200 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.72 1.62 1.52 1.41 1.32 1.26 1.22 1.19
500 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.69 1.59 1.48 1.38 1.28 1.21 1.16 1.11

` 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.67 1.57 1.46 1.35 1.24 1.17 1.11 1.00
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TABLE A1.7 Critical 1 % Values of F

y1

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 `

y2

3 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 26.9 26.7 26.5 26.4 26.2 26.2 26.1 26.1
4 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.2 14.0 13.8 13.7 13.6 13.5 13.5 13.5
5 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.72 9.55 9.38 9.24 9.13 9.08 9.04 9.02
6 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.23 7.09 6.99 6.93 6.90 6.88
7 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 5.99 5.86 5.75 5.70 5.67 5.65
8 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.52 5.36 5.20 5.07 4.96 4.91 4.88 4.86
9 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.96 4.81 4.65 4.52 4.42 4.36 4.33 4.31

10 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.56 4.41 4.25 4.12 4.01 3.96 3.93 3.91
15 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.52 3.37 3.21 3.08 2.98 2.92 2.89 2.87
20 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.78 2.64 2.54 2.48 2.44 2.42
30 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.39 2.25 2.13 2.07 2.03 2.01
50 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70 2.42 2.27 2.10 1.95 1.82 1.76 1.71 1.68

100 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.22 2.07 1.89 1.73 1.60 1.52 1.47 1.43
200 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.13 1.97 1.79 1.63 1.48 1.39 1.33 1.28
500 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.07 1.92 1.74 1.56 1.41 1.31 1.23 1.16

` 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.04 1.88 1.70 1.52 1.36 1.25 1.15 1.00

TABLE A1.8 Critical 0.1 % Values of F

y1

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 `

y2

3 141 137 135 133 132 131 130 129 127 126 125 125 124 124 124 124
4 56.2 53.4 51.7 50.5 49.7 49.0 48.5 48.0 46.8 46.1 45.4 44.9 44.5 44.3 44.1 44.0
5 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 25.9 25.4 24.9 24.4 24.1 23.9 23.8 23.8
6 23.7 21.9 20.8 20.0 19.5 19.0 18.7 18.4 17.6 17.1 16.7 16.3 16.0 15.9 15.8 15.8
7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 14.1 13.3 12.9 12.5 12.2 11.9 11.8 11.7 11.7
8 15.8 14.4 13.5 12.9 12.4 12.0 11.8 11.5 10.8 10.5 10.1 9.80 9.57 9.46 9.39 9.34
9 13.9 12.6 11.7 11.1 10.7 10.4 10.1 9.89 9.24 8.90 8.55 8.26 8.04 7.93 7.86 7.81

10 12.6 11.3 10.5 9.92 9.52 9.20 8.96 8.75 8.13 7.80 7.47 7.19 6.98 6.87 6.81 6.76
15 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.53 5.25 4.95 4.70 4.51 4.41 4.35 4.31
20 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.56 4.29 4.01 3.77 3.58 3.48 3.42 3.38
30 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 3.75 3.49 3.22 2.98 2.79 2.69 2.63 2.59
50 6.34 5.46 4.90 4.51 4.22 4.00 3.82 3.67 3.20 2.95 2.68 2.44 2.24 2.14 2.07 2.03

100 5.85 5.01 4.48 4.11 3.83 3.61 3.44 3.30 2.84 2.59 2.32 2.07 1.87 1.75 1.68 1.62
200 5.64 4.81 4.29 3.92 3.65 3.43 3.26 3.12 2.67 2.42 2.15 1.90 1.68 1.55 1.46 1.39
500 5.51 4.69 4.18 3.82 3.54 3.33 3.16 3.02 2.58 2.33 2.05 1.80 1.57 1.43 1.32 1.23

` 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.51 2.27 1.99 1.73 1.49 1.34 1.21 1.00

TABLE A1.9 Critical 0.05 % Values of F

y1

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 `

y2

3 225 218 214 211 209 208 207 206 203 201 199 198 197 197 196 196
4 80.1 76.1 73.6 71.9 70.6 69.7 68.9 68.3 66.5 65.5 64.6 63.8 63.2 62.9 62.7 62.6
5 44.4 41.5 39.7 38.5 37.6 36.9 36.4 35.9 34.6 33.9 33.1 32.5 32.1 31.8 31.7 31.6
6 30.4 28.1 26.6 25.6 24.9 24.3 23.9 23.5 22.4 21.9 21.4 20.9 20.5 20.3 20.2 20.1
7 23.5 21.4 20.2 19.3 18.7 18.2 17.8 17.5 16.5 16.0 15.5 15.1 14.7 14.6 14.5 14.4
8 19.4 17.6 16.4 15.7 15.1 14.6 14.3 14.0 13.1 12.7 12.2 11.8 11.6 11.4 11.4 11.3
9 16.8 15.1 14.1 13.3 12.8 12.4 12.1 11.8 11.0 10.6 10.2 9.80 9.53 9.40 9.32 9.26

10 15.0 13.4 12.4 11.8 11.3 10.9 10.6 10.3 9.56 9.16 8.75 8.42 8.16 8.04 7.96 7.90
15 10.8 9.48 8.66 8.10 7.68 7.36 7.11 6.91 6.27 5.93 5.58 5.29 5.06 4.94 4.87 4.83
20 9.20 8.02 7.28 6.76 6.38 6.08 5.85 5.66 5.07 4.75 4.42 4.15 3.93 3.82 3.75 3.70
30 7.90 6.82 6.14 5.66 5.31 5.04 4.82 4.65 4.10 3.80 3.48 3.22 3.00 2.89 2.82 2.78
50 7.01 6.01 5.37 4.93 4.60 4.34 4.14 3.98 3.45 3.16 2.86 2.59 2.37 2.25 2.17 2.13

100 6.43 5.47 4.87 4.44 4.13 3.89 3.70 3.54 3.03 2.75 2.44 2.18 1.95 1.82 1.74 1.67
200 6.16 5.23 4.64 4.23 3.92 3.68 3.49 3.34 2.83 2.56 2.25 1.98 1.74 1.60 1.50 1.42
500 6.01 5.09 4.51 4.10 3.80 3.56 3.36 3.21 2.72 2.45 2.14 1.87 1.61 1.46 1.34 1.24

` 5.91 5.00 4.42 4.02 3.72 3.48 3.30 3.14 2.65 2.37 2.07 1.79 1.53 1.36 1.22 1.00
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A2. EXAMPLE RESULTS OF TEST FOR DETERMINATION OF BROMINE NUMBER AND STATISTICAL TABLES

A2.1 Bromine Number for Low Boiling Samples

A2.1.1 See Table A2.1.

A2.2 Cube Root of Bromine Number for Low Boiling
Samples

A2.2.1 See Table A1.3.

A2.3 Critical 1 % Values of Cochran’s Criterion for n
Variance Estimates andv Degrees of Freedom

A2.3.1 See Table A2.2.

A2.4 Critical Values of Hawkins’ 1 % Outlier Test for n
= 3 to 50 andv = 0 to 200

A2.4.1 See Table A1.5.
A2.4.2 The critical values in the table are correct to the

fourth decimal place in the rangen = 3 to 30 andv = 0, 5, 15,
and 30 (3). Other values were derived from the Bonferroni
inequality as

B* 5 tF ~n–1!

n ~n 1 v – 21 t2!G
1

2
(A2.1)

wheret is the upper 0.005/n fractile of a t-variate withn +
v – 2 degrees of freedom. The values so computed are only
slightly conservative, and have a maximum error of approxi-
mately 0.0002 above the true value. If critical values are
required for intermediate values ofn and v, they may be
estimated by second order interpolation using the square of the
reciprocals of the tabulated values. Similarly, second order
extrapolation can be used to estimate values beyondn = 50 and
v = 200.

A2.5 Critical Values of t

A2.5.1 See Table A2.3.

A2.6 Critical Values of F9

A2.6.1 Critical 5 % Values of F—See Table A1.6.
A2.6.2 Critical 1 % Values of F—See Table A1.7.
A2.6.3 Critical 0.1 % Values of F—See Table A1.8.
A2.6.4 Critical 0.05 % Values of F—See Table A1.9.
A2.6.5 Approximate Formula for Critical Values of

F—Critical values ofF for untabulated values ofv1, and v2

may be approximated by second order interpolation from the
tables. Critical values ofF corresponding tov1 >30 andv2 >30
degrees of freedom and significance level 100 (1–P) %, where
P is the probability, can also be approximated from the formula

log10 ~F! 5
A~P!

= b – B~P!
– C~P! S 1

v1
1

1
v2
D (A2.2)

where:

b 5 2/S 1
v1

1
1
v2
D (A2.3)

A2.6.5.1 Values ofA (P), B (P), andC(P)are given in Table
A2.4 for typical values of significance level 100 (1–P) %.

A2.7 Critical Values of the Normal Distribution (see Table
A2.5):

9 See(8) for the source of these tables.

TABLE A2.1 Bromine Number for Low Boiling Samples

Sample
Laboratory 1 2 3 4 5 6 7 8

A 1.9 64.5 0.80 3.7 11.0 46.1 114.8 1.2
2.1 65.5 0.78 3.8 11.1 46.5 114.2 1.2

B 1.7 65.4 0.69 3.7 11.1 50.3 114.5 1.2
1.8 66.0 0.72 3.7 11.0 49.9 114.3 1.2

C 1.8 63.5 0.76 3.5 10.4 48.5 112.4 1.3
1.8 63.8 0.76 3.5 10.5 48.2 112.7 1.3

D 4.1 63.6 0.80 4.0 10.8 49.6 108.8 1.0
4.0 63.9 0.80 3.9 10.8 49.9 108.2 1.1

E 2.1 63.9 0.83 3.7 10.9 47.4 115.6 1.3
1.8 63.7 0.83 3.7 11.1 47.6 115.1 1.4

F 1.8 70.7 0.72 3.4 11.5 49.1 121.0 1.4
1.7 69.7 0.64 3.6 11.2 47.9 117.9 1.4

G 1.9 63.8 0.77 3.5 10.6 46.1 114.1 1.1
2.2 63.6 0.59 3.5 10.6 45.5 112.8 0.93

H 2.0 66.5 0.78 3.2 10.7 49.6 114.8 1.1
1.8 65.5 0.71 3.5 10.7 48.5 114.5 1.0

J 2.1 68.2 0.81 4.0 11.1 49.1 115.7 1.4
2.1 65.3 0.81 3.7 11.1 47.9 113.9 1.4
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A2.7.1 Critical valuesZ corresponding to a single-sided
probability P, or to a double-sided significance level 2 (1–P)
are given below in terms of the “standard normal deviate,”
where

Z 5
x – µ

s (A2.4)

and where µ ands are the mean and standard deviation
respectively of the normal distribution.

TABLE A2.2 Critical 1 % Values of Cochran’s Criterion for n Variance Estimates and y Degrees of Freedom A

Degrees of Freedom y
n 1 2 3 4 5 10 15 20 30 50

3 0.9933 0.9423 0.8831 0.8335 0.7933 0.6743 0.6145 0.5775 0.5327 0.4872
4 0.9676 0.8643 0.7814 0.7212 0.6761 0.5536 0.4964 0.4620 0.4213 0.3808
5 0.9279 0.7885 0.6957 0.6329 0.5875 0.4697 0.4168 0.3855 0.3489 0.3131
6 0.8828 0.7218 0.6258 0.5635 0.5195 0.4084 0.3597 0.3312 0.2982 0.2661
7 0.8376 0.6644 0.5685 0.5080 0.4659 0.3616 0.3167 0.2907 0.2606 0.2316
8 0.7945 0.6152 0.5209 0.4627 0.4227 0.3248 0.2832 0.2592 0.2316 0.2052
9 0.7544 0.5727 0.4810 0.4251 0.3870 0.2950 0.2563 0.2340 0.2086 0.1842
10 0.7175 0.5358 0.4469 0.3934 0.3572 0.2704 0.2342 0.2135 0.1898 0.1673
11 0.6837 0.5036 0.4175 0.3663 0.3318 0.2497 0.2157 0.1963 0.1742 0.1532
12 0.6528 0.4751 0.3919 0.3428 0.3099 0.2321 0.2000 0.1818 0.1611 0.1414
13 0.6245 0.4498 0.3695 0.3223 0.2909 0.2169 0.1865 0.1693 0.1498 0.1313
14 0.5985 0.4272 0.3495 0.3043 0.2741 0.2036 0.1748 0.1585 0.1400 0.1226
15 0.5747 0.4069 0.3318 0.2882 0.2593 0.1919 0.1645 0.1490 0.1315 0.1150
20 0.4799 0.3297 0.2654 0.2288 0.2048 0.1496 0.1274 0.1150 0.1010 0.0879
25 0.4130 0.2782 0.2220 0.1904 0.1699 0.1230 0.1043 0.0939 0.0822 0.0713
30 0.3632 0.2412 0.1914 0.1635 0.1455 0.1046 0.0885 0.0794 0.0694 0.0600
35 0.3247 0.2134 0.1685 0.1435 0.1274 0.0912 0.0769 0.0690 0.0601 0.0519
40 0.2940 0.1916 0.1507 0.1281 0.1136 0.0809 0.0681 0.0610 0.0531 0.0457
45 0.2690 0.1740 0.1364 0.1158 0.1025 0.0727 0.0611 0.0547 0.0475 0.0409
50 0.2481 0.1596 0.1248 0.1057 0.0935 0.0661 0.0555 0.0496 0.0431 0.0370
60 0.2151 0.1371 0.1068 0.0902 0.0796 0.0561 0.0469 0.0419 0.0363 0.0311
70 0.1903 0.1204 0.0935 0.0788 0.0695 0.0487 0.0407 0.0363 0.0314 0.0269
80 0.1709 0.1075 0.0832 0.0701 0.0617 0.0431 0.0360 0.0320 0.0277 0.0236
90 0.1553 0.0972 0.0751 0.0631 0.0555 0.0387 0.0322 0.0287 0.0248 0.0211

100 0.1424 0.0888 0.0685 0.0575 0.0505 0.0351 0.0292 0.0260 0.0224 0.0191
A These values are slightly conservative approximations calculated via Bonferroni’s inequality (3) as the upper 0.01/n fractile of the beta distribution. If intermediate

values are required along the n-axis, they may be obtained by linear interpolation of the reciprocals of the tabulated values. If intermediate values are required along the
v-axis, they may be obtained by second order interpolation of the reciprocals of the tabulated values.
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TABLE A2.3 Critical Values of t

Degrees of Freedom
Double-Sided % Significance Level

50 40 30 20 10 5 1

1 1.000 1.376 1.963 3.078 6.314 12.706 63.657
2 0.816 1.061 1.386 1.886 2.920 4.303 9.925
3 0.765 0.978 1.250 1.638 2.353 3.182 5.841
4 0.741 0.941 1.190 1.533 2.132 2.776 4.604
5 0.727 0.920 1.156 1.476 2.015 2.571 4.032
6 0.718 0.906 1.134 1.440 1.943 2.447 3.707
7 0.711 0.896 1.119 1.415 1.895 2.365 3.499
8 0.706 0.889 1.108 1.397 1.860 2.306 3.355
9 0.703 0.883 1.100 1.383 1.833 2.262 3.250

10 0.700 0.879 1.093 1.372 1.812 2.228 3.165
11 0.697 0.876 1.088 1.363 1.796 2.201 3.106
12 0.695 0.873 1.083 1.356 1.782 2.179 3.055
13 0.694 0.870 1.079 1.350 1.771 2.160 3.012
14 0.692 0.868 1.076 1.345 1.761 2.145 2.977
15 0.691 0.866 1.074 1.341 1.753 2.131 2.947
16 0.690 0.865 1.071 1.337 1.746 2.120 2.921
17 0.689 0.863 1.069 1.333 1.740 2.110 2.898
18 0.688 0.862 1.067 1.330 1.734 2.101 2.878
19 0.688 0.861 1.066 1.328 1.729 2.093 2.861
20 0.687 0.860 1.064 1.325 1.725 2.086 2.845
21 0.686 0.859 1.063 1.323 1.721 2.080 2.831
22 0.686 0.858 1.061 1.321 1.717 2.074 2.819
23 0.685 0.858 1.060 1.319 1.714 2.069 2.807
24 0.685 0.857 1.059 1.318 1.711 2.064 2.797
25 0.684 0.856 1.058 1.316 1.708 2.060 2.787
26 0.684 0.856 1.058 1.315 1.706 2.056 2.779
27 0.684 0.855 1.057 1.314 1.703 2.052 2.771
28 0.683 0.855 1.056 1.313 1.701 2.048 2.763
29 0.683 0.854 1.055 1.311 1.699 2.045 2.756
30 0.683 0.854 1.055 1.310 1.697 2.042 2.750
40 0.681 0.851 1.050 1.303 1.684 2.021 2.704
50 0.680 0.849 1.048 1.299 1.676 2.008 2.678
60 0.679 0.848 1.046 1.296 1.671 2.000 2.660

120 0.677 0.845 1.041 1.289 1.658 1.980 2.617
` 0.674 0.842 1.036 1.282 1.645 1.960 2.576
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A3. TYPES OF DEPENDENCE AND CORRESPONDING TRANSFORMATIONS (7.2)

A3.1 Types of Dependence

A3.1.1 See Table A3.1.

A3.2 Transformation Procedure

A3.2.1 The following steps shall be taken in identifying the
correct type of transformation and its parameters,B or B0, or
both.

A3.2.1.1 Plot laboratories standard deviations,D, and re-
peats standard deviations,d, against sample means in the form

of scatter diagrams. Refer to Figs. A3.1-A3.6 and identify the
type of transformation to be applied (if any).

A3.2.1.2 With the exception of the power transformation
(Type 2 in Table A3.1), the transformation parameter is either
known in advance or estimated from the scatter diagrams. For
the arcsin (Type 3) and logistic (Type 4) transformations,B will
be the upper limit of the rating scale or “score” that defines
results. For the log (Type 1) transformation, calculateB0 from
the intercept and slope (B0 = intercept/slope), estimated from

TABLE A2.4 Constants for Approximating Critical Values of F A

100 (1–P) % A(P) B(P) C(P)

10.0 % 1.1131 0.77 0.527
5.0 % 1.4287 0.95 0.681
2.5 % 1.7023 1.14 0.846
1.0 % 2.0206 1.40 1.073
0.5 % 2.2373 1.61 1.250
0.1 % 2.6841 2.09 1.672
0.05 % 2.8580 2.30 1.857

A For values of P not given above, critical values of F may be obtained by
second order interpolation/extrapolation of log (F) (either tabulated or estimated
from the formula) against log (1–P).

TABLE A2.5 Critical Values of the Normal Distribution A

P 0.70 0.80 0.90 0.95 0.975 0.99 0.995
Z 0.524 0.842 1.282 1.645 1.960 2.326 2.576

2(1–P) 0.60 0.40 0.20 0.10 0.05 0.02 0.01
A When P is less than 0.5 the appropriate critical value is the negative of the

value corresponding to a probability (1–P).

TABLE A3.1 Types of Dependence A

Form of Dependence Transformations Form of Line to be Fitted dx/dy Remarks

D = K(m + B0)
m + B0> 0

y = log(x + B0)
Type 1 – “log”

log(D) = bo+
+b1log(m + B0) + b2T + b3Tlog(m + B0)

(x + B0) Care must be taken if (x + B0) is small, as
rounding becomes critical

Test: b1 = 1, b3= 0

D = K(m+B0)B

m + B0> 0,
B fi 1

y =( x+B0)1–B

Type 2 – “power”
log(D) = bo+ Blog(m + B0)+ b2T +
b3Tlog(m+B0)
Test: B fi 1, b3= 0

(x + B0)B/(1 - B) B = 1⁄2 or 2 are common cases.
If B is not different from 1, use log
transform 1 above. The fitted line may pass
through the origin.

D=K[(m/B) (1-m/B)]1/2 y=arcsin(x/B)1/2 log(D) = bo+ b1log[m (B-m)] + b2T +
b3Tlog[m (B – m)]

2[x (B-x)]1/2 This case often arises when results are
reported as percentages or qualitatively as
“scores.” If x is always small compared to
B, the transformation reduces to y=(x)1/2, a
special case of 2 above.

0 # m # B Type 3 – “arcsin”

Test: b1= 1/2, b3= 0

D=K[ (m/B)(1-m/B)] y=log[x/(B-x)] log(D)= bo+ b1log[m (B-m)] + b2T +
b3Tlog[m (B – m)]

x (B-x)/B This case arises when results are reported
on a scale of 0 to B. If x is always small
compared to B, then the transformation
reduces to y = log(x) a special case of 1
above.

0 # m # B Type 4 – “logistic”

Test: b1 = 1, b3= 0

D=K[(m2+B2)/B] y = arctan(x/B) log(D)= bo+ b1log(m2+B2) + b2T +
b3Tlog(m2+B2)

(x2+ B2)/B The fitted line does not pass through the
origin. If B is small, the transformation
reduces to y = 1/x, a special case of 2
above.

B > 0 Type 5 – “arctan”
Test: b1 = 1, b3= 0

A The forms of dependence above are shown graphically in the corresponding Figs. A3.1-A3.6. In all cases, K can be any positive constant, and “log” refers to natural
logarithms. The form of line to be fitted includes a dummy variable T (see A4.1) by which it is possible to test for a difference in the transformation as applied to repeatability
and reproducibility.
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the scatter diagrams. Similarly, estimateB from the intercept in
the case of the arctan (Type 5) transformation. In every case,B
or B0, or both, shall be rounded to give a meaningful value that
satisfies the plots for both the laboratories and repeats standard
deviations.

A3.2.1.3 In the case of the power transform,B andB0 = 0
will be estimated as part of the line fitting procedure described
in the next section (A3.2.1.4). A non-zeroB0 may be estimated
by minimizing the sum of squared residuals from the fitted line.
Function minimization using a simplex procedure due to
Nelder and Meade(9,10) has been found satisfactory. This is
applied to the functional form of the line shown in Table A3.1
using the calculated sample means and standard deviations.
The values and significances of all the constants are determined
simultaneously as part of the simplex minimization. For
detailed discussion of simplex minimization consult a trained
statistician.

A3.2.1.4 In order to confirm the selected transformation
type, and to estimate the parameterB in the case of the power
transformation, fit the line specified in Table A3.1, correspond-

ing to the transformation in question, in accordance with the
computational procedure in A4.3. For the power transforma-
tion, coefficientB, shall differ significantly from zero and shall
be rounded to a meaningful value. For the arcsin transforma-
tion, b1 shall have a value not significantly different from 0.5.
Similarly, b1 shall not significantly differ from a value of one
for the logistic, log, and arctan transformations. In every case
the test specified in Table A3.1 shall be applied at the 5 %
significance level. Failure of this test implies either that the
type of transformation or its parameterB is incorrect. Similarly,
coefficientb3 shall in every case be tested as zero. Failure in
this case implies that the transformation is different for
repeatability and reproducibility. In some cases the presence of
outliers (see 7.3) can give rise to this difference.

A3.2.1.5 If the tests applied above were satisfactory, trans-
form all the results accordingly, recalculate means and standard
deviations using transformed results, and create new scatter
diagrams as in A3.2.1. These will now show a uniform level for

FIG. A3.1 Type 1, log

FIG. A3.2 Type 2, power

FIG. A3.3 Type 2, power

FIG. A3.4 Type 3, arcsin
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laboratories standard deviation, and a uniform (but not neces-
sarily the same) level for repeats standard deviation. A statis-
tical test for uniformity is given in 7.4.

A4. WEIGHTED LINEAR REGRESSION ANALYSIS (7.2)

A4.1 Explanation for Use of a Dummy Variable

A4.1.1 Two different variablesY1 and Y2, when plotted
against the same independent variableX, will in general give
different linear relationships of the form

Y1 5 b10 1 b11X (A4.1)

Y2 5 b20 1 b21X

where the coefficientsbij are estimated by regression analy-
sis. In order to compare the two relationships, a dummy
variableT can be defined such that

T = T1, a constant value for every observation of Y1,
T = T2, a constant value for every observation of Y2, and
T1fi T2

A4.1.2 LettingY represent the combination ofY1 and Y2,
plot a single relationship

Y5 b0 1 b1X 1 b2T 1 b3TX (A4.2)

where, as before, the coefficientsbi are estimated by regres-
sion analysis. By comparing Eq A4.1 and Eq A4.2), it is
evident that

b10 5 b0 1 b2T1 (A4.3)

b20 5 b0 1 b2T2

and that therefore

b10– b20 5 b2 ~T1 – T2! (A4.4)

A4.1.3 Similarly,

b11 – b21 5 b3 ~T1 – T2! (A4.5)

A4.1.4 In order to test for a difference betweenb10 andb20

therefore, it is only necessary to test for a non-zero coefficient
b2. Similarly, to test for a difference betweenb11 andb21, test
for a non-zero coefficientb3.

A4.1.5 Any non-zero values can be chosen forT1 and T2.
However, since reproducibility is the basis of tests for quality
control against specifications, weighting shall reflect this in the

estimation of precision relationships. An “importance ratio” of
2:1 in the favor of reproducibility shall be applied by settingT1

= 1 andT2 = –2, whereT 1 refers to the plot of laboratories
standard deviation andT2 refers to the repeats standard devia-
tion.

A4.2 Derivation of Weights Used in Regression Analysis

A4.2.1 In order to account for the relative precision of fitted
variables in a regression analysis, weights shall be used that are
inversely proportional to the variances of the fitted variables.

A4.2.1.1 For a variableD, which is an estimate of popula-
tion standard deviations, based onv (D) degrees of freedom,
the variance ofD is given by

Var ~D! 5 s2/2v ~D! (A4.6)

A4.2.1.2 Replacings2 by its estimateD2, the weight for this
variable will be approximated by

w~D! 5 2v ~D! / D2 (A4.7)

A4.2.1.3 It is clear that as standard deviationD increases, so
will the weight decrease. For this reason the fitted variable in
the weighted regression shall instead be a function of standard
deviation, which yields weights independent of the fitted
variable.

A4.2.1.4 In cases where a functiong(D) is fitted, rather than
D itself, the variance formula becomes

Var @ log ~D!# 5
1

D2 Var ~D! 5
1

D2

s2

2v ~D!
(A4.8)

A4.2.1.5 Once again replacings2 by its estimateD2, the
weight for log(D) will be approximated by

w@log ~D!# 5 2v ~D! (A4.9)

A4.2.1.6 In relation to laboratories standard deviationD and
repeats standard deviationd, therefore, it is necessary to
perform regression analysis in terms oflog(D) and log(d),

FIG. A3.5 Type 4, logistic
FIG. A3.6 Type 5, arctan
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since weighting will then take account only of the amount of
data on which the standard deviation was based. A relationship
estimated in this way will be less dependent on samples which
have a high proportion of missing results.

A4.2.1.7 Denoting degrees of freedom asv(D) for labora-
tory standard deviationsD and v(d) for repeats standard
deviationsd, formulae for calculating weights then become

w@log ~D!# 5 2v ~D! (A4.10)

w@log ~d!# 5 2v ~d! (A4.11)

NOTE A4.1—Unweighted regression corresponds to weighted regres-
sion in which all the weights have a constant value 1.

A4.3 Computational Procedure for Regression Analysis

A4.3.1 The following technique gives the best fitting
straight line of the form of Eq A4.2.

A4.3.1.1 First draw up a table (see Table A4.1) giving
values of the variables to be plotted in the regression, together
with corresponding weights. Functionsg1 andg2 will always be
natural logarithms corresponding to the transformation in
question, as specified in A3.2.

A4.3.1.2 Using the symbols defined in Table A4.1, the line
to be fitted (Eq A4.2) becomes

y 5 b0 1 b1x1 1 b2x 2 1 b3x3 (A4.12)

A4.3.1.3 The interceptb0 can be eliminated by rewriting
this as

~y – ȳ! 5 b1 ~x1 –x̄1! 1 b2 ~x2 – x̄2! 1 b3 ~x3 – x̄3! (A4.13)

where y, x1, x2, and x3 are weighted mean values, for
example

x̄2 5
(
i21

n

wix2i

(
i51

n

wi

(A4.14)

and wheren is the number of points (twice the number of
samples) to be plotted.

A4.3.1.4 The least squares solution of Eq A4.14 requires the
solution of the set of simultaneous equations of the form

ay1 5 a11b1 1 a12b2 1 a13b3 (A4.15)

ay2 5 a21b1 1 a22b2 1 a23b3

ay3 5 a31b1 1 a32b2 1 a33b 3

A4.3.1.5 Examples of aij and ayi elements, in terms of
weighted means xī, are as follows

a22 5 (wi ~x2i – x̄2!
2 a23 5 (wi ~x2i – x̄2! ~x3i – x̄3!

(A4.16)

ay2 5 (wi ~yi – ȳ! ~x2i – x̄2! ayy 5 (wi ~yi – ȳ!2

A4.3.1.6 Having solved the equations forb1, b2, and b3,
calculate the intercept from the weighted means of the vari-
ables as

b0 5 ȳ – b1x̄1 – b2x̄2 – b3x̄3 (A4.17)

A4.3.1.7 Coefficient estimatesbi can be summarized in
tabular form, together with test statistics, as in Table A4.2.

A4.3.1.8 In order to complete the table, it is necessary to
calculate the standard deviation of the observedy values about
the estimated line. This is called the residual standard devia-
tion, and is given by

s5Œ 1
n – 4 ~ayy – b1ay1 – b2ay2 – b3ay3! (A4.18)

A4.3.1.9 Standard errors of the estimates then become

ei 5 s=cii, for i 5 1 to 3 (A4.19)

and

e0 5

sŒ1
n 1 c11x̄1

2 1 c22x̄2
2 1 c33x̄3

2 1 2c12x̄1x̄2 1 2c13x̄1x̄3 1 2c23x̄2x̄3

(A4.20)

where the elementscjj correspond to the inverse of the matrix
containing elementsajj .

A4.3.1.10 Thet-ratios are the ratios (bi–K)/ ej, whereK is a
constant, and by comparing these to the critical values oft in
Table A2.3, it is possible to test if coefficientbi differs fromK.
If ti is greater than the critical value corresponding to 5 %
significance and (n–4) degrees of freedom, then the coefficient
can be regarded as differing fromK. In particular, t1 will
identify an inappropriate slopeb1 and t3 will indicate whether
the slope is different for laboratories and repeats standard
deviations. Since laboratories standard deviation will generally
be larger than repeats standard deviation at the same level of
sample mean,t2 will in general indicate a non-zero coefficient
b2.

A4.4 Worked Example

A4.4.1 This section describes the fitting of a power function
(Type 2 of Table A3.1) using weighted linear regression
according to the procedure of A3.2. Rounded sample means

TABLE A4.1 Arrangement of Variables for Regression Analysis

Sample

Standard
Deviation
Function

g1

Sample Mean
Function

g2

Dummy T Tg2 Weight

1 g1 (D1) g2 (m1) 1 g2 (m1) 2y (D1)
2 g1 (D2) g2 (m2) 1 g2 (m2) 2y (D2)
3 g1 (D3) g2 (m3) 1 g2 (m3) 2y (D3)
· · · · · ·
· · · · · ·
· · · · · ·
S g1 (Ds) g2 (ms) 1 g2 (ms) 2y (Ds)

1 g1 (d1) g2 (m1) –2 –2g2(m1) 2y (d1)
2 g1 (d2) g2 (m2) –2 –2g2(m2) 2y (d2)
3 g1 (d3) g2 (m3) –2 –2g2(m3) 2y (d3)
· · · · · ·
· · · · · ·
· · · · · ·
S g1 (ds) g2 (ms) –2 –2g2(ms) 2y (ds)

Symbol yi x1j x2i x3i wi

TABLE A4.2 Presentation of Estimates from Regression Analysis

Fitted
Variable

Coefficient
Estimate

Standard Error of
Estimate

t-Ratio

Intercept b0 e0 t0
Sample Mean b1 e1 t1

Dummy b2 e2 t2
Dummy 3 mean b3 e3 t3
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and standard deviations are given in Table 3, 7.2, based on the
bromine number data in A2.1.

A4.4.1.1 Scatter diagrams identified the power transforma-
tion as appropriate, as indicated by the log-log plot shown in
Fig. A4.1.

A4.4.1.2 Transformation parameterB need not be estimated
from Fig. A4.1, since it will be given in the regression analysis
that follows.

A4.4.1.3 The form of the line to be fitted (Table A3.1) is

log~D! 5 b0 1 b1log ~m! 1 b2T 1 b3Tlog ~m! (A4.21)

A4.4.1.4 The table of values to be fitted (see Table A4.1) is
shown in Table A4.3.

A4.4.1.5 Least squares regression requires the solution of
the simultaneous equations

614.6715 999.894b1 – 35.8524b2 – 493.045b3 (A4.22)

188.5265 35.8524b1 1 673.920b2 1 1409.58b3

195.4775 –493.045b1 1 1409.58b2 1 5362.27b3

A4.4.1.6 Also required are

ayy 5 505.668 (A4.23)

s5 2.23868

A4.4.1.7 The solution is summarized in Table A4.4 (see
Table A4.2):

A4.4.1.8 Comparing thet-ratios with the critical 5 % values
for 12 degrees of freedom (namely 2.179) given in Table A2.3,
it can be seen that the slope is significantly non-zero (b1 =

0.638), confirming that a transformation was required. Further-
more, since coefficientb3 does not significantly differ from
zero, the slope (and resulting transformation) is the same for
both laboratories and repeats standard deviations.

A4.4.1.9 As the slopeb1 = 0.638 has a standard error of
0.074, the approximate 66 % confidence region of 0.6386
0.074 will contain the value 2/3. Rounding to this value is
therefore reasonable, and leads to the convenient transforma-
tion

y 5 x1/3 (A4.24)

A4.4.1.10 Having applied this transformation and recalcu-
lated sample means and standard deviations, corresponding
scatter diagrams are shown in Fig. A4.2. These show uniform
levels for both laboratories and repeats standard deviations for
all samples except Sample 1. In the case of the latter sample,
the extreme point is due to outliers.FIG. A4.1 Precisions Vary with Level

TABLE A4.3 Arrangement of Variables for Sample Data

Sample
Logarithm of

Standard
Deviation

Logarithm of
Sample Mean

Dummy T
Dummy 3 log

(mean)
Weight

1 –0.3158 0.7655 1 0.7655 16
2 0.7969 4.1804 1 4.1804 18
3 –2.7046 –0.2802 1 –0.2802 28
4 –1.5568 1.2932 1 1.2932 22
5 –1.2358 2.3888 1 2.3888 18
6 0.4029 3.8755 1 3.8755 18
7 1.0762 4.7378 1 4.7378 18
8 –1.8401 0.1975 1 0.1975 18

1 –2.0644 0.7655 –2 –1.5309 18
2 –0.2015 4.1804 –2 –8.3609 18
3 –2.9957 –0.2802 –2 0.5605 18
4 –2.1585 1.2932 –2 –2.5864 18
5 –2.3613 2.3888 –2 −4.7775 18
6 –0.6415 3.8755 –2 –7.7510 18
7 −0.0674 4.7378 –2 −9.4756 18
8 –2.8612 0.1975 –2 −0.3949 18

Symbol yi x1i x2i x3i wi

TABLE A4.4 Presentation of Estimates from Sample Data

Fitted Variable
Coefficient Estimate

bi

Standard Error of
Estimate

t-Ratio

Intercept –2.4064
Log (mean) 0.63773 0.07359 8.67
Dummy 0.25496 0.13052 1.95
Dummy 3 log (mean) 0.02808 0.04731 0.59
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APPENDIX

(Nonmandatory Information)

X1. DERIVATION OF FORMULA FOR CALCULATING THE NUMBER OF SAMPLES REQUIRED (see 6.4.3)

X1.1 An analysis of variance is carried out on the results of
the pilot program. Setting the three expressions in 8.3.1 equal
to the corresponding mean squares and solving yields rough
estimates of the three components of variance, namely:
s0

2 for repeats,
s1

2 for laboratories3 samples interaction, and
s2

2 for laboratories.

X1.2 Substituting the above in Eq 39 (8.3.3.3) for calcu-
lating the reproducibility degrees of freedom, this becomes

~1 1 P 1 Q!2

v 5
@~1/21 P! / S1 Q#2

~L – 1!
1

~S– 1! ~1/21 P!2

S2~L – 1!
1

1
4LS

(X1.1)

where:
P = s1

2/s0
2,

Q = s2
2/s0

2,
v = reproducibility degrees of freedom,
L = number of laboratories, and
S = number of samples.

X1.3 The formula rearranges into the form

aS1 b 5 0 (X1.2)

where:
a = vQ2 – (1 + P + Q)2( L – 1), and
b = v[(2Q + 1/2 + P) (1/2 + P) + 0.25 (L– 1) / L].

X1.3.1 ThereforeS = –b/agives the values ofS for given
values ofL, P, Q, andv.

X1.4 Fig. 1 is based onv = 30 degrees of freedom. For
non-integral values ofP andQ, Scan be estimated by second
order interpolation from the table.
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