[lIM) Designation: D 6300 _ 03 An American National Standard
i’

INTERNATIONAL

Standard Practice for
Determination of Precision and Bias Data for Use in Test
Methods for Petroleum Products and Lubricants 1

This standard is issued under the fixed designation D 6300; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonef indicates an editorial change since the last revision or reapproval.

INTRODUCTION

Both Research Report RR:D02-100Tanual on Determining Precision Data for ASTM Methods
on Petroleum Products and Lubricaftsnd the 1SO 4259, benefitted greatly from more than 50 years
of collaboration between ASTM and the Institute of Petroleum (IP) in the UK. The more recent work
was documented by the IP and has become ISO 4259.

ISO 4259 encompasses both the determination of precision and the application of such precision
data. In effect, it combines the type of information in RR:D02—f0@garding the determination of
the precision estimates and the type of information in Practice D 3244 for the utilization of test data.
The following practice, intended to replace RR:D02-18@ifffers slightly from related portions of
the ISO standard. This new practice is consistent with the computer software, ADJD6300 D2PP,
Version 4.43, Determination of Precision and Bias Data for Use in Test Methods for Petroleum
Products.

1. Scope D 3244 Practice for Utilization of Test Data to Determine

1.1 This practice covers the necessary preparations and Conformance with Specificatiohs
planning for the conduct of interlaboratory programs for the E 29 Practice for Using Significant Digits in Test Data to
development of estimates of precision (determinability, repeat- _Determine Conformance with Specificatiéns
ability, and reproducibility) and of bias (absolute and relative), E 456 Terminology Relating to Quality and Statistics
and further presents the standard phraseology for incorporating E 691 Practice for Conducting an Interlaboratory Study to
such information into standard test methods. Determine the Precision of a Test Metfiod

1.2 This practice is generally limited to homogeneous prod- 2-2 1SO Standards: o _
ucts with which serious sampling problems do not normally SO 4259 Petroleum Products-Determination and Applica-
arise. tion of Precision Data in Relation to Methods of Test

1.3 This practice may not be suitable for solid or semisolid 2-3 ASTM Adjuncts: o _
products such as petroleum coke, industrial pitches, parafin ADJD6300 D2PP, Version 4.43, Determination of Preci-
waxes, greases, or solid lubricants when the heterogeneous Sion and Bias Data for Use in Test Methods for Petroleum
properties of the substances create sampling problems. In such Products
instances, use Practice E 691 or consult a trained statisticial .

1.4 A software program (ADJD6300) performs the necesr—?g' Termln_ol.o.gy

3.1 Definitions:

sary computations prescribed by this practice. ' )
3.1.1 analysis of variance (ANOVAn—a procedure for

2. Referenced Documents dividing the total variation of a set of data into two or more
2.1 ASTM Standards: parts, one of which estimates the error due to selecting and
D 123 Terminology Relating to Textilés testing specimens and the other part(s) possible sources of

added variation. D123

1 This practice is under the jurisdiction of ASTM Committee D02 on Petroleum
Products and Lubricants and is the direct responsibility of Subcommittee D02.94om————————
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3.1.2 bias n—the difference between the population mean 3.1.11 repeatability n—the quantitative expression of the
of the test results and an accepted reference valueE 456  random error associated with a single operator in a given

3.1.3 bias, relative n—the difference between the popula- laboratory obtaining repetitive results by applying the same test
tion mean of the test results and an accepted reference valumethod with the same apparatus under constant operating
which is the agreed upon value obtained using an acceptezbnditions on identical test material within a short interval of

reference method for measuring the same property. time on the same day. It is defined as the difference between
3.1.4 degrees of freedonm—the divisor used in the calcu- two such results at the 95 % confidence lewiR:D02-1007
lation of variance. 3.1.11.1 Discussior—Interpret as the value equal to or

3.1.4.1 Discussior—This definition applies strictly only in  below which the absolute difference between two single test
the simplest cases. Complete definitions are beyond the scopesults obtained in the above conditions may expect to lie with
of this practice. ISO 4259  a probability of 95 %. ISO 4259
3.1.5 determinability n—a quantitative measure of the vari-  3.1.11.2 Discussior—The difference is related to the repeat-
ability associated with the same operator in a given laboratorgpility standard deviation but it is not the standard deviation or
obtaining successive determined values using the same appgs estimate. RR:D02-1007
ratus for a series of operations leading to a single result; itis 3.1.12 reproducibility, n—a quantitative expression of the
defined as that difference between two such single determing@ndom error associated with different operators from different
values as would be exceeded in the long run in only one casgporatories using different apparatus, each obtaining a single
in 20 in the normal and correct operation of the test methodresult by applying the same test method on an identical test
3.1.5.1 Discussior—This definition implies that two deter- sample. It is defined as the 95 % confidence limit for the
mined values, obtained under determinability conditionsgifference between two such single and independent results.
which differ by more than the determinability value should be 3 1 12 1 Discussion-Interpret as the value equal to or
considered suspect. If an operator obtains more than tWge|ow which the absolute difference between two single test
determinations, then it would usually be satisfactory to checkesyjts on identical material obtained by operators in different
the most discordant determination against the mean of thgyyoratories, using the standardized test, may be expected to lie
remainder, using determinability as the critical differefte®  \ith probability of 95 %. ISO 4259
3.1.6 mean squaren— in analysis of variancea contrac- 3.1.12.2 Discussior—The difference is related to the repro-

tion of the expression "mean of the squared deviations from th, ,hjijity standard deviation but is not the standard deviation
appropriate average(s)” where the divisor of each sum o r its estimate. RR:D02—1007

T ol et o o that o e 3112 SDscusson-I those cases where he rormaluse
probability function: of the test method_does not qulye sendlng a sample to a
’ testing laboratory, either because it is an in-line test method or
f(x) = (1lo) (2m) Y2exp[— (x—) /202 (1)  because of serious sample instabilities or similar reasons, the

precision test for obtaining reproducibility may allow for the
use of apparatus from the participating laboratories at a
common site (several common sites, if feasible). The statistical
analysis is not affected thereby. However, the interpretation of

D 123 the reproducibility value will be affected, and therefore, the

(Syn.Gaussian distribution, law of error) recision statement shall. in thi tate th nditions t
3.1.8 outlier, n—a result far enough in magnitude from precision statement shadl, S case, slale the co ons to
which the reproducibility value applies.

other results to be considered not a part of the set. 2
RR:D02-1007 _ 3.1.1_3 standard deviatiorn—the most usual measure of the
3.1.9 precision n—the degree of agreement between two Ordlspgrsmn of observed value_s or results expressed as the
more results on the same property of identical test material. IRCSIV€ square root of the variance. _ E 456
this practice, precision statements are framed in terms of 3-1.14 sum of squaresn—in analysis of variancea con-
repeatabilityand reproducibility of the test method. traction of the expression “sum of the squared deV|at|on.s from
3.1.9.1 Discussion-The testing conditions represented by the appropriate average(s)” where the average(s) of interest
repeatability and reproducibility should reflect the normalMay be the average(s) of specific subset(s) of data or of the
extremes of variability under which the test is commonly used€ntire set of data. _ - Dlz3
Repeatability conditions are those showing the least variation; 3.1.15 variance n—a measure of the dispersion of a series
reproducibility, the usual maximum degree of variability. Referof accepted results about their average. It is equal to the sum of
to the definitions of each of these terms for greater detail. the squares of the deviation of each result from the average,
RR:D02—1007 divided by the number of degrees of freedom.
3.1.10 random errot n—the chance variation encountered RR:D02-1007

in all test work despite the closest control of variables. 3.1.16 variance, between-laboratorp—that component of
RR:D02-1007 the overall variance due to the difference in the mean values

obtained by different laboratories. ISO 4259
3.1.16.1 Discussior—When results obtained by more than
& The bold numbers in parentheses refer to a list of references at the end of thRN€ laboratory are compared, the scatter IS usually Wlder.than
practice. when the same number of tests are carried out by a single

where:

X a random variate,

M the mean distribution, and

o the standard deviation of the distribution.



A8y D 6300 - 03
“afl

laboratory, and there is some variation between means obtainegerator, the results will be found satisfactory for judging the
by different laboratories. Differences in operator techniquecompliance of the material with the specification. Statements
instrumentation, environment, and sample “as received” araddressing precision and bias are required in ASTM test
among the factors that can affect the between laboratorynethods. These then give the user an idea of the precision of
variance. There is a corresponding definition for betweenthe resulting data and its relationship to an accepted reference
operator variance. material or source (if available). Statements addressing deter-
3.1.16.2 Discussior—The term “between-laboratory” is of- minability are sometimes required as part of the test method
ten shortened to “laboratory” when used to qualify represenprocedure in order to provide early warning of a significant
tative parameters of the dispersion of the population of resultsjegradation of testing quality while processing any series of
for example as “laboratory variance.” samples.
3.2 Definitions of Terms Specific to This Standard: 5.2 Repeatability and reproducibility are defined in the
3.2.1 determination n—the process of carrying out a series precision section of every Committee D02 test method. Deter-
of operations specified in the test method whereby a singleninability is defined above in Section 3. The relationship
value is obtained. among the three measures of precision can be tabulated in
3.2.2 operator, n—a person who carries out a particular test.terms of their different sources of variation (see Table 1).
3.2.3 probability density functiorn—function which yields 5.2.1 When used, determinability is a mandatory part of the
the probability that the random variable takes on any one of itrocedure section. It will allow operators to check their
admissible values; here, we are interested only in the normaéchnique for the sequence of operations specified. It also

probability. ensures that a result based on the set of determined values is
3.2.4 result n—the final value obtained by following the not subject to excessive variability from that source.
complete set of instructions in the test method. 5.3 Abias statement furnishes guidelines on the relationship

3.2.4.1 Discussior—It may be obtained from a single de- between a set of test results and a related set of accepted
termination or from several determinations, depending on theeference values. When the bias of a test method is known, a
instructions in the method. When rounding off results, thecompensating adjustment can be incorporated in the test

procedures described in Practice E 29 shall be used. method.
) 5.4 This practice is intended for use by D02 subcommittees
4. Summary of Practice in determining precision estimates and bias statements to be

4.1 A draft of the test method is prepared and a pilotused in DO2 test methods. Its procedures correspond with ISO
program can be conducted to verify details of the procedurd259 and are the basis for the Committee D02 computer
and to estimate roughly the precision of the test method.  software,Calculation if Precision Data: Petroleum Test Meth-

4.2 A plan is developed for the interlaboratory study usingods The use of this practice replaces that of Research Report
the number of participating laboratories to determine theRR:D02—1007.
number of samples needed to provide the necessary degrees 06.5 Standard practices for the calculation of precision have
freedom. Samples are acquired and distributed. The interlabdeen written by many committees with emphasis on their
ratory study is then conducted on an agreed draft of the tegarticular product area. One developed by Committee E11 on
method. Statistics is Practice E 691. Practice E 691 and this practice

4.3 The data are summarized and analyzed. Any depemiffer as outlined in Table 2.
dence of precision on the level of test result is removed by ) .
transformation. The resulting data are inspected for uniformityp- Stages in Planning of an Interlaboratory Test Program
and for outliers. Any missing and rejected data are estimated. for the Determination of the Precision of a Test
The transformation is confirmed. Finally, an analysis of vari- Method
ance is performed, followed by calculation of repeatability, 6.1 The stages in planning an interlaboratory test program
reproducibility, and bias. When it forms a necessary part of there: preparing a draft method of test (see 6.2), planning and

test procedure, the determinability is also calculated. executing a pilot program with at least two laboratories
o (optional but recommended for new test methods) (see 6.3),
5. Significance and Use planning the interlaboratory program (see 6.4), and executing

5.1 ASTM test methods are frequently intended for use irthe interlaboratory program (see 6.5). The four stages are
the manufacture, selling, and buying of materials in accordancdescribed in turn.
with specifications and therefore should provide such precision 6.2 Preparing a Draft Method of TestThis shall contain
that when the test is properly performed by a competenall the necessary details for carrying out the test and reporting

TABLE 1 Sources of Variation

Method Apparatus Operator Laboratory Time
Reproducibility Complete Different Different Different Specified
(Result)
Repeatability Complete Same Same Same Almost same
(Result)
Determinability Incomplete Same Same Same Almost same
(Part result)
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TABLE 2 Differences in Calculation of Precision in Practices

Element

This Practice

Practice E 691

Applicability

Number of duplicates

Precision is written
for

Outlier tests:
Within laboratories
Between
laboratories

Outliers

Rejection limit

Analysis of variance

Precision multiplier

Variation of precision
with level

Limited in general to
homogeneous samples for
which serious sampling
problems do not normally
arise.

Two

Test method

Sequential
Cochran test
Hawkins test

Rejected, subject to
subcommittee approval.

Retesting not generally
permitted.

20 %

Two-way, applied globally
to all the remaining data
at once.

t\/2 , where tis the two-
tailed Student’s t for 95 %
probability.

Increases with decreasing
laboratories X samples
particularly below 12.

Minimized by data
transformation. Equations
for repeatability and
reproducibility are generated
in the retransformation
process.

Permits heterogeneous
samples.

Any number

Each sample

Simultaneous
k-value
h-value

Rejected if many
laboratories or for cause
such as blunder or not
following method.

Laboratory may retest
sample having rejected
data.

5%

One-way, applied to each

sample separately.

2.8=1.96 \/2

Constant.

User may assess from
individual sample
precisions.

6.4 Planning the Interlaboratory Program

6.4.1 There shall be at least five participating laboratories,
but it is preferable to exceed this number in order to reduce the
number of samples required and to make the precision state-
ment as representative as possible of the qualified user popu-
lation.

6.4.2 The number of samples shall be sufficient to cover the
range of the property measured, and to give reliability to the
precision estimates. If any variation of precision with level was
observed in the results of the pilot program, then at least five
samples shall be used in the interlaboratory program. In any
case, it is necessary to obtain at least 30 degrees of freedom in
both repeatability and reproducibility. For repeatability, this
means obtaining a total of at least 30 pairs of results in the
program.

6.4.3 For reproducibility, Fig. 1 gives the minimum number
of samples required in terms &af P, andQ, wherelL is the
number of participating laboratories, aR&ndQ are the ratios
of variance component estimates (see 8.3.1) obtained from the
pilot program. SpecificallyP is the ratio of the interaction
component to the repeats component, &nid the ratio of the
laboratories component to the repeats component.

Note 1—Appendix X1 gives the derivation of the equation used If
is much larger tha®, then 30 degrees of freedom cannot be achieved,; the
blank entries in Fig. 1 correspond to this situation or the approach of it
(that is, when more than 20 samples are required). For these cases, there
is likely to be a significant bias between laboratories. The program
organizer shall be informed; further standardization of the test method
may be necessary.

6.5 Executing the Interlaboratory Program

6.5.1 One person shall oversee the entire program, from the
distribution of the texts and samples to the final appraisal of the
results. He or she shall be familiar with the test method, but
should not personally take part in the actual running of the
tests.

6.5.2 The text of the test method shall be distributed to all
the laboratories in time to raise any queries before the tests
begin. If any laboratory wants to practice the test method in

the results. Any condition which could alter the results shall bétdvance, this shall be done with samples other than those used

specified. The section on precision will be included at this stag

only as a heading. 0-< ]
6.3 Planning and Executing a Pilot Program with at Least distributed by the organizer, who shall also keep a reserve of

Two Laboratories S ) :
6.3.1 A pilot program is recommended to be used with newndividual laboratory portions be homogeneous. Instructions to

test methods for the following reason$) (o verify the details
in the operation of the test2) to find out how well operators
can follow the instructions of the test method) {o check the
precautions regarding sample handling and storage; 4na (

estimate roughly the precision of the test.
6.3.2 At least two samples are required, covering the rangdifferent random order for each laboratory);

of results to which the test is intended to apply; however,

in the program.

6.5.3 The samples shall be accumulated, subdivided, and
each sample for emergencies. It is most important that the

each laboratory shall include the following:
6.5.3.1 The agreed draft method of test;
6.5.3.2 Material Safety Data Sheets, where applicable, and
the handling and storage requirements for the samples;
6.5.3.3 The order in which the samples are to be tested (a

6.5.3.4 The statement that two test results are to be obtained

include at least 12 laboratory-sample combinations. Test eadh the shortest practical period of time on each sample by the
sample twice by each laboratory under repeatability conditionssame operator with the same apparatus. For statistical reasons
If any omissions or inaccuracies in the draft method ardt is imperative that the two results are obtained independently
revealed, they shall now be corrected. Analyze the results foof each other, that is, that the second result is not biased by
precision, bias, and determinability (if applicable) using thisknowledge of the first. If this is regarded as impossible to
practice. If any are considered to be too large for the technicachieve with the operator concerned, then the pairs of results
application, then consider alterations to the test method. shall be obtained in a blind fashion, but ensuring that they are
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L = number of participating P = interaction variance component/ Q = laboratories variance compo-
laboratories repeats variance component nent/repeats variance
component
L=5 L=6 L=7
Q: 0 1 2 3 45 6 7 8 9 Q: 0 1 2 3 4 5 6 7 8 9 Q: 0 1 2 3 4 5 6 7 8 9
P: 0 4 P: 0 3 P: 0 4
1 5 1 41 1 5
2 61 2 57 2 61
3 69 3 5 714 3 6 9
4 7 816 4 5 610 4 7 816
5 7 812 5 6 6 815 5 7 812
6 7 81119 6 6 6 811 6 7 81119
7 7 81015 7 6 6 71015 7 7 81015
8 7 8 913 8 6 6 7 91 8 7 8 913
9 7 8 91117 9 6 6 7 81015 9 7 8 9117
L=8 L=9 L=10
Q: 0 1 2 3 4 5 6 7 8 9 Q: 0 1 2 3 45 6 7 8 9 Q: 0 1 2 3 4 5 6 7 8 9
P: 0 3 P: 0 2 P:1 2 8
1 35 1 3 4 13 41N
2 45 9 2 3 4 7 2 3 4 512
3 4 5 71 33 459 3 33 4 613
4 4 4 6 920 4 4 4 5 611 4 3 4 4 5 714
5 4 4 5 7M1 5 4 45 6 712 5 3 4 4 5 6 814
6 4 4 5 6 813 6 4 4 4 5 6 9 1% 6 3 4 & 4 5 6 914
7 4 4 5 6 71016 7 4 4 4 5 6 71015 7 3 4 4 465 6 7 91
8 4 55 6 6 81118 8 4 4 4 5 5 6 81016 8 3 4 4 4 5 5 6 71014
9 & 555 6 7 913 9 & 4 & 5 5 6 7 81118 9 4 4 4 &4 4 5 6 6 810
L=11 L=12 L=13
@: 0 1 2 3 45 6 7 8 9 Q: 0 1 2 3 45 6 7 8 9 Q: 0 1 2 3 45 6 7 8 9
P: 0 2 4 P: 0 2 4 P: 0 2 3
12 35 12 35 1 2 3 412
2 3 3 37 2 2 3 4 614 2 2 3 3 4 8
333 45 8 3 33 3 4& 61 32 3 3 45 714
& 3 3 4 4 6 8 18 4 3 3 3 45 6 9 4 3 33 3 45 710
5 3 3 4 4 5 6 915 5 3 3 3 4 45 6 916 5 3 33 3 4 4 5 6 915
6 3 3 3 4 45 6 914 6 333 3 4 45 6 913 6 3 3 3 3 3 4 45 6 8
7 3 3 3 4 4557 913 7 3 3 3 3 4 4 55 6 8 73 3 3 3 3 4 4 4 56
8 33 3 4 4 45 6709 8 3 3 3 3 4 4 4 55 6 8 3 3 3 3 3 3 4 455
9 3 3 3 4 4 4 55 6 7 9 3 3 3 3 3 4 4 & 5 6 9 3 3 3 3 3 3 4 4 & 5
L=14 L=15 L=16
Q: 0 1 2 3 4 5 6 7 8 9 Q: 0 1 2 3 45 6 7 8 9 Q:0 1 2 3 45 6 7 8 9
P: 0 2 3 P: 0 2 213 P:0 2 5
122 3 7 12 2 3 519 12 2 3 4 8
2 2 2 3 4 612 2 2 2 3 3 4 7 2 2 2 2 3 45 9
3 22 3 3 4 5 818 3 22 3 3 3 4 69 3 22 23 3 4 4 69
4 2 3 3 3 3 45 7TN 4 2 2 3 3 4 & 5 710 & 2 2 23 3 3 4 4 5 6
5 2 3 3 3 3 4 45 6 8 5 2 2 3 33 3 4 45 6 5 2 2 2 3 3 3 3 4 45
6 3 3 3 3 3 3 4 4 5 6 6 2 2 3 3 3 3 3 4 45 6 2 2 2 2 3 3 3 3 4 4
73 333 33 3 4 45 7 2 2 3 3 3 33 3 404 7 2 22 2333334
8 3 3 3 3 3 3 3 4 4 4 8 223 3 333 3 34 8 2222333333
9 3 3 3 3 3 3 3 3 4L 4 9 2 2 3 3 3 3 3 3 3 3 9 2 2 2 2 3 33 3 33
FIG. 1 Determination of Number of Samples Required (see 6.4.3)

carried out in a short period of time (preferably the same day)results, and any unusual occurrences. The unit of accuracy for

The termblind fashionmeans that the operator does not knowreporting the results shall be specified. This should be, if

that the sample is a duplicate of any previous run. possible, more digits reported than will be used in the final test
6.5.3.5 The period of time during which repeated results arenethod, in order to avoid having rounding unduly affect the

to be obtained and the period of time during which all theestimated precision values.

samples are to be tested; 6.5.3.7 When it is required to estimate the determinability,
6.5.3.6 A blank form for reporting the results. For eachthe report form must include space for each of the determined

sample, there shall be space for the date of testing, the twealues as well as the test results.
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6.5.3.8 A statement that the test shall be carried out unddines parallel to then-axis, then no transformation is necessary.
normal conditions, using operators with good experience butf, however, the plotted points describe non-horizontal straight
not exceptional knowledge; and that the duration of the teslines or curves of the fornb = f,(m) andd = f,(m), then a
shall be the same as normal. transformation will be necessary.

6.5.4 The pilot program operators may take part in the 7.2.3 The relationship® = f;(m)andd = f,(m) will not in
interlaboratory program. If their extra experience in testing ageneral be identical. The statistical procedures of this practice
few more samples produces a noticeable effect, it will serve asequire, however, that the same transformation be applicable
a warning that the test method is not satisfactory. They shall bboth for repeatability and for reproducibility. For this reason
identified in the report of the results so that any such effect mayhe two relationships are combined into a single dependency
be noted. relationshipD = f (m) (whereD now includesd) by including

6.5.5 It can not be overemphasized that the statement @& dummy variableT. This will take account of the difference
precision in the test method is to apply to test results obtaineetween the relationships, if one exists, and will provide a
by running the agreed procedure exactly as written. Thereforeneans of testing for this difference (see A4.1).
the test method must not be significantly altered after its 7.2.4 The single relationghiD = f(m) is best estimated by

precision statement is written. weighted linear regression analysis. Strictly speaking, an
iteratively weighted regression should be used, but in most

7. Inspection of Interlaboratory Results for Uniformity cases even an unweighted regression will give a satisfactory
and for Outliers approximation. The derivation of weights is described in A4.2,

7.1 Introduction and the computational procedure for the regression analysis is

7.1.1 This section specifies procedures for examining thelescribed in A4.3. Typical forms of dependend = f(m) are
results reported in a statistically designed interlaboratoryiven in A3.1. These are all expressed in terms of at most two
program (see Section 6) to establish: (2) transformation parameters, B ang. B

7.1.1.1 The independence or dependence of precision and7.2.5 The typical forms of dependence, the transformations
the level of results; they give rise to, and the regressions to be performed in order

7.1.1.2 The uniformity of precision from laboratory to to estimate the transformation parametBrsare all summa-
laboratory, and to detect the presence of outliers. rized in A3.2. This includes statistical tests for the significance
Note 2'—The procedures are_described in mathematical terms based (fp: :Egrifag;::}ss)gaor? d(fcgf‘ttr: éslﬁg]rigggagz?;g; Iég)rgsggltlzl)ility
the notation of Annex Al and illustrated with reference to the example U . . e
data (calculation of bromine number) set out in Annex A2. Throughout?Nd reproducibility relationships, based at the 5 % significance
this section (and Section 8), the procedures to be used are first specifi¢@vel. If such a difference is found to exist, or if no suitable
and then illustrated by a worked example using data given in Annex A2transformation exists, then the alternative methods of Practice

Note 3—ltis assumed throughout this section that all the deviations aree 691 shall be used. In such an event it will not be possible to
_either from a §ingle normal distribution or capable of_ being transformedast for laboratory bias over all samples (see 7.6) or separately
into such a distribution (see 7.2). Other cases (which are rare) Wou'%Stimate the interaction component of variance (see 8.2).

require different treatment that is beyond the scope of this practicé2pee . L
for a statistical test of normality. 7.2.6 If it has been shown at the 5 % significance level that

Note 4—Although the procedures shown here are in a form suitable fothere is a significant regression of the fobr= f(m), then the
hand calculation, it is strongly advised that an electronic computer be usedppropriate transformatiop = F(x), wherex is the reported
to store and analyze interlaboratory test results, based on the proceduresrefsult, is given by the equation
this practice. ADJD6300 D2PP, Version 4.43, Determination of Precision

and Bias Data for Use in Test Methods for Petroleum Products, has been F(x) = Kfﬁ )
designed for this purpose. f(x)
7.2 Transformation of Data where K = a constant. In that event, all results shall be

7.2.1 In many test methods the precision depends on th&ansformed accordingly and the remainder of the analysis
level of the test result, and thus the variability of the reportedf@rried out in terms of the transformed results. Typical trans-
results is different from sample to sample. The method oformations are given in A3.1.
analysis outlined in this practice requires that this shall not be 7.2.7 The choice of transformation is difficult to make the
so and the position is rectified, if necessary, by a transformasubject of formalized rules. Qualified statistical assistance may
tion. be required in particular cases. The presence of outliers may

7.2.2 The laboratories’ standard deviatioDy, and the affect judgement as to the type of transformation required, if
repeats standard deviatiods (see Annex Al) are calculated any (see 7.7).
and plotted separately against the sample megndf the 7.2.8 Worked Exampte
points so plotted may be considered as lying about a pair of 7.2.8.1 Table 3 lists the values of, D, andd for the eight

TABLE 3 Computed from Bromine Example Showing Dependence of Precision on Level

Sample Number 3 8 1 4 5 6 2 7
m 0.756 1.22 2.15 3.64 10.9 48.2 65.4 114
D 0.0669 (14) 0.159 (9) 0.729 (8) 0.211 (11) 0.291 (9) 1.50 (9) 222 (9) 2.93(9)
d 0.0500 (9) 0.0572 (9) 0.127 (9) 0.116 (9) 0.0943 (9) 0.527 (9) 0.818 (9) 0.935 (9)
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samp|es in the examp|e given in Annex A2, correct to three TABLE 4 Absolute Differences Between Transformed Repeat

significant digits. Corresponding degrees of freedom are in Results: Bromine Example
parentheses. Inspection of the values in Table 3 shows that both  Laboratory Sample
D andd increase withm, the rate of increase diminishing as 1 2 3 4 5 6

increases. A plot of these figures on log-log paper (that is, a
graph of logD andlog d againstiog m) shows that the points
may reasonably be considered as lying about two straight lines
(see Fig. A4.1 in Annex A4). From the example calculations
given in A4.4, the gradients of these lines are shown to be the
same, with an estimated value of 0.638. Bearing in mind the
errors in this estimated value, the gradient may for convenience
be taken as 2/3.

42 21 7 13
23 12 12 0

0 6 0 0
14 6 0 13
0
23 20 34 29
62 4 78 0
44 20 29 44

0 59 0 40

CIOTMMOUO >
@
a1
IN
o
N e
COCoOoOoOhA~MO~NN~N
4

2 1
fx‘§ dx = 33 3)
Lo . 0.07&
7.2.8.2 Hence, the same transformation is appropriate both 0.0439— 0-138 4)

for repeatability and reproducibility, and is given by the . ) . )
equation. Since the constant multiplier may be ignored th&vhere 0.138 is the result obtained by electronic calculation of

transformation thus reduces to that of taking the cube roots dfnrounded factors in the expression. There are 72 ranges and
the reported bromine numbers. This yields the transforme@S; from Table A2.2, the criterion for 80 ranges is 0.1709, this
data shown in Table A1.3, in which the cube roots are quote&tiC i not significant.

correct to three decimal places. 7.3.4 Uniformity of Reproducibility

7.3 Tests for Outliers 7.3.4.1 The following outlier tests are concerned with es-

7.3.1 The reported data or, if it has been decided that }ablishing uniformity in the reproducibility estimate, and are
transformation is necessary, the transformed results shall gesigned to detect either a discordant pair of results from a
inspected for outliers. These are the values which are st@boratory on a particular sample or a discordant set of results
different from the remainder that it can only be concluded thaffom a laboratory on all samples. For both purposes, the
they have arisen from some fault in the application of the testawkins’ test(4) is appropriate.
method or from testing a wrong sample. Many possible tests 7.3.4.2 This involves forming for each sample, and finally
may be used and the associated significance levels varied, bigf the overall laboratory averages (see 7.6), the ratio of the
those that are specified in the following subsections have bed@rgest absolute deviation of laboratory mean from sample (or
found to be appropriate in this practice. These outlier tests apverall) mean to the square root of certain sums of squares
assume a normal distribution of errors. (A1.6).

7.3.2 Uniformity of Repeatability-The first outlier test is ~ 7-3-4.3 The ratio corresponding to the largest absolute
concerned with detecting a discordant result in a pair of repedteviation shall be compared with the critical 1 % values given
results. This tes(3) involves calculating th@qu over all the 1N Table A1.5, whera is the number of laboratory/sample cells
laboratory/sample combinations. Cochran’s criterion at the 1 o the sample (or the number of overall laboratory means)
significance level is then used to test the ratio of the largest gfoncermned and whereis the degrees of freedom for the sum
these values over their sum (see AL.5). If its value exceeds tHYf Squares which is additional to that corresponding to the
value given in Table A2.2, corresponding to one degree opample in question. In the test_for Iaborat(_)ry/sample celid|
freedomp being the number of pairs available for comparison,refer to other samples, but will be zero in the test for overall
then the member of the pair farthest from the sample mealfPoratory averages.
shall be rejected and the process repeated, reducing 1, 7.3.4.4 If a significant value is encountered for individual
until no more rejections are called for. In certain casesSamples the corresponding extreme values shall be omitted and
specifically when the number of digits used in reporting resultghe process repeated. If any extreme values are found in the
leads to a large number of repeat ties, this test can lead to E;{?,boratory totals, then all the results from that laboratory shall
unacceptably large proportion of rejections, for example, mord&€ rejected.
than 10 %. If this is so, this rejection test shall be abandoned 7.3.4.5 If the test leads to an unacceptably large proportion
and some or all of the rejected results shall be retained. ®f rejections, for example, more than 10 %, then this rejection
decision based on judgement will be necessary in this case.test shall be abandoned and some or all of the rejected results

7.3.3 Worked Example- In the case of the example given in shall be rgtaingd. A decision based on judgement will be
Annex A2, the absolute differences (ranges) between trandlecessary in this case.
formed repeat results, that is, of the pairs of numbers in Table 7-3.5 Worked Exampte
A1.3, in units of the third decimal place, are shown in Table 4. 7.3.5.1 The application of Hawkins’ test to cell means
The largest range is 0.078 for Laboratory G on Sample 3. Theithin samples is shown below.
sum of squares of all the ranges is 7.3.5.2 The first step is to calculate the deviations of cell

0.04Z + 0.02F + ... +0.026 + 0° = 0.0439. means from respective sample means over the whole array.

Thus, the ratio to be compared with Cochran’s criterion is  These are shown in Table 5, in units of the third decimal place.
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TABLE 5 Deviations of Cell Means from Respective Sample largest of the corresponding sums of squares (laboratories or
Means: Transformed Bromine Example repeats, as appropriate) to their total (see A1.5). If the ratio
Sample exceeds the critical value given in Table A2.2, wittas the
Laboratory 12 3 4 5 6 7 8 number of samples andthe degrees of freedom, then all the
A 20 8 14 15 10 48 6 3 results from the sample in question shall be rejected. In such an
B (735 720 g 18 47 6 3 event care should be taken that the extreme standard deviation
C 4 35 3 2 3 4 22 25 H . . . . .
5 314 33 18 42 7 39 80 50 is not due to the application o_f an inappropriate transformation
E 32 32 30 9 7 18 18 39 (see 7.1), or undetected outliers.
(F; 12 2471 2; 58 28 6? 7‘91 22 7.4.4 There is no optimal test when standard deviations are
q 22 13 4 42 13 21 8 50 based on different degrees of freedom. However, the ratio of
J 1 28 22 29 14 8 10 53 the largest variance to that pooled from the remaining samples
Sum of Squares 117 15 2 6 3 1 13 17 follows an F-distribution withv, andv, degrees of freedom

(see A1.7). Here, is the degrees of freedom of the variance in
guestion andy, is the degrees of freedom from the remaining

The sum of squares of the deviations are then calculated fG@MPIes. If the ratio is greater than the critical value given in

each sample. These are also shown in Table 5 in units of tH&2-6, corresponding to a significance level of 0SWhereSis

third decimal place. the number of samples, then results from the sample in
7.3.5.3 The cell to be tested is the one with the most extrem@uestion shall be rejected.

deviation. This was obtained by Laboratory D from Sample 1. /-4.5 Worked Exampte =~
The appropriate Hawkins' test ratio is therefore: 7.4.5.1 The standard deviations of the transformed results,

after the rejection of the pair of results by Laboratory D on
0.314 . . . .
= —0.7281 (55 Sample 1, are given in Table 6 in ascending order of sample
\/0.117+0.015+ ...+ 0.017 mean, correct to three significant digits. Corresponding degrees
7.3.5.4 The critical value, correspondingrio= 9 cells in  of freedom are in parentheses.
sample 1 and = 56 extra degrees of freedom from the other 7.4.5.2 Inspection shows that there is no outlying sample
samples is interpolated from Table A1.5 as 0.3729. The tesimong these. It will be noted that the standard deviations are
value is greater than the critical value, and so the results fromow independent of the sample means, which was the purpose
Laboratory D on Sample 1 are rejected. of transforming the results.
7.3.5.5 As there has been a rejection, the mean value, 7.4.5.3 The values in Table 7, taken from a test program on
deviations, and sum of squares are recalculated for Sample Bromine numbers over 100, will illustrate the case of a sample
and the procedure is repeated. The next cell to be tested will bejection.
that obtained by Laboratory F from Sample 2. The Hawkins’ 7.4.5.4 It is clear, by inspection, that the laboratories stan-

B*

test ratio for this cell is: dard deviation of Sample 93 at 15.76 is far greater than the
0.097 others. It is noted that the repeats standard deviation in this
B* = /00067 00157 ... 7 0017 0.3542 (6)  sample is correspondingly large.

7356 Th itical val ding o= 9 cells | 7.4.5.5 Since laboratory degrees of freedom are not the
S : .I ‘2 32”5';&1 \za US corresp;)? mg ) _cte S Ilnt dsame over all samples, the variance ratio test is used. The
amplé 2 any = oo extra degrees of freedom IS Interpolated, o jance pooled from all samples, excluding Sample 93, is the

frc_>r_n Table ALS5 as 9'3756' As the te;t rgtio is less than th%um of the sums of squares divided by the total degrees of
critical value there will be no further rejections. freedom. that is

7.4 Rejection of Complete Data from a Sample
7.4.1 The laboratories standard deviation and repeats stan- (8x5.1C +9X 4.2 + ... + 8x 3.85)
dard deviation shall be examined for any outlying samples. If 8+9+..+8)
a transformation has been carried out or any rejection made, 7.4.5.6 The variance ratio is then calculated as
new standard deviations shall be calculated.

=19.96 @)

15.26

7.4.2 If the standard deviation for any sample is excessively Toog = 11.66 (8)
large, it shall be examined with a view to rejecting the results ) ' ] . .
from that sample. where 11.66 is the result obtained by electronic calculation

7.4.3 Cochran’s criterion at the 1 % level can be used wheMithout rounding the factors in the expression.
the standard deviations are based on the same number 0f7.4.5.7 From Table A1.8 the critical value corresponding to
degrees of freedom. This involves calculating the ratio of thea significance level of 0.01/8 = 0.00125, on 8 and 63 degrees

TABLE 6 Standard Deviations of Transformed Results: Bromine Example

Sample number 3 8 1 4 5 6 2 7
m 0.9100 1.066 1.240 1.538 2.217 3.639 4.028 4.851
D 0.0278 0.0473 0.0354 0.0297 0.0197 0.0378 0.0450 0.0416
(14) 9) (13) (1) (9) (9) (9) (9)
d 0.0214 0.0182 0.028 0.0164 0.0063 0.0132 0.0166 0.0130
9) 9) (8) (9) (9) (9) (9) 9)
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TABLE 7 Example Statistics Indicating Need to Reject an Entire Sample

Sample number 90 89 93 92 91 94 95 96
m 96.1 99.8 119.3 125.4 126.0 139.9 139.4 159.5
D 5.10 4.20 15.26 4.40 4.09 4.87 4.74 3.85
(8) (9) (8) (11) (10) (8) 9) (8)
d 1.13 0.99 2.97 0.91 0.73 1.32 1.12 1.36
(8) (8) (8) (8) (8) (8) (8) (8)

of freedom, is approximately 4. The test ratio greatly exceeds 7.5.3.1 The two results from Laboratory D on Sample 1

this and results from Sample 93 shall therefore be rejected. were rejected (see 7.3.4) and thays has to be estimated.
7458 Turning tO I’epeats Standard deViationS, |t iS nOted Total of remaining results in Laboratory 4 = 36.354

that degrees of freedom are identical for each sample and that Total of remaining results in Sample 1 = 19.845

Cochran’s test can therefore be applied. Cochran’s criterion Joral ofal ine 1esults except 2= 348.358

will be the ratio of the largest sum of squares (Sample 93) to , o

the sum of all the sums of squares, that is Hence, the estimate @k, is given by

2.97/(1.13+0.99+...+1.36% = 0.510 9) a; = m [(9 X 36.354 + (8 X 19.845 —348.358 (11)

This is greater than the critical value of 0.352 corresponding S herefore
n=8 andv = 8 (see Table A2.2), and confirms that results from '
Sample 93 shall be rejected. _ 137.588

ay=—pgg = 2457 (12)
7.5 Estimating Missing or Rejected Values o ] )
7.5.1 One of the Two Repeat Values Missing or Rejeettd 7.6 Rejection Test for Outlying Laboratories .
one of a pair of repeat; or Y;,) is missing or rejected, this 7.6.1 At this stage, one further rejection test remains to be

shall be considered to have the same value as the other rep&&{Tied out. This determines whether it is necessary to reject the
in accordance with the least squares method. complete set of results from any particular laboratory. It could

7.5.2 Both Repeat Values Missing or Rejected not be carried out at an earlier stage, except in the case where

7.5.2.1 If both the repeat values are missing, estimatag of N0 individual results or pairs are m’issing or rejected. The
(= Yj1+Y;2) shall be made by forming the laboratories procedure again consists of Hawkins’ test (se'e 7.3.4), qpplled
samples interaction sum of squares (see Eq 17), including tHe the Ia_lboratory averages over ::’cl” sample_s, with any estimated
missing values of the totals of the laboratories/samples pairs ¢£Sults included. If any laboratories are rejected on all samples,
results as unknown variables. Any laboratory or sample fronfl€W estimates shall be calculated for any remaining missing
which all the results were rejected shall be ignored and new@lues (see 7.5).
values ofL andSused. The estimates of the missing or rejected 7-6.2 Worked Exampte _
values shall be those that minimize the interaction sum of /-6-2.1 The procedure on the laboratory averages shown in

squares. Table 8 follows exactly that specified in 7.3.4. The deviations
7.5.2.2 Ifthe value of single pair suaj has to be estimated, of laboratory averages from the overall mean are given in Table
the estimate is given by the equation: 9 in units of the third decimal place, together with the sum of
1 squares. Hawkins’ test ratio is therefore:
& = e-p th T SS-T) (10) B* = 0.026A,/0.00222= 0.5518 (13)
where: Comparison with the value tabulated in Table A1.5, rior 9

andv = 0, shows that this ratio is not significant and therefore

L, = total of remaining pairs in th&h laboratory, L

S, = total of remaining pairs in thith sample no complete laboratory rejections are necessary.

S = S- number of samples rejected in 7.4, and 7.7 Confirmation of Selected Transformation

T, = total of all pairs excepg;. 7.7.1 Atthis stage it is necessary to check that the rejections

7.5.2.3 If more estimates are to be made, the technique afarried out have not invalidated the transformation used. If
successive approximation can be used. In this, each pair sumngcessary, the procedure from 7.2 shall be repeated with the
estimated in turn from Eq 10, using,, S;, andT,, values, outliers replaced, and if a new transformation is selected,
which contain the latest estimates of the other missing pairoutlier tests shall be reapplied with the replacement values
Initial values for estimates can be based on the appropriateeestimated, based on the new transformation.
sample mean, and the process usually converges to the required’.7.2 Worked Exampte
level of accuracy within three complete iteratiof2s. 7.7.2.1 Itwas not considered necessary in this case to repeat
7.5.3 Worked Exampte the calculations from 7.2 with the outlying pair deleted.

TABLE 8 Averages of All Transformed Results from Each Laboratory

Laboratory A B c D E F G H J Grand
Average
Average 2.437 2.439 2.424 2.4267 2.444 2.458 2.410 2.428 2.462 2.436

A Including estimated value.
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TABLE 9 Absolute Deviations of Laboratory Averages from Grand Average X 1000

Laboratory A B C D E F G H J Ssq”u";rgfs

Deviation 1 3 12 10 8 22 26 8 26 2.22
8. Analysis of Variance and Calculation of Precision Samples sum of squares

Estimates

8.1 After the data have been inspected for uniformity, a - 22.30% + 72515; * .+ 10.102 854.6605
transformation has been performed, if necessary, and any 20)
outliers have been rejected (see Section 7), an analysis of 2935400

variance shall be carried out. First an analysis of variance table
shall be constructed, and finally the precision estimates de-
rived.

8.2 Analysis of Variance 38.997 + 30026 39 387

8.2.1 Forming the Sums of Squares for the Laboratories = 3. - Tt 39
Samples Interaction Sum of SquareBhe estimated values, if 854.6605

; ; . —854. (21)

any, shall be put in the array and an approximate analysis of

Laboratories sum of squares

variance performed. = 0.0356
— : 2 rer
M = mean correction= T/2L'S (14) Pairs sum of squares (1/2) (2.52G + 8.04F + ...
where: + 2.238) — 854.6605 (22)
L’ = L-—number of laboratories rejected in 7.6 — number of = 293.6908
laboratories with no remaining results after rejections
in 7.3.4
’ - o Repeat f 1/2) (0.042 + 0.02% + ...+ 0?
S = total of remaining pairs in thgh sample, and epeats sum of squares(1/2) ( ) 23)
T = the total of all duplicate test results. 00219
s B i
Samples sum of squares[ >, (g7/2L")] - M (15) Table 10 can then be derived.
) _ = 8.2.2 Forming the Sum of Squares for the Exact Analysis of
whereg; is the sum of samplgtest results. Variance
_ Lo, 8.2.2.1 In this subsection, all the estimated pairs are disre-
Laboratories sum of squares[ 2, (//2S)]-M (16)  garded and new values gfare calculated. The following sums
whereh is the sum of laboratory test results. of squares for the exact analysis of variaii@gare formed.
S A2
L' s _]
Pairs sum of squares (1/2) [21 21 aﬁ] M 17) Uncorrected sample sum of squaFerzl S (24)
i=1j=

where:

Laboratories< samples interaction sum of squares § = 2(L' - number of missing pairs in that sample).

(pairs sum of squares) — (laboratories sum of squares)
— (sample sum of squares)

Ignoring any pairs in which there are estimated values, The |aporatories sum of squares is equal to (pairs sum of
repeats sum of squares, squares) — (samples sum of squares) — (the minimized labora-

L' s
Uncorrected pairs sum of squares1/2) 21 21 a (25)
i=1j=

L s tories X samples interaction sum of squares
E=12 3 3¢ (18) ° e , ; :
1=1j=1 L' S 5 S gjz
The purpose of performing this approximate analysis of = (12) [Zlglaij]‘[jzg]—' (26)
variance is to obtain the minimized laboratorigssamples 8.2.2.2 Worked Exampte

interaction sum of squarek, This is then used as indicated in
8.2.2, to obtain the laboratories sum of squares. If there were
no estimated values, the above analysis of variance is exact and
paragraph 8.2.2 shall be disregarded.

Uncorrected samples sum of squares

8.2.1.1 Worked Exampte TABLE 10 Sums of Squares: Bromine Example
) 350.815 Sources of Variation Sum of Squares
Mean correction= —1az (29) Samples 293.5409
Laboratories 0.0356
= 854.6605 Laboratories X samples interaction 0.1143
where 854.6605 is the result obtained by electronic calculatioR> 293.6908
' y ﬂepeats 0.0219

without rounding the factors in the expression.

10
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19.848 72512 19.192 TABLE 12 Analysis of Variance Table: Transformed Benzene

=16 t—18 Tt 18 (27) Example

_ . Sum of Degrees of

= 1145.1834 Source of Variation Squares Freedom Mean Square F

Laboratories 0.0352 8 0.004400 2117
) 2520 8.04F 2.23¢
Uncorrected pairs sum of squares—— + ——+ ... + — Laboratories X 0.1143 55 0.002078
(28) samples
= 1145.3329 Repeats 0.0219 71 0.000308

Therefore, laboratories sum of squares

= 1145.3329- 1145.1834 0.1143 (29) 8.3 Expectation of Mean Squares and Calculation of Preci-
= 0.0352 sion Estimates
8.3.1 Expectation of Mean Squares with No Estimated

8.2.3 Degrees of Freedom Values—For a complete array with no estimated values, the
8.2.3.1 The degrees of freedom for the laboratories are b Y '

(L'-1). The degrees of freedom for laboratorigssamples €xpectations of mean squares are

: ; ’ , Laboratories: 0,2 + 20,2+ 2S’ 7,2
interaction are I('-1)(S-1) for a colmpIeFe array and are Laboratories x samples: 0,2+ 20,2
reduced by one for each pair which is estimated. The degrees Repeats: o2
of freedom for repeats aré.S') and are reduced by one for here:
each pair in which one or both values are estimated. where: . . .
o, = the component of variance due to interaction be-

8.2.3.2 Worked Example-There are eight samples and nine
laboratories in this example. As no complete laboratories or _,
samples were rejected, th&h= 8 andL’ = 9. 92
Laboratories degrees of freedonlL=1 = 8.

tween laboratories and samples, and
= the component of variance due to differences be-
tween laboratories.
8.3.2 Expectation of Mean 2Squareg with Estimated Values
Laboratoriesx samples interaction degrees of freedom if there 8.3.2.1 The coefﬁ?nents .Qflh ando"in rt]he eﬁpectatlon Of
had been no estimates, would have been (9—1)(8—1) = 56. pljean squares are at_ered in the cases where there are estimated
one pair was estimated, hence laboratoresamples interac- values. The expectations of mean squares then become

. 5 . 2 2 2
tion degrees of freedom = 55. Repeats degrees of freedom tzgg:::g:ngusar;jgg;ﬁ o2 o2
would have been 72 if there had been no estimates. In this case Repeats: 0,2 o

one pair was estimated, hence repeats degrees of freedom = 71Where'
8.2.4 Mean Squares and Analysis of Variance '
8.2.4.1 The mean square in each case is the sum of squares B2 K-S (30)
divided by the corresponding degrees of freedom. This leads to L'-1
the analysis of variance shown in Table 11. The rMidM, g where:
is distributed as~ with the corresponding laboratories and K = the number of laborator sample cells containing at
interaction degrees of freedom (see AL1.7). If this ratio exceeds least one result, ang and-y are computed as in 8.3.2.5
the 5% critical value given in Table A1.6, then serious bias g 322 |f there are no cells with only a single estimated
between the laboratories is implied and the program organizggylt, theny = vy = 1.
shall be informed (see 6.5); further standardization of the test g 32 3 |f there are no empty cells (that is, every lab has

method may be necessary, for example, by using a certifieghsteq every sample at least once, KrdL’ X S), thena and

reference material. ) _ _ v are both one plus the proportion of cells with only a single
8.2.4.2Worked Example- The analysis of variance is ggyit.

shown in Table 12. The ratidl, /M, s = 0.0044/0.002078 has @ 8 3.2 4 If there are both empty cells and cells with only one

value 2.117. This is greater than the 5 % critical value obtainedesyt, then, for each lab, compute the proportion of samples

from Table A1.6, indicating bias between laboratories. tested for which there is only one resylt, and the sum of
these proportions over all labB, For each sample, compute

TABLE 11 Analysis of Variance Table the proportion of labs that have tested the sample for which
- Mean there is only one result on itg, and the sum of these
Sources of Variation Degrees of Freedom Sum of Squares i
Square proportions over sample®. Compute the total number of cells
Laboratories L-1 Laboratories sum of M, with only one result\W, and the proportion of these among all
squares nonempty cellsW/K. Then
Laboratories X (L' - 1) (S’ - 1) - number / M,s P-W/K
samples of estimated pairs a=1+ L—1 (31)
Repeats L'S" = number of pairs in E M, and
which one or both values W-P-Q + WK
are estimated _ -
y=1l+—F¢—s71 (32)

11
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Note 5—These subsections are based upon the assumptions that both (Reproducibility variancg
samples and laboratories are random effects. v= [ 2 12 .2 (39)
1 2 3
. . Tt —+ -
8.3.2.5 Worked Example-For the example, which has eight L'-1 " vs v

samples and nine laboratories, one cell is empty (Laboratory there'
on Sample 1), s&k = 71 and ;

ry, r, and r; = the three successive terms in Eq 38,
__71-8 Vis = the degrees of freedom for laboratorigs
B=2@-g =157 (33) samples, and

the degrees of freedom for repeats.

v
None of the nonempty cells has only one resultpnsoy = r ) S
1. To make the example more interesting, assume that only On(:f(l) Round calculated estimates of reproducibility in accor-

result remains from Laboratory A on Sample 1. TN 1, p, ance with Practice E 29, specifically paragraph 7.6 of that
=%, p,= pPs= ... = Ppg= 0, andP = 0.125. We computg,= ¥s practice. o . . .

(we don't count Laboratory D in the denominator)=s=...= (2) Substantial bias betw_een laboratories will result in a I_o_ss
ge= 0, andQ = 0.125. Consequently, of degrees of freedom estimated by Eq 39. If reproducibility

degrees of freedom are less than 30, then the program organizer

o= 0'125—‘11/71: 1.014 @34) shall be informed (see 6.5); further standardization of the test
- method may be necessary.
and 8.3.3.4 Worked Example-Recalling thata =y = 1 (not
1-0.125-0.125 1/71 1.014, as shown in Eq 34 and 35):
y=1+ 55 = 1014 (35) Reproducibility variance (40)
8.3.3 Calculation of Precision Estimates _ (i » 0_00440) N <£75X 0.002078) + 0.000308
8.3.3.1 Repeatability—The repeatability variance is twice 15.75 15.75
the mean square for repeats. The repeatability estimate is the = 0.000559+ 0.001814+ 0.000308
product of the repeatability standard deviation and the “ = 0.002681
value” with appropriate degrees of freedom (see Table A2.3)
corresponding to a two-sided probability of 95 %. Round 0.00268%
calculated estimates of repeatability in accordance with Prac- V= 0000558 0001814 0.000308 (41)
tice E 29, specifically paragraph 7.6 of that practice. Note that - - S — |
if a transformationy = f(x) has been used, then -7
r(x) ~ & ) (36)
ay| " Reproducibility ofy = t,,,/0.002681 (42)
wherer(x), r(y) are the corresponding repeatability functions =0.1034

(see). A similar relationship applies to the reproducibility
functionsR(x), R(y)

8.3.3.2 Worked Exampte

Reproducibility of x = 0.310¢"

8.3.3.5 Determinability—When determinability is relevant,
it shall be calculated by the same procedure as is used to

Repeatability variance: 20,2 (37)  calculate repeatability except that pairs of determined values
— 0.000616 replace test results. This will as much as double the number of
- “laboratories” for the purposes of this calculation.
Repeatability ofy = t;;1,/0.000616 8.3.4 Bias
= 1.994x0.0428 8.3.4.1 Bias equals average sample test result minus its
= 0.0495 accepted reference value. In the ideal case, average 30 or more
Repeatability ofx = 3 X 0.0495 test re;ults, measured independently by processes in a state of
statistical control, for each of several relatively uniform mate-
= 0.148¢° rials, the reference values for which have been established by
8.3.3.3 Reproducibility—Reproducibility variance = 2 one of the following alternatives, and subtract the reference
(o 2+ o,%+ 0,2 and can be calculated using Eq 38. values. In practice, the bias of the test method, for a specific

material, may be calculated by comparing the sample average

with the accepted reference value.

:EML + (1_E> Mg + (2—7 +E(v—a) M, 8.3.4.2 Accepted reference values may be one of the fol-
B B B lowing: an assigned value for a Standard Reference Material, a
where the symbols are as set out in 8.2.4 and 8.3.2. Theonsensus value based on collaborative experimental work

reproducibility estimate is the product of the reproducibility under the guidance of a scientific or engineering organization,

standard deviation and thé-Value” with appropriate degrees an agreed upon value obtained using an accepted reference
of freedom (see Table A2.3), corresponding to a two-sidednethod, or a theoretical value.

probability of 95 %. An approximatiori7) to the degrees of 8.3.4.3 Where possible, one or more materials with ac-

freedom of the reproducibility variance is given by Eq 39. cepted reference values shall be included in the interlaboratory

Reproducibility variance (38)
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program. In this way sample averages free of outliers willmethod, exceed the following value in only one case in 20.
become available for use in determining bias. When this occurs, the operator must take corrective action:
8.3.4.4 Because there will always be at least some bias L
because of the inherent variability of test results, it is recom- ) Determinability= 0.59\/5_ ) (43)
mended to test the bias value by applying Studerttst using wherem is the mean of the two determined values in mL.
the number of laboratories degrees of freedom for the sample 8.4.2 A graph or table may be used instead of, or in addition
made available during the calculation of precision. When thdo, the equation format shown above. In any event, it is helpful
calculated is less than the critical value at the 5 % confidenceto include a table of typical values like Table 13.
level, the bias should be reported as not significant. 8.4.3 The wording to be used for test methods where the
8.4 Precision and Bias Section for a Test MetheWhen  statistical treatment applied is unknown is: “The precision of
the precision of a test method has been determined, ithis testis not known to have been obtained in accordance with
accordance with the procedures set out in this practice, it shatlurrently accepted guidelines (for example, in Committee D02,
be included in the test method as illustrated in these example®ractice D 6300).” The existing statement of precision would
8.4.1 Precision—The precision of this test method, which then follow.
was determined by statistical examination of interlaboratory 8.5 Data Storage
results using Practice D 6300, is as follows. 8.5.1 The interlaboratory program data should be preserved
8.4.1.1 Repeatability—The difference between successive for general reference. Prepare a research report containing
results obtained by the same operator with the same apparatdstails of the test program, including description of the
under constant operating conditions on identical test materisdamples, the raw data, and the calculations described herein.
would in the long run, in the normal and correct operation ofSend the file to ASTM Headquarters and request a File
the test method exceed the following values only in one case iReference Number.
20. 8.5.2 Use the following footnote style in the precision
section of the test method. “The results of the cooperative test
program, from which these values have been derived, are filed
wherex is the average of two resullts. at ASTM Headquarters as RR:D02—XXXX.”
8.4.1.2 Reproducibility—The difference between two single
and independent results obtained by different operators workd: Keywords
ing in different laboratories on identical test material would in 9.1 interlaboratory; precision; repeatability; reproducibility;
the long run exceed the following values only in one case in 20round robin

Repeatability= 0.148x%° (43)

Reproducibility= 0.310x%® (44) ) . .
. TABLE 13 Typical Precision Values: Bromine Example
wherex is the average of two results. A — —
. S . verage Value Repeatability Reproducibility
8.4.1.3 If determinability is relevant, it shall precede repeat-  gromine Numbers Bromine Numbers Bromine Numbers
ability in the statement above. The unit of measurement shal 10 0.15 031
be specified when it differs from that of the test result: 2.0 0.23 0.49
8.4.1.4 Determinability—The difference between the pair of 10.0 0.69 144
. ; . 20.0 1.09 2.28
determined values averaged to obtain a test result would, in the 100.0 319 6.68
long run, in the normal and correct operation of the test
ANNEXES

(Mandatory Information)

Al. NOTATION AND TESTS

Al.1 The Following Notation Is Used Throughout This m

. the mean of sample test results,
Practice:

the mean of a pair of test results in repeatability and
reproducibility statements,

x
11

h f duoli | X... = an individual test result,
the 3L1l‘fm o u%lcate tesc} fefu ts, | y... = a transformed value of x..., and
the difference between duplicate test results, v = the degrees of freedom.

the sum of sample test results,
the sum of laboratory test results,

the suffix denoting laboratory number, Al1.2 Array of Duplicate Results from Each of L

the suffix denoting sample number, Laboratories on S Samples and Corresponding

the number of samples, Means m
the total of all duplicate test results, Al.2.1 See Table Al.1.
the number of laboratories,

rIn——"o«Q o o
{1 L T L I T I T T

Note Al.1—If a transformationy = F(x) of the reported data is

13
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TABLE Al.1 Typical Layout of Data from Round Robin P ’
D?=~[C+ (K —1) ¢ (A1.3)
Sample ) Kj ] ) !
Laboratory 1 2 J S where:
1 X111 X121 X1j1 X151 L
X112 X122 X1j2 X152 K = (§_i§l nﬁ) / [S (L-D)] (A1.4)
2 X211 X221 Xaj1 Xas1
X212 X222 Xoj2 Xos2
; - Yoo X . n; = number of results obtained by Laboratoryfrom
Xi12 Xiz2 Xij2 Xis2 Sam plej ’ . .
§ = total number of results obtained from Sampland
L X iz X Yisy L = number of cells in Samplg containing at least one
XL12 Xi22 Xij2 X s2
result.
Total G 9 g gs Al.4.4 Laboratories degrees of freedom for Samjplis
Mean m, m, m, m, given approximately(6) by:
. | U TCP 1kdT (AL5)
necessary (see 7.2), then corresponding symjelandy;, are used in S  E—
lace ofx;; andX;s,. .
P i AN (rounded to the nearest integer)
Al1.3 Array of Sums of Duplicate Results, of Laboratory A1.4.5 If either or both of a laboratory/sample pair of results
Totals h; and Sample Totalsg; is missing, the factot is reduced by one.
A1.3.1 See Table A1.2. Al1.4.6 If both of a laboratory/sample pair of results is
A1.3.2 If any results are missing from the complete arrayMissing, the factorl(— 1) is reduced by one.
then the divisor in the expression fox will be correspond-
ingly reduced. Al.5 Cochran’s Test
, A1.5.1 The largest sum of squaresgy, out of a set oin
Al.4 Sums of Squares and Variances (7.2) mutually independent sums of squares each basedlegrees
Al.4.1 Repeats Variance for Sample j of freedom, can be tested for conformity in accordance with:
L
> e Cochraris criterion= — (A1.6)
o =1
=" (A1.1) 2 Ss
where: A1.5.2 The test ratio is identical if sum of squares values are

L = the repeats degrees of freedom for Samydee degree  replaced by mean squares (variance estimates). If the calcu-
of freedom for each laboratory pair. If either or both of lated ratio exceeds the critical value given in Table A1.3, then
a laboratory/sample pair of results is missing, the the sum of squares in questi®g, is significantly greater than
corresponding term in the numerator is omitted and thethe others with a probability of 99 %. Examples&f include
factor L is reduced by one. e;” andd*(Eq AL.1).
Al.4.2 Between Cells Variance for Sample j
L2 @ Al1.6 Hawkins’ Test
ct = [.%%—%]/(L—l) (AL2) Al.6.1 An extreme value in a data set can be tested as an
Y outlier by comparing its deviation from the mean value of the
data set to the square root of the sum of squares of all such
deviations. This is done in the form of a ratio. Extra informa-
tion on variability can be provided by including independent

Al1.4.3 Laboratories Variance for Sample |

TABLE A1.2 Typical Layout of Sums of Duplicate Results A

Sample sums of squares into the calculations. These will be based on
Laboratory L 2 / S Total degrees of freedom and will have the same population variance
1 an a ay; as h as the data set in question. Table A1.4 shows the values that are
f o Bz % s ’,’72_ required to apply Hawkins’ test to individual samples. The test
L an an a ae h procedure is as follows:
A1.6.1.1 Identify the samplk and cell mearg,/n;,, which
Total f % 9 Js T has the most extreme absolute deviatayin, —ml . The cell
“ @ = Xz * Xip (OF 3;= ¥z + jp, if a transformation has been used) identified will be the candidate for the outlier test, be it high or

€= X ju — X jp (Or &;= Yjn — Yjp, if @ transformation has been used) |
Ow.

gj:éail h":i 8 A1.6.1.2 Calculate the total sum of squares of deviations
S
m= gl 2L . S . SS= 21 SS (AL7)

Il
ol

Il
ol

Al1.6.1.3 Calculate the test ratio

14
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TABLE Al1.3 Cube Root of Bromine Number for Low Boiling Samples

Sample
Laboratory 1 2 3 4 5 6 7 8
A 1.239 4.010 0.928 1.547 2.224 3.586 4.860 1.063
1.281 4.031 0.921 1.560 2.231 3.596 4.852 1.063
B 1.193 4.029 0.884 1.547 2.231 3.691 4.856 1.063
1.216 4.041 0.896 1.547 2.224 3.682 4.853 1.063
C 1.216 3.990 0.913 1.518 2.183 3.647 4.826 1.091
1.216 3.996 0.913 1.518 2.190 3.639 4.830 1.091
D 1.601 3.992 0.928 1.587 2.210 3.674 4.774 1.000
1.578 3.998 0.928 1.574 2.210 3.682 4.765 1.032
E 1.281 3.998 0.940 1.547 2.217 3.619 4.871 1.091
1.216 3.994 0.940 1.547 2.231 3.624 4.864 1.119
F 1.216 4.135 0.896 1.504 2.257 3.662 4,946 1.119
1.193 4.115 0.862 1.533 2.237 3.632 4.903 1.119
G 1.239 3.996 0.917 1.518 2.197 3.586 4.850 1.032
1.301 3.992 0.839 1.518 2.197 3.570 4.832 0.976
H 1.260 4.051 0.921 1.474 2.204 3.674 4.860 1.032
1.216 4.031 0.892 1.518 2.204 3.647 4.856 1.000
J 1.281 4.086 0.932 1.587 2.231 3.662 4.873 1.119
1.281 4.027 0.932 1.547 2.231 3.632 4.847 1.119
TABLE Al.4 Calculations for Hawkins’ Test for Outliers A containing:
Sample n = number of laboratories &,
1 2 J S m = overall mean =T/N, whereN is the total number of results
No. of cells m ny n; ng in the array, and
Sample mean my m, m; myg _ it
Sum of squares ss, ss, 4 s, SS=sum of squares of deviations of laboratory means from the

P , — . overall mean, and is given by
n; = the number of cells in Sample j which contains at least one result,

m; = the mean of Sample j, and L hi 2
SS; = the sum of squares of deviations of cell means a ;/n; from sample mean SS= E <ﬁ - m> (A1.10)
m ; and is given by =1\

SS; =(L-1) G where:
(L-1) is the between cells (laboratories) degrees of freedom, and shall be ! . .
reduced by 1 for every cell in Sample j which does not contain a result. n, = the number of results in Laboratory
In the test procedure, therefore, identify the laboratory mean
B — lay/ry —my (AL.8) h/n; which differs most from the overall meam. The
\V/SS corresponding test ratio then becomes:
Al1.6.1.4 Compare the test ratio with the critical value from . Ih/in —m
Table A1.5, forn = n, and extra degrees of freedonwhere B =S5 (A1.11)
S . . o
V=S (-1 #k (AL9) Al1.6.1.7 This shall be compared with the critical value from
=1 Table A1.5 as before, but now with extra degrees of freedom

A1.6.1.5 IfB* exceeds the critical value, reject results from = 0. If alaboratory is rejected, adjust the valuesiofn,andSS
the cell in question (Sample Laboratoryi), modify n,, m.and ~ accordingly and repeat the calculations.
S values accordingly, and repeat from A1.6.1.1.

_ _ _ ) Al.7 Variance Ratio Test F-Test)

Note Al.2—Hawkins’ test applies theoretically to the detection of only ) )
a single outlier laboratory in a sample. The technique of repeated tests for AL.7.1 A variance estimat&/,, based onv; degrees of
a single outlier, in the order of maximum deviation from sample meanfreedom, can be compared with a second estigtbased on
implies that the critical values in Table AL.5 will not refer exactly to the v, degrees of freedom, by calculating the ratio
1 % significance level. It has been shown by Hawkins, however, tmat if
= 5 and the total degrees of freedom+ v) are greater than 20, then this F= ll
effect is negligible, as are the effects of masking (one outlier hiding Va
another) and swamping (the rejection of one outlier leading to the A1.7.2 If the ratio exceeds the appropriate critical value
rejection of others). given in Tables A1.6-A1.9, where, corresponds to the

A1.6.1.6 When the test is applied to laboratories averagedumerator ands, corresponds to the denominator, thépis
over all samples, Table A1.4 will reduce to a single columngreater tharV, at the chosen level of significance.

(A1.12)
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TABLE A1.5 Critical Values of Hawkins’ 1 % Outlier Test for

n=3to 50 and v =0 to 200

Degrees of Freedom v

n 0 5 10 15 20 30 40 50 70 100 200
3 0.8165 0.7240 0.6100 0.5328 0.4781 0.4049 0.3574 0.3233 0.2769 0.2340 0.1926 0.1674
4 0.8639 0.7505 0.6405 0.5644 0.5094 0.4345 0.3850 0.3492 0.3000 0.2541 0.2096 0.1824
5 0.8818 0.7573 0.6530 0.5796 0.5258 0.4510 0.4012 0.3647 0.3142 0.2668 0.2204 0.1920
6 0.8823 0.7554 0.6571 0.5869 0.5347 0.4612 0.4115 0.3749 0.3238 0.2755 0.2280 0.1988
7 0.8733 0.7493 0.6567 0.5898 0.5394 0.4676 0.4184 0.3819 0.3307 0.2819 0.2337 0.2039
8 0.8596 0.7409 0.6538 0.5901 0.5415 0.4715 0.4231 0.3869 0.3358 0.2868 0.2381 0.2079
9 0.8439 0.7314 0.6493 0.5886 0.5418 0.4738 0.4262 0.3905 0.3396 0.2906 0.2416 0.2112
10 0.8274 0.7213 0.6439 0.5861 0.5411 0.4750 0.4283 0.3930 0.3426 0.2936 0.2445 0.2139
11 0.8108 0.7111 0.6380 0.5828 0.5394 0.4753 0.4295 0.3948 0.3448 0.2961 0.2469 0.2162
12 0.7947 0.7010 0.6318 0.5790 0.5373 0.4750 0.4302 0.3960 0.3466 0.2981 0.2489 0.2181
13 0.7791 0.6910 0.6254 0.5749 0.5347 0.4742 0.4304 0.3968 0.3479 0.2997 0.2507 0.2198
14 0.7642 0.6812 0.6189 0.5706 0.5319 0.4731 0.4302 0.3972 0.3489 0.3011 0.2521 0.2212
15 0.7500 0.6717 0.6125 0.5662 0.5288 0.4717 0.4298 0.3973 0.3496 0.3021 0.2534 0.2225
16 0.7364 0.6625 0.6061 0.5617 0.5256 0.4701 0.4291 0.3972 0.3501 0.3030 0.2544 0.2236
17 0.7235 0.6535 0.5998 0.5571 0.5223 0.4683 0.4282 0.3968 0.3504 0.3037 0.2554 0.2246
18 0.7112 0.6449 0.5936 0.5526 0.5189 0.4665 0.4272 0.3964 0.3505 0.3043 0.2562 0.2254
19 0.6996 0.6365 0.5876 0.5480 0.5155 0.4645 0.4260 0.3958 0.3506 0.3047 0.2569 0.2262
20 0.6884 0.6286 0.5816 0.5436 0.5120 0.4624 0.4248 0.3951 0.3505 0.3051 0.2575 0.2269
21 0.6778 0.6209 0.5758 0.5392 0.5086 0.4603 0.4235 0.3942 0.3503 0.3053 0.2580 0.2275
22 0.6677 0.6134 0.5702 0.5348 0.5052 0.4581 0.4221 0.3934 0.3500 0.3055 0.2584 0.2280
23 0.6581 0.6062 0.5647 0.5305 0.5018 0.4559 0.4206 0.3924 0.3496 0.3056 0.2588 0.2285
24 0.6488 0.5993 0.5593 0.5263 0.4984 0.4537 0.4191 0.3914 0.3492 0.3056 0.2591 0.2289
25 0.6400 0.5925 0.5540 0.5221 0.4951 0.4515 0.4176 0.3904 0.3488 0.3056 0.2594 0.2293
26 0.6315 0.5861 0.5490 0.5180 0.4918 0.4492 0.4160 0.3893 0.3482 0.3054 0.2596 0.2296
27 0.6234 0.5798 0.5440 0.5140 0.4885 0.4470 0.4145 0.3881 0.3477 0.3053 0.2597 0.2299
28 0.6156 0.5737 0.5392 0.5101 0.4853 0.4447 0.4129 0.3870 0.3471 0.3051 0.2599 0.2302
29 0.6081 0.5678 0.5345 0.5063 0.4821 0.4425 0.4113 0.3858 0.3464 0.3049 0.2600 0.2304
30 0.6009 0.5621 0.5299 0.5025 0.4790 0.4403 0.4097 0.3846 0.3458 0.3047 0.2600 0.2306
35 0.5686 0.5361 0.5086 0.4848 0.4641 0.4294 0.4016 0.3785 0.3421 0.3031 0.2600 0.2312
40 0.5413 0.5136 0.4897 0.4688 0.4504 0.4191 0.3936 0.3722 0.3382 0.3010 0.2594 0.2314
45 0.5179 0.4939 0.4728 0.4542 0.4377 0.4094 0.3859 0.3660 0.3340 0.2987 0.2586 0.2312
50 0.4975 0.4764 0.4577 0.4410 0.4260 0.4002 0.3785 0.3600 0.3299 0.2962 0.2575 0.2308

TABLE A1.6 Critical 5 % Values of F
vy

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 oo
3 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.62 8.58 8.55 8.54 8.53 8.53
4 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.75 5.70 5.66 5.65 5.64 5.63
5 541 5.19 5.05 4.95 4.88 4.82 4.77 474 4.62 4.56 4.50 4.44 441 4.39 4.37 4.37
6 4.76 4,53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.81 3.75 3.71 3.69 3.68 3.67
7 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.38 3.32 3.27 3.25 3.24 3.23
8 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.08 3.02 2.97 2.95 2.94 2.93
9 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.86 2.80 2.76 2.73 2.72 2.71
N 10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.70 2.64 2.59 2.56 2.55 2.54
2 15 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.25 2.18 2.12 2.10 2.08 2.07
20 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.04 1.97 1.91 1.88 1.86 1.84
30 2.92 2.69 2.53 2.42 2.33 2.27 221 2.16 2.01 1.93 1.84 1.76 1.70 1.66 1.64 1.62
50 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.69 1.60 1.52 1.48 1.46 1.44
100 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.68 1.57 1.48 1.39 1.34 1.31 1.28
200 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.72 1.62 1.52 1.41 1.32 1.26 1.22 1.19
500 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.69 1.59 1.48 1.38 1.28 1.21 1.16 1.11
o 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.67 1.57 1.46 1.35 1.24 1.17 1.11 1.00
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TABLE A1.7 Critical 1 % Values of F

V1
3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 o
3 29.5 28.7 28.2 27.9 27.7 275 27.3 27.2 26.9 26.7 26.5 26.4 26.2 26.2 26.1 26.1
4 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.2 14.0 13.8 13.7 13.6 135 13.5 135
5 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.72 9.55 9.38 9.24 9.13 9.08 9.04 9.02
6 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.23 7.09 6.99 6.93 6.90 6.88
7 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 5.99 5.86 5.75 5.70 5.67 5.65
8 7.59 7.01 6.63 6.37 6.18 6.03 591 5.81 5.52 5.36 5.20 5.07 4.96 491 4.88 4.86
9 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.96 4.81 4.65 452 4.42 4.36 4.33 4.31
10 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.56 4.41 4.25 4.12 4.01 3.96 3.93 3.91
Y2 15 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.52 3.37 3.21 3.08 2.98 2.92 2.89 2.87
20 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.78 2.64 2.54 2.48 2.44 2.42
30 451 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.39 2.25 2.13 2.07 2.03 2.01
50 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70 2.42 2.27 2.10 1.95 1.82 1.76 1.71 1.68
100 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.22 2.07 1.89 1.73 1.60 1.52 1.47 1.43
200 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 213 1.97 1.79 1.63 1.48 1.39 1.33 1.28
500 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.07 1.92 1.74 1.56 1.41 1.31 1.23 1.16
3 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.04 1.88 1.70 1.52 1.36 1.25 1.15 1.00
TABLE A1.8 Critical 0.1 % Values of F
V1
3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 o
3 141 137 135 133 132 131 130 129 127 126 125 125 124 124 124 124
4 56.2 53.4 51.7 50.5 497 49.0 48.5 48.0 46.8 46.1 45.4 44.9 445 44.3 44.1 44.0
5 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 25.9 25.4 24.9 24.4 24.1 23.9 23.8 23.8
6 23.7 21.9 20.8 20.0 19.5 19.0 18.7 18.4 17.6 17.1 16.7 16.3 16.0 15.9 15.8 15.8
7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 14.1 13.3 12.9 12.5 12.2 11.9 11.8 11.7 11.7
8 15.8 14.4 135 12.9 12.4 12.0 11.8 11.5 10.8 10.5 10.1 9.80 9.57 9.46 9.39 9.34
9 13.9 12.6 11.7 11.1 10.7 10.4 10.1 9.89 9.24 8.90 8.55 8.26 8.04 7.93 7.86 7.81
N 10 12.6 11.3 10.5 9.92 9.52 9.20 8.96 8.75 8.13 7.80 7.47 7.19 6.98 6.87 6.81 6.76
2 15 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.53 5.25 4.95 4.70 4.51 4.41 4.35 4.31
20 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.56 4.29 4.01 3.77 3.58 3.48 3.42 3.38
30 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 3.75 3.49 3.22 2.98 2.79 2.69 2.63 2.59
50 6.34 5.46 4.90 4.51 4.22 4.00 3.82 3.67 3.20 2.95 2.68 2.44 2.24 2.14 2.07 2.03
100 5.85 5.01 4.48 4.11 3.83 3.61 3.44 3.30 2.84 2.59 2.32 2.07 1.87 1.75 1.68 1.62
200 5.64 4.81 4.29 3.92 3.65 3.43 3.26 3.12 2.67 2.42 2.15 1.90 1.68 1.55 1.46 1.39
500 5.51 4.69 4.18 3.82 3.54 3.33 3.16 3.02 2.58 2.33 2.05 1.80 1.57 1.43 1.32 1.23
o 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.51 2.27 1.99 1.73 1.49 1.34 1.21 1.00
TABLE A1.9 Critical 0.05 % Values of F
V1
3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 %
3 225 218 214 211 209 208 207 206 203 201 199 198 197 197 196 196
4 80.1 76.1 73.6 71.9 70.6 69.7 68.9 68.3 66.5 65.5 64.6 63.8 63.2 62.9 62.7 62.6
5 44.4 415 39.7 38.5 37.6 36.9 36.4 35.9 34.6 33.9 33.1 325 32.1 31.8 31.7 31.6
6 30.4 28.1 26.6 25.6 24.9 24.3 23.9 23.5 22.4 21.9 21.4 20.9 20.5 20.3 20.2 20.1
7 235 21.4 20.2 19.3 18.7 18.2 17.8 17.5 16.5 16.0 15.5 15.1 14.7 14.6 14.5 14.4
8 19.4 17.6 16.4 15.7 15.1 14.6 14.3 14.0 13.1 12.7 12.2 11.8 11.6 11.4 11.4 11.3
9 16.8 15.1 14.1 13.3 12.8 12.4 12.1 11.8 11.0 10.6 10.2 9.80 9.53 9.40 9.32 9.26
N 10 15.0 13.4 12.4 11.8 11.3 10.9 10.6 10.3 9.56 9.16 8.75 8.42 8.16 8.04 7.96 7.90
2 15 10.8 9.48 8.66 8.10 7.68 7.36 7.11 6.91 6.27 5.93 5.58 5.29 5.06 4.94 4.87 4.83
20 9.20 8.02 7.28 6.76 6.38 6.08 5.85 5.66 5.07 4.75 4.42 4.15 3.93 3.82 3.75 3.70
30 7.90 6.82 6.14 5.66 5.31 5.04 4.82 4.65 4.10 3.80 3.48 3.22 3.00 2.89 2.82 2.78
50 7.01 6.01 5.37 4.93 4.60 4.34 4.14 3.98 3.45 3.16 2.86 2.59 2.37 2.25 2.17 2.13
100 6.43 5.47 4.87 4.44 4.13 3.89 3.70 3.54 3.03 2.75 2.44 2.18 1.95 1.82 1.74 1.67
200 6.16 5.23 4.64 4.23 3.92 3.68 3.49 3.34 2.83 2.56 2.25 1.98 1.74 1.60 1.50 1.42
500 6.01 5.09 451 4.10 3.80 3.56 3.36 3.21 2.72 2.45 2.14 1.87 1.61 1.46 1.34 1.24
o 591 5.00 4.42 4.02 3.72 3.48 3.30 3.14 2.65 2.37 2.07 1.79 1.53 1.36 1.22 1.00
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A2. EXAMPLE RESULTS OF TEST FOR DETERMINATION OF BROMINE NUMBER AND STATISTICAL TABLES

A2.1 Bromine Number for Low Boiling Samples A2.5 Critical Values of t
A2.1.1 See Table A2.1. A2.5.1 See Table A2.3.
A2.2 Cube Root of Bromine Number for Low Boiling A2.6 Critical Values of F®
Samples

A2.6.1 Critical 5 % Values of F—See Table Al.6.

A2.2.1 See Table A1.3.
A2.6.2 Critical 1 % Values of F—See Table A1.7.

A2.3 Critical 1 % Values of Cochran’s Criterion for n A2.6.3 Critical 0.1 % Values of F-See Table A1.8.
Variance Estimates andv Degrees of Freedom A2.6.4 Critical 0.05 % Values of ~—See Table A1.9.
A2.3.1 See Table A2.2. A2.6.5 Approximate Formula for Critical Values of
F—Critical values ofF for untabulated values of;, andv,
A2.4 Critical Values of Hawkins’ 1 % Outlier Test for n may be approximated by second order interpolation from the
= 3 to 50 andv = 0 to 200 tables. Critical values df corresponding te; >30 andv, >30
A2.4.1 See Table AL1.5. degrees of freedom and significance level 100Pj1%, where
A2.4.2 The critical values in the table are correct to theP is the probability, can also be approximated from the formula
fourth decimal place in the range= 3 to 30 andv = 0, 5, 15, A(P) 1
and 30(3). Other values were derived from the Bonferroni logyo (F) :\/b?B(P)_C(P) (V—1+V—2) (A2.2)
inequality as
where:
(n-1) 3
B — t[m] (A2.1) o=2(g + o (A23)

wheret is the upper 0.0054 fractile of at-variate withn + A2.6.5.1 Values o (P), B (P), andC(P) are given in Table
v — 2 degrees of freedom. The values so computed are onlx2 4 for typical values of significance level 100 @)}-%.
slightly conservative, and have a maximum error of approxi-
mately 0.0002 above the true value. If critical values are A2 7 critical Values of the Normal Distribution (see Table
required for intermediate values aof and v, they may be po g
estimated by second order interpolation using the square of the
reciprocals of the tabulated values. Similarly, second order
extrapolation can be used to estimate values beyen80 and
v = 200. 9 See(8) for the source of these tables.

TABLE A2.1 Bromine Number for Low Boiling Samples

Sample

Laboratory 1 2 3 4 5 6 7 8
A 1.9 64.5 0.80 3.7 11.0 46.1 114.8 1.2
2.1 65.5 0.78 3.8 1.1 46.5 114.2 1.2

B 1.7 65.4 0.69 3.7 11.1 50.3 114.5 1.2
1.8 66.0 0.72 3.7 11.0 49.9 114.3 1.2

C 1.8 63.5 0.76 35 10.4 48.5 112.4 1.3
1.8 63.8 0.76 35 10.5 48.2 112.7 1.3

D 4.1 63.6 0.80 4.0 10.8 49.6 108.8 1.0
4.0 63.9 0.80 3.9 10.8 49.9 108.2 1.1

E 21 63.9 0.83 3.7 10.9 47.4 115.6 1.3
1.8 63.7 0.83 37 1.1 47.6 115.1 1.4

F 1.8 70.7 0.72 34 115 49.1 121.0 14
1.7 69.7 0.64 3.6 11.2 47.9 117.9 1.4

G 1.9 63.8 0.77 35 10.6 46.1 1141 11
2.2 63.6 0.59 3.5 10.6 455 112.8 0.93

H 2.0 66.5 0.78 3.2 10.7 49.6 114.8 11
1.8 65.5 0.71 35 10.7 48.5 114.5 1.0

J 21 68.2 0.81 4.0 11.1 49.1 115.7 14
21 65.3 0.81 3.7 1.1 47.9 113.9 14
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TABLE A2.2 Critical 1 % Values of Cochran’s Criterion for n Variance Estimates and v Degrees of Freedom A
Degrees of Freedom v

n 1 2 3 4 5 10 15 20 30 50
3 0.9933 0.9423 0.8831 0.8335 0.7933 0.6743 0.6145 0.5775 0.5327 0.4872
4 0.9676 0.8643 0.7814 0.7212 0.6761 0.5536 0.4964 0.4620 0.4213 0.3808
5 0.9279 0.7885 0.6957 0.6329 0.5875 0.4697 0.4168 0.3855 0.3489 0.3131
6 0.8828 0.7218 0.6258 0.5635 0.5195 0.4084 0.3597 0.3312 0.2982 0.2661
7 0.8376 0.6644 0.5685 0.5080 0.4659 0.3616 0.3167 0.2907 0.2606 0.2316
8 0.7945 0.6152 0.5209 0.4627 0.4227 0.3248 0.2832 0.2592 0.2316 0.2052
9 0.7544 0.5727 0.4810 0.4251 0.3870 0.2950 0.2563 0.2340 0.2086 0.1842
10 0.7175 0.5358 0.4469 0.3934 0.3572 0.2704 0.2342 0.2135 0.1898 0.1673
1 0.6837 0.5036 0.4175 0.3663 0.3318 0.2497 0.2157 0.1963 0.1742 0.1532
12 0.6528 0.4751 0.3919 0.3428 0.3099 0.2321 0.2000 0.1818 0.1611 0.1414
13 0.6245 0.4498 0.3695 0.3223 0.2909 0.2169 0.1865 0.1693 0.1498 0.1313
14 0.5985 0.4272 0.3495 0.3043 0.2741 0.2036 0.1748 0.1585 0.1400 0.1226
15 0.5747 0.4069 0.3318 0.2882 0.2593 0.1919 0.1645 0.1490 0.1315 0.1150
20 0.4799 0.3297 0.2654 0.2288 0.2048 0.1496 0.1274 0.1150 0.1010 0.0879
25 0.4130 0.2782 0.2220 0.1904 0.1699 0.1230 0.1043 0.0939 0.0822 0.0713
30 0.3632 0.2412 0.1914 0.1635 0.1455 0.1046 0.0885 0.0794 0.0694 0.0600
35 0.3247 0.2134 0.1685 0.1435 0.1274 0.0912 0.0769 0.0690 0.0601 0.0519
40 0.2940 0.1916 0.1507 0.1281 0.1136 0.0809 0.0681 0.0610 0.0531 0.0457
45 0.2690 0.1740 0.1364 0.1158 0.1025 0.0727 0.0611 0.0547 0.0475 0.0409
50 0.2481 0.1596 0.1248 0.1057 0.0935 0.0661 0.0555 0.0496 0.0431 0.0370
60 0.2151 0.1371 0.1068 0.0902 0.0796 0.0561 0.0469 0.0419 0.0363 0.0311
70 0.1903 0.1204 0.0935 0.0788 0.0695 0.0487 0.0407 0.0363 0.0314 0.0269
80 0.1709 0.1075 0.0832 0.0701 0.0617 0.0431 0.0360 0.0320 0.0277 0.0236
90 0.1553 0.0972 0.0751 0.0631 0.0555 0.0387 0.0322 0.0287 0.0248 0.0211
100 0.1424 0.0888 0.0685 0.0575 0.0505 0.0351 0.0292 0.0260 0.0224 0.0191

A These values are slightly conservative approximations calculated via Bonferroni’s inequality (3) as the upper 0.01/n fractile of the beta distribution. If intermediate
values are required along the n-axis, they may be obtained by linear interpolation of the reciprocals of the tabulated values. If intermediate values are required along the
v-axis, they may be obtained by second order interpolation of the reciprocals of the tabulated values.

A2.7.1 Critical valuesZ corresponding to a single-sided and where p andr are the mean and standard deviation
probability P, or to a double-sided significance level 2 P)— respectively of the normal distribution.
are given below in terms of the “standard normal deviate,”
where

zZ=— (A2.4)
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TABLE A2.3 Critical Values of t

Double-Sided % Significance Level
Degrees of Freedom

50 40 30 20 10 5 1

1 1.000 1.376 1.963 3.078 6.314 12.706 63.657
2 0.816 1.061 1.386 1.886 2.920 4.303 9.925
3 0.765 0.978 1.250 1.638 2.353 3.182 5.841
4 0.741 0.941 1.190 1.533 2.132 2.776 4.604
5 0.727 0.920 1.156 1.476 2.015 2571 4.032
6 0.718 0.906 1.134 1.440 1.943 2.447 3.707
7 0.711 0.896 1.119 1.415 1.895 2.365 3.499
8 0.706 0.889 1.108 1.397 1.860 2.306 3.355
9 0.703 0.883 1.100 1.383 1.833 2.262 3.250
10 0.700 0.879 1.093 1.372 1.812 2.228 3.165
11 0.697 0.876 1.088 1.363 1.796 2.201 3.106
12 0.695 0.873 1.083 1.356 1.782 2.179 3.055
13 0.694 0.870 1.079 1.350 1.771 2.160 3.012
14 0.692 0.868 1.076 1.345 1.761 2.145 2,977
15 0.691 0.866 1.074 1.341 1.753 2.131 2.947
16 0.690 0.865 1.071 1.337 1.746 2.120 2.921
17 0.689 0.863 1.069 1.333 1.740 2.110 2.898
18 0.688 0.862 1.067 1.330 1.734 2.101 2.878
19 0.688 0.861 1.066 1.328 1.729 2.093 2.861
20 0.687 0.860 1.064 1.325 1.725 2.086 2.845
21 0.686 0.859 1.063 1.323 1.721 2.080 2.831
22 0.686 0.858 1.061 1.321 1.717 2.074 2.819
23 0.685 0.858 1.060 1.319 1.714 2.069 2.807
24 0.685 0.857 1.059 1.318 1.711 2.064 2.797
25 0.684 0.856 1.058 1.316 1.708 2.060 2.787
26 0.684 0.856 1.058 1.315 1.706 2.056 2.779
27 0.684 0.855 1.057 1.314 1.703 2.052 2,771
28 0.683 0.855 1.056 1.313 1.701 2.048 2.763
29 0.683 0.854 1.055 1.311 1.699 2.045 2.756
30 0.683 0.854 1.055 1.310 1.697 2.042 2.750
40 0.681 0.851 1.050 1.303 1.684 2.021 2.704
50 0.680 0.849 1.048 1.299 1.676 2.008 2.678
60 0.679 0.848 1.046 1.296 1.671 2.000 2.660
120 0.677 0.845 1.041 1.289 1.658 1.980 2.617
el 0.674 0.842 1.036 1.282 1.645 1.960 2.576
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TABLE A2.4 Constants for Approximating Critical Values of F A

100 (1-P) % A(P) B(P) c(P)
10.0 % 1.1131 0.77 0.527
5.0 % 1.4287 0.95 0.681
25% 1.7023 1.14 0.846
1.0% 2.0206 1.40 1.073
0.5% 2.2373 1.61 1.250
0.1% 2.6841 2.09 1.672
0.05 % 2.8580 2.30 1.857

A For values of P not given above, critical values of F may be obtained by
second order interpolation/extrapolation of log (F) (either tabulated or estimated
from the formula) against log (1-P).

TABLE A2.5 Critical Values of the Normal Distribution A

P 0.70 0.80 0.90 0.95 0.975 0.99 0.995
z 0.524 0.842 1.282 1.645 1.960 2.326 2.576
2(1-P)  0.60 0.40 0.20 0.10 0.05 0.02 0.01

AWhen P is less than 0.5 the appropriate critical value is the negative of the
value corresponding to a probability (1-P).

A3. TYPES OF DEPENDENCE AND CORRESPONDING TRANSFORMATIONS (7.2)

A3.1 Types of Dependence of scatter diagrams. Refer to Figs. A3.1-A3.6 and identify the
A3.1.1 See Table A3.1. type of transformation to be applied (if any).

A3.2.1.2 With the exception of the power transformation

A3.2 Transformation Procedure (Type 2 in Table A3.1), the transformation parameter is either

A3.2.1 The following steps shall be taken in identifying the known in advance or estimated from the scatter diagrams. For
correct type of transformation and its paramet&ssyr B, or  the arcsin (Type 3) and logistic (Type 4) transformatidseill
both. be the upper limit of the rating scale or “score” that defines
A3.2.1.1 Plot laboratories standard deviatioBs,and re-  results. For the log (Type 1) transformation, calcuBgdrom
peats standard deviatiorts,against sample means in the form the intercept and slopdg = intercept/slope), estimated from

TABLE A3.1 Types of Dependence *

Form of Dependence Transformations Form of Line to be Fitted dx/dy Remarks
D = K(m + Bgp) y=log(x + By) log(D) = b+ (x + By) Care must be taken if (x + Bp) is small, as
m+ By>0 Type 1 - “log” +b,log(m + By) + b, T + byTlog(m + Bg) rounding becomes critical

Test: by =1, b;=0

D = K(m+B,)® y =( x+By)* 8 log(D) = by+ Blog(m + By)+ b, T + (x +By)PI(1 - B) B =Y o0r2 are common cases.
m+ By> 0, Type 2 — “power” b;Tlog(m+Bg) If B is not different from 1, use log
B#1 Test: B# 1, by=0 transform 1 above. The fitted line may pass
through the origin.
D=K[(m/B) (1-m/B)]*? y=arcsin(x/B)*? log(D) = by+ bylog[m (B-m)] + b,T + 2[x (B-x)]"? This case often arises when results are
. . bsTlog[m (B — m)] reported as percentages or qualitatively as
0=m=8 Type 3 — "arcsin “scores.” If x is always small compared to
Test: by= 1/2, by= 0 B, the transformation reduces to y=(x)*2, a
special case of 2 above.
D=K[ (m/B)(1-m/B)] y=log[x/(B-x)] log(D)= b,*+ b,log[m (B-m)] + b,T + X (B-X)IB This case arises when results are reported
by Tlog[m (B — m)] on a scale of 0 to B. If x is always small
0=m=B Type 4 — “logistic” compared to B, then the transformation
reduces to y = log(x) a special case of 1
Test: by = 1, bs=0 above.
D=K[(m?+B?)/B] y = arctan(x/B) log(D)= by+ bylog(m?+B?) + b, T + x>+ B?)IB The fitted line does not pass through the
b, Tlog(n?+B?) origin. If B is small, the transformation
B>0 Type 5 — “arctan” reduces to y = 1/x, a special case of 2
Test: b, =1, by=0 above.

A The forms of dependence above are shown graphically in the corresponding Figs. A3.1-A3.6. In all cases, K can be any positive constant, and “log” refers to natural
logarithms. The form of line to be fitted includes a dummy variable T (see A4.1) by which it is possible to test for a difference in the transformation as applied to repeatability
and reproducibility.
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Standard Deviation (D)
Standard Deviation (D}

L .
Mean (m) Mean (m)

D=K(m+By), m+By,>0 D = K(m+By)® . m + By> 0, B> 1
FIG. A3.1 Type 1, log FIG. A3.3 Type 2, power

Stendard Deviation (D}

Standard Deviation (D)

Mean (m)

L
Mean (m)

D=K(m+B,)°, m+B,>0,0<B<1 -
FIG. A3.2 Type 2, power D=KI(m/B) (1-m/B)]"*, 0 £ m S B

FIG. A3.4 Type 3, arcsin

the scatter diagrams. Similarly, estim&é&om the intercept in

the case of the arctan (Type 5) transformation. In every @&se,

or B, or both, shall be rounded to give a meaningful value thatng to the transformation in question, in accordance with the

satisfies the plots for both the laboratories and repeats standazdmputational procedure in A4.3. For the power transforma-

deviations. tion, coefficientB, shall differ significantly from zero and shall
A3.2.1.3 In the case of the power transforBhandB, = 0  be rounded to a meaningful value. For the arcsin transforma-

will be estimated as part of the line fitting procedure describedion, b, shall have a value not significantly different from 0.5.

in the next section (A3.2.1.4). A non-zeBg may be estimated Similarly, b, shall not significantly differ from a value of one

by minimizing the sum of squared residuals from the fitted line for the logistic, log, and arctan transformations. In every case

Function minimization using a simplex procedure due tothe test specified in Table A3.1 shall be applied at the 5%

Nelder and Mead€9,10) has been found satisfactory. This is significance level. Failure of this test implies either that the

applied to the functional form of the line shown in Table A3.1 type of transformation or its parametfs incorrect. Similarly,

using the calculated sample means and standard deviatiorefficientb; shall in every case be tested as zero. Failure in

The values and significances of all the constants are determingidis case implies that the transformation is different for

simultaneously as part of the simplex minimization. Forrepeatability and reproducibility. In some cases the presence of

detailed discussion of simplex minimization consult a trainedoutliers (see 7.3) can give rise to this difference.

statistician. A3.2.1.5 If the tests applied above were satisfactory, trans-
A3.2.1.4 In order to confirm the selected transformationform all the results accordingly, recalculate means and standard

type, and to estimate the paramelein the case of the power deviations using transformed results, and create new scatter

transformation, fit the line specified in Table A3.1, correspond-diagrams as in A3.2.1. These will now show a uniform level for
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Standand Deviation (0)

Standard Deviation (D)

L
Mean (m)
Mean (m)

D=KI(m/B) (1-m/B)]. 0 £ mZ B D=K[(m*+B*)/B]. B> 0
FIG. A3.6 Type 5, arctan

FIG. A3.5 Type 4, logistic

sarily the same) level for repeats standard deviation. A statis-
laboratories standard deviation, and a uniform (but not necedical test for uniformity is given in 7.4.

A4, WEIGHTED LINEAR REGRESSION ANALYSIS (7.2)

A4.1 Explanation for Use of a Dummy Variable estimation of precision relationships. An “importance ratio” of
A4.1.1 Two different variablesy, and Y,, when plotted 2:1in the favor of reproducibility shall be applied by settl'Fy_g
against the same independent variasewill in general give = 1 andT; = —2, whereT , refers to the plot of laboratories
different linear relationships of the form ;tandard deviation ang, refers to the repeats standard devia-

Y, = by + byX (A4.1) tion.
Y, = b,y + by X A4.2 Derivation of Weights Used in Regression Analysis

where the coefficients; are estimated by regression analy- A4.2.1 In order to account for the relative precision of fitted
sis. In order to compare the two relationships, a dummyvariables in a regression analysis, weights shall be used that are

variableT can be defined such that inversely proportional to the variances of the fitted variables.
T= T,, a constant value for every observation of Y,, ~A4.2.1.1 For a_va_rlablé), which is an estimate of popula-
T = T, a constant value for every observation of Y,, and tion standard deviation, based orv (D) degrees of freedom,
T.# T,

the variance oD is given by
A4.1.2 LettingY represent the combination &f, and Y,
plot a single relationship

Y = by + bX + b,T + b, TX (A4.2)

variable will be approximated by
where, as before, the coefficiertisare estimated by regres- _ 2
sion analysis. By comparing Eq A4.1 and Eq A4.2), it is ] WD) =2v(D)/D o (A4.1)
evident that A4.2.1.3 ltis clear that as standard deviatidincreases, so
will the weight decrease. For this reason the fitted variable in

Var (D) = o?/2v (D) (A4.6)
A4.2.1.2 Replacing? by its estimatd?, the weight for this

bio = by + BTy A43) " the weighted regression shall instead be a function of standard
by = by + b,T, deviation, which yields weights independent of the fitted
and that therefore variable.
_ A4.2.1.4 In cases where a functig(D) is fitted, rather than
byo—ba = b, (T, —T. A4.4 ’
o 10~ bz0 = b (T ~T2) A48 p itself, the variance formula becomes
A4.1.3 Similarly, L L o
by, —by = by (T,—T)) (A4.5) Var[log (D)] = =; Var (D) = 52% (A4.8)

A4.1.4 In order to test for a difference betweep andb,,
therefore, it is only necessary to test for a non-zero coefﬁcien\gv
b,. Similarly, to test for a difference betweér, andb,,, test
for a non-zero coefficient.. wlog (D)] = 2v (D) (A4.9)

A4.1.5 Any non-zero values can be chosen Torand T,. A4.2.1.6 Inrelation to laboratories standard deviafioand
However, since reproducibility is the basis of tests for qualityrepeats standard deviatiod, therefore, it is necessary to
control against specifications, weighting shall reflect this in theperform regression analysis in terms log(D) and log(d),

A4.2.1.5 Once again replacing® by its estimateD?, the
eight forlog(D) will be approximated by
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since weighting will then take account only of the amount of a, =ayb; +ah, +aghs (A4.15)
data on which the standard deviation was based. A relationship 8y, = by + agh, + ahs
estimated in this way will be less dependent on samples which

X ’ L = agb; + agh, + agh
have a high proportion of missing results. B = otn T 8oz T s

A4.2.1.7 Denoting degrees of freedom &) for labora- A4.3.1.5 Examples of @and g; elements, in terms of
tory standard deviation® and v(d) for repeats standard Weighted means;xare as follows
deviationsd, formulae for calculating weights then become Ay = SW (X —X) 2 Bpg = SW, (Xg— %) (Xg —Xg)
w{log (D)] = 2v (D) (A4.10) (A4.16)
ap = IW (Y, —Y) (X —X%) a, = Zw (Y, -y’
wllog (d)] = 2v (d) (A4.11) A4.3.1.6 Having solved the equations fby, b,, and b,
NoTe A4.1—Unweighted regression corresponds to weighted regrescalculate the intercept from the weighted means of the vari-
sion in which all the weights have a constant value 1. ables as
by = y—bix; —byx, —bgxg (A4.17)

A4.3 Computational Procedure for Regression Analysis

A4.3.1 The following technique gives the best fitting
straight line of the form of Eq A4.2.

A4.3.1.7 Coefficient estimatey, can be summarized in
tabular form, together with test statistics, as in Table A4.2.

. o A4.3.1.8 In order to complete the table, it is necessary to
A4.3.1.1 First draw up a table (see Table A4.1) giving e ’
values of the variables to be plotted in the regression, togeth%cﬁl lculate the standard deviation of the obserygdiues about

. . . ; . e estimated line. This is called the residual standard devia-
with corresponding weights. Functiogsandg, will always be tion. and is given b
natural logarithms corresponding to the transformation in" " 9 y

uestion, as specified in A3.2. 1
| A4.3.1.2 UsFi)ng the symbols defined in Table A4.1, the line 5 \/m(ayy ~Pidn D ~bAg) (A4.18)
to be fitted (Eq A4.2) becomes A4.3.1.9 Standard errors of the estimates then become
y =Dy + X + X, + byxg (A4.12) g =s\/g, fori=1t03 (A4.19)
A4.3.1.3 The intercepb, can be eliminated by rewriting g,
this as

(Y=y) =b; (% ) + by (% =) + by (%5 —%)  (A4.13)

1
. S /5 F CXi? + CuXo? + Cagke® + 20, XXy + 2019 Xg + 2CoKoX:
wherey, ¥, X, and x; are weighted mean values, for \/n 1w T G2e T G 120 1P T L0290

example (A4.20)
n where the elements; correspond to the inverse of the matrix
2 Wiy containing elements;;.
X = (A4.14) A4.3.1.10 The-ratios are the ratiod—K)/ g, whereK is a
> W constant, and by comparing these to the critical valuesiof

. . ) Table A2.3, it is possible to test if coefficieht differs fromK.
and wheren is the number of points (twice the number of it ¢ is greater than the critical value corresponding to 5 %

samples) to be plotted. _ _ significance andr{-4) degrees of freedom, then the coefficient
A4.3.1.4 The least squares solution of Eq A4.14 requires theg, pe regarded as differing froi. In particular, t, will

solution of the set of simultaneous equations of the form identify an inappropriate slope, andt will indicate whether
the slope is different for laboratories and repeats standard

TABLE A4.1 Arrangement of Variables for Regression Analysis deviations. Since laboratories standard deviation will generally
Standard e Mean be larger than repeats standard deviation at the same level of
Sample Ej:gf(‘;” Functon  Dummy T  Tg, Weight sample meart, will in general indicate a non-zero coefficient
g1 9z b2.
1 9, (Dy) 9o (my) 1 9> (my) 2v (Dy)
2 9. (D) g, (m,) 1 g(m) 2v(D) A4.4 Worked Example
3 91 (Do) g2 (ms) ! g2 (m3) 20 (Dy) A4.4.1 This section describes the fitting of a power function
(Type 2 of Table A3.1) using weighted linear regression
: : : : : : according to the procedure of A3.2. Rounded sample means
S gl (Ds) g2 (ms) 1 g2 (ms) 2v (Ds)
1 91 (dy) 9o (my) -2 —2g,(m;)  2v (dy) . . . .
2 g, (dv) go (my) -2 -20,(my)  2v (d,) TABLE A4.2 Presentation of Estimates from Regression Analysis
? 9 (_d3) 92 (.m3) __2 —2g2Fm3) 2 (_d3) Fitted Coefficient Standard Error of +Ratio
Variable Estimate Estimate
. . . . . . Intercept bo =N ty
S 9. (d) 9> (my) -2 =2g,(mg) v (ds) Sample Mean by €1 L
Dummy b, [ 153
Symbol Vi Xy Xoj Xaj w; Dummy X mean by e; ty
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tion as appropriate, as indicated by the log-log plot shown in

Fig. A4.1.
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and standard deviations are given in Table 3, 7.2, based on the TABLE A4.3 Arrangement of Variables for Sample Data
bromine number data in A2.1.
A4.4.1.1 Scatter diagrams identified the power transforma- Sample  Standard o " oo Dummy T2 ooy Weight

A4.4.1.2 Transformation paramet@mneed not be estimated

from Fig. A4.1, since it will be given in the regression analysis

that follows.
A4.4.1.3 The form of the line to be fitted (Table A3.1) is

A4.4.1.4 The table of values to be fitted (see Table A4.1) is

log(D) = by + bylog (m) + b,T + bsTlog (m)

shown in Table A4.3.

A4.4.1.5 Least squares regression requires the solution of

the simultaneous equations

614.671= 999.894, — 35.8524, — 493.04b;
188.526= 35.8524, + 673.920, + 1409.5®,

195.477= —493.04H, + 1409.5%, + 5362.2h,
A4.4.1.6 Also required are

Logarithm of

Logarithm of Dummy X log

Deviation
1 -0.3158 0.7655 1 0.7655 16
2 0.7969 4.1804 1 4.1804 18
3 —2.7046 -0.2802 1 -0.2802 28
4 —1.5568 1.2932 1 1.2932 22
5 —-1.2358 2.3888 1 2.3888 18
6 0.4029 3.8755 1 3.8755 18
7 1.0762 4.7378 1 4.7378 18
8 —-1.8401 0.1975 1 0.1975 18
1 —2.0644 0.7655 -2 —-1.5309 18
2 -0.2015 4.1804 -2 —-8.3609 18
3 —2.9957 -0.2802 -2 0.5605 18
4 —2.1585 1.2932 -2 —2.5864 18
5 —2.3613 2.3888 -2 -4.7775 18
6 —-0.6415 3.8755 -2 —7.7510 18
7 -0.0674 4.7378 -2 -9.4756 18
8 —2.8612 0.1975 -2 —-0.3949 18
Symbol Yi X1 Xai X3i w;

a,, = 505.668 TABLE A4.4 Presentation of Estimates from Sample Data
s= 2.23868 Fitted Variable Coefficien;»Estimate Stangztri(rjngtr;or of £Ratio
A4.4.1.7 The solution is summarized in Table A4.4 (see -
. Intercept —2.4064
Table A4.2): _ _ _ - Log (mean) 0.63773 0.07359 8.67
A4.4.1.8 Comparing theratios with the critical 5 % values bummy 0.25496 0.13052 1.95
for 12 degrees of freedom (namely 2.179) given in Table A2.3Dummy x log (mean) 0.02808 0.04731 0.59

it can be seen that the slope is significantly non-zérp<

log (standard deviation)

log (sample mean)
o laboratories sd + repeats sd
FIG. A4.1 Precisions Vary with Level
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0.638), confirming that a transformation was required. Further-
more, since coefficienb; does not significantly differ from
zero, the slope (and resulting transformation) is the same for
both laboratories and repeats standard deviations.

A4.4.1.9 As the slopd, = 0.638 has a standard error of
0.074, the approximate 66 % confidence region of 0.638
0.074 will contain the value 2/3. Rounding to this value is
therefore reasonable, and leads to the convenient transforma-
tion

y = x3 (A4.24)

A4.4.1.10 Having applied this transformation and recalcu-
lated sample means and standard deviations, corresponding
scatter diagrams are shown in Fig. A4.2. These show uniform
levels for both laboratories and repeats standard deviations for
all samples except Sample 1. In the case of the latter sample,
the extreme point is due to outliers.
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standard deviation
[ ]
b

sample mean

0 laboratories sd + repeats sd
FIG. A4.2 After Transforming, Precisions Do Not Vary with Level

APPENDIX
(Nonmandatory Information)

X1. DERIVATION OF FORMULA FOR CALCULATING THE NUMBER OF SAMPLES REQUIRED (see 6.4.3)

X1.1 An analysis of variance is carried out on the results of
the pilot program. Setting the three expressions in 8.3.1 equal
to the corresponding mean squares and solving yields rougly

2 2
o, oy,
reproducibility degrees of freedom,
number of laboratories, and

estimates of the three components of variance, namely: S number of samples.

o for repeats, _

o, for laboratoriesx samples interaction, and X1.3 The formula rearranges into the form

o.,° for laboratories. aS+b=0 (X1.2)

X1.2 Substituting the above in Eq 39 (8.3.3.3) for calcu- Where: )
lating the reproducibility degrees of freedom, this becomes @ = V@ — (1 +P + Q)*(L — 1), and
) ] ) b = V[(2Q + 1/2 +P) (U2 +P) + 0.25 (— 1) /L].
A+P+Q° [A2+P)/S+QF (S-DAR+P" 1 X1.3.1 ThereforeS = —b/agives the values o8 for given

v = C-1 SL-1 4aLs values ofL, P, Q andv.
(X1.1)

X1.4 Fig. 1 is based ow = 30 degrees of freedom. For
non-integral values oP andQ, Scan be estimated by second
order interpolation from the table.

where:
P = 0,50
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