

Designation: D 6681 - 01

Standard Test Method for Evaluation of Engine Oils in a High Speed, Single-Cylinder Diesel Engine—Caterpillar 1P Test Procedure¹

This standard is issued under the fixed designation D 6681; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

Any properly equipped laboratory without outside assistance can use the test method described in this standard. However, the ASTM Test Monitoring Center (TMC)² provides calibration oils and an assessment of the test results obtained on those oils by the laboratory. By this means the laboratory will know whether their use of the test method gives results statistically similar to those obtained by other laboratories. Furthermore, various agencies require that a laboratory utilize the TMC services in seeking qualification of oils against specifications. For example, the U.S. Army has such a requirement in some of its engine oil specifications. Accordingly, this test method is written for those laboratories that use the TMC services. Laboratories that choose not to use these services should ignore those portions of the test method that refer to the TMC. Information Letters issued periodically by the TMC may modify this method.³ In addition, the TMC may issue supplementary memoranda related to the test method.

1. Scope

- 1.1 This test method is required to evaluate the performance of engine oils intended to satisfy certain American Petroleum Institute (API) C service categories (included in Specification D 4485). It is performed in a laboratory using a standardized high-speed, single-cylinder diesel engine.⁴ Piston and ring groove deposit-forming tendency and oil consumption is measured. The piston, the rings, and the liner are also examined for distress and the rings for mobility.
- 1.2 The values stated in SI units are to be regarded as the standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Being an engine test method, this standard does have definite hazards that require safe practices (see Appendix X2 on Safety).

1.4 The following is the Table of Contents:

	Section
Scope	1
Referenced Documents	2
Terminology	3
Summary of Test Method	4
Significance and Use	5
Apparatus and Installation	6
Intake Air System	6.2.1
Exhaust System	6.2.2
Fuel System	6.2.3
Oil Consumption System	6.2.4
Engine Oil System	6.2.5
Oil Heating System	6.2.5.1
Oil Sample Valve	6.2.5.2
Engine Coolant System	6.2.6
Engine Instrumentation	6.2.7
Reagents and Materials	7
Oil Samples	8
Preparation of Apparatus	9
General Engine Assembly Practices	9.1
Complete Engine Inspection	9.2
Copper Components	9.3
Engine Lubricant System Flush	9.4
Engine Piston Cooling Jets	9.5
Engine Measurements and Inspections	9.6
Cylinder Head	9.7
Valve Guide Bushings	9.8
Fuel Injector	9.9
Piston and Rings	9.10
Cylinder Liner	9.11
Compression Ratio	9.12
Engine Timing	9.13
Engine Coolant System Cleaning Procedure	9.14
Calibration and Standardization	10
Test Cell Instrumentation	10.1
Instrumentation Standards	10.2

¹This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.B0.02 on Heavy Duty Engine Oils.

Current edition approved June 10, 2001. Published October 2001.

² ASTM Test Monitoring Ctr., 6555 Penn Ave., Pittsburgh, PA 15206–4489.

³ This edition incorporates revisions contained in all information letters through 99-1. Users of this test method shall contact the ASTM Test Monitoring Center to obtain the most recent information letters.

⁴ Available from Caterpillar Inc., Engine System Technology Development, P.O. Box 610, Mossville, IL 61552-0610.

	Section
Coolant Flow	10.3
Re-calibration Requirements	10.4
Fuel Injectors	10.5
Air Flow	10.6
Intake Air Barrel	10.7
Fuel Filter	10.8
Oil Scale Flow Rates	10.9
Calibration of Test Stands	10.10
Extending Test Stand Calibration Period	10.11
Test Run Numbering Humidity Calibration Requirements	10.12 10.13
Calibration of Piston Deposit Raters	10.13
Procedure	10.14
Engine Break-in Procedure	11.1
Cool-down Procedure	11.2
Warm-up Procedure	11.3
Shutdowns and Lost Time	11.4
Periodic Measurements	11.5
Engine Control Systems	11.6
Engine Coolant	11.6.1
Engine Fuel System	11.6.2
Engine Oil Temperature	11.6.3
Exhaust Pressure	11.6.4
Intake Air	11.6.5
Post-Test Procedures	11.7
Piston Ring Side Clearances	11.7.1
Piston Ratings	11.7.2
Referee Ratings	11.7.2.1
Ring End Gap Increase	11.7.3
Cylinder Liner Wear	11.7.4
Cylinder Liner Bore Polish	11.7.5
Photographs	11.7.6
Calculation and Interpretation of Results	12
Test Validity Calculations	12.1 12.2
Quality Index	12.2.1
Oil Consumption	12.2.2
Report	13
Forms and Data Dictionary	13.1
Test Validity	13.2
Report Specifics	13.3
Precision and Bias	14
Precision	14.1
Bias	14.2
Keywords	15
Annexes	
Engine and Parts Warranty	Annex A1
Instrument Locations, Measurements, and Calculations	Annex A2
Cooling System Arrangement	Annex A3
Intake Air Mass Flow Sensor Installation	Annex A4
Fuel System Design and Required Components	Annex A5
Oil System	Annex A6
Exhaust and Intake Barrel Piping	Annex A7
Humidity Probe Installation (Location) Return Goods Authorization (Claim Form)	Annex A8 Annex A9
Engine Assembly Information	Annex A10
Flushing Instructions and Apparatus	Annex A11
Warm-up, Cool-down and Testing Conditions	Annex A12
Piston and Liner Rating Modifications	Annex A13
Additional Report Forms	Annex A14
Test Report Forms	Annex A15
Test Report Data Dictionary	Annex A16
Appendixes	
Various Examples for Reference Purposes	Appendix X1
Safety	Appendix X2

2. Referenced Documents

2.1 ASTM Standards:

D 86 Test Method for Distillation of Petroleum Products at Atmospheric Pressure⁵

D 93 Test Methods for Flash Point by Pensky-Martens Closed Cup Tester⁵

⁵ Annual Book of ASTM Standards, Vol 05.01.

- D 97 Test Method for Pour Point of Petroleum Products⁵
- D 130 Test Method for Detection of Copper Corrosion from Petroleum Products by the Copper Strip Tarnish Test⁵
- D 235 Specification for Mineral Spirits (Petroleum Spirits) (Hydrocarbon Dry Cleaning Solvent)⁶
- D 445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity)⁵
- D 482 Test Method for Ash from Petroleum Products⁵
- D 524 Test Method for Ramsbottom Carbon Residue of Petroleum Products⁵
- D 613 Test Method for Cetane Number of Diesel Fuel Oil⁷
- D 664 Test Method for Acid Number of Petroleum Products by Potentiometric Titration⁵
- D 1319 Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption⁵
- D 2274 Test Method for Oxidation Stability of Distillate Fuel Oil (Accelerated Method)⁵
- D 2425 Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry⁵
- D 2500 Test Method for Cloud Point of Petroleum Products⁵
- D 2622 Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry⁵
- D 2709 Test Method for Water and Sediment in Middle Distillate Fuels by Centrifuge⁵
- D 3227 Test Method for (Thiol Mercaptan) Sulfur in Gasoline, Kerosine, Aviation Turbine, and Distillate Fuels (Potentiometric Method)⁵
- D 3524 Test Method for Diesel Fuel Diluent in Used Diesel Engine Oils by Gas Chromatography⁸
- D 4175 Terminology Relating to Petroleum, Petroleum Products, and Lubricants⁸
- D 4052 Test Method for Density and Relative Density of Liquids by Digital Density Meter⁸
- D 4485 Specification for Performance of Engine Oils⁸
- D 4739 Test Method for Base Number Determination by Potentiometric Titration⁸
- D 4863 Test Method for Determination of Lubricity of Two-Stroke-Cycle Gasoline Engine Lubricants⁸
- D 5185 Test Method for Determination of Additive Elements, Wear Metals and Contaminants in Used Lubricating Oils and Determination of Selected Elements in Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)⁸
- D 5302 Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation and Wear in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions⁸
- D 5844 Test Method for Evaluation of Automotive Engine Oils for Inhibition of Rusting (Sequence IID)⁹
- D 5862 Test Method for Evaluation of Engine Oils in the

⁶ Annual Book of ASTM Standards, Vol 06.04.

Annual Book of ASTM Standards, Vol 05.05.
 Annual Book of ASTM Standards, Vol 05.02.

⁹ Annual Book of ASTM Standards, Vol 05.03.

- Two-Stroke Cycle Turbo-Supercharged 6V92TA Diesel Engine⁹
- D 6202 Test Method for Automotive Engine Oils on the Fuel Economy of Passenger Cars and Light-Duty Trucks in the Sequence VIA Spark-Ignition Engine⁹
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications¹⁰
- E 344 Terminology Relating to Thermometry and Hydrometry¹¹
- G 40 Terminology Relating to Wear and Erosion¹²
- 2.2 SAE Standard:
- SAE J183 Engine Oil Performance and Engine Service Classification¹³
- 2.3 API Standard:
- API 1509 Engine Service Classification and Guide to Crankcase Oil Selection¹⁴

3. Terminology

- 3.1 Definitions:
- 3.1.1 *additive*, *n*—a material added to another, usually in a small amount, to impart or enhance desirable properties or to suppress undesirable properties. **D 4175**
- 3.1.2 *automotive*, *adj*—descriptive of equipment associated with self-propelled machinery, usually vehicles driven by internal combustion engines. **D** 4485
- 3.1.3 *blind reference oil*, *n*—- a reference oil, the identity of which is unknown by the test facility. **D 5844**
- 3.1.3.1 *Discussion*—This is a coded reference oil which is submitted by a source independent from the test facility.
- 3.1.4 *blowby*, *n*—*in internal combustion engine*, the combustion products and unburned air-and-fuel mixture that enter the crankcase. **D 5302**
- 3.1.5 *calibrate*, *v* to determine the indication or output of a measuring device with respect to that of a standard. **E 344**
- 3.1.6 calibrated test stand, n—a test stand on which the testing of reference material(s), conducted as specified in the standard, provided acceptable test results. **Sub. B Glossary**¹⁵
- 3.1.6.1 *Discussion*—In several automotive lubricant standard test methods, the ASTM Test Monitoring Center provides testing guidance and determines acceptability.
- 3.1.7 *candidate oil*, *n*—an oil which is intended to have the performance characteristics necessary to satisfy a specification and is to be tested against that specification. **D 5844**
- 3.1.7.1 *Discussion*—These oils are mainly submitted for testing as *candidates* to satisfy a specified performance; hence the designation of the term.
- 3.1.8 debris, n—in internal combustion engines, solid contaminant materials unintentionally introduced into the engine or resulting from wear.

 D 5862
 - ¹⁰ Annual Book of ASTM Standards, Vol 14.02.
 - ¹¹ Annual Book of ASTM Standards, Vol 14.03.
 - ¹² Annual Book of ASTM Standards, Vol 03.02.
- ¹³ Available from the Society of Automotive Engineers Inc., 400 Commonwealth Drive, Warrendale, PA 15096.
- ¹⁴ Available from the American Petroleum Institute, 1220 L Street NW, Washington D.C., 20005.
- ¹⁵ Available from the Test Monitoring Center (TMC), 6555 Penn Avenue, Pittsburgh, PA 15206–4489.

- 3.1.9 *disperant*, *n*—*in engine oil*, an additive that reduces deposits on oil-wetted surfaces primarily through suspension of particles. **D 4175**
- 3.1.10 *engine oil*, n—a liquid that reduces friction or wear, or both, between the moving parts within an engine; removes heat, particularly from the underside of pistons; and serves as a combustion gas sealant for the piston rings. **D** 5862
- 3.1.10.1 *Discussion*—It may contain additives to enhance certain properties. Inhibition of engine rusting, deposit formation, valve train wear, oil oxidation and, foaming are examples.
- 3.1.11 heavy-duty, adj—in internal combustion engine operation, characterized by average speeds, power output, and internal temperatures that are close to the potential maximums.

D 4485

- 3.1.12 *lubricant*, *n*—any material interposed between two surfaces that reduces the friction or wear, or both, between them. **D 5862**
- 3.1.13 *lubricating oil*, *n*—a liquid lubricant, usually comprising several ingredients, including a major portion of base oil and minor portions of various additives.

 Sub. B Glossarv¹⁵
- 3.1.14 *oxidation*, *n*—*of engine oil*, the reaction of the oil with an electron acceptor, generally oxygen, that can produce deleterious acidic or resinous materials often manifested as sludge formation, varnish formation, viscosity increase, or corrosion, or a combination thereof.

 Sub. B Glossary¹⁵
- 3.1.15 *non-reference oil*, *n*—any oil other than a reference oil; such as a research formulation, commercial oil, or candidate oil. **D 5844**
- 3.1.16 *purchaser*, *n*—*of an ASTM test*, person or organization that pays for the conduct of an ASTM test method on a specified product. **D 6202**
- 3.1.17 *reference oil*, *n*—an oil of known performance characteristics, used as a basis for comparison. **D 5844**
- 3.1.17.1 *Discussion*—Reference oils are used to calibrate testing facilities, to compare the performance of other oils, or to evaluate other material (such as seals) that interact with oils.
- 3.1.18 scoring, n—in tribology, a severe form of wear characterized by the formation of extensive grooves and scratches in the direction of sliding.

 G 40
- 3.1.19 *scuff, scuffing, n—in lubrication*, damage caused by instantaneous localized welding between surfaces in relative motion that does not result in immobilization of the parts.

D 4863

- 3.1.20 *sponsor*, *n*—*of an ASTM test method*, an organization that is responsible for ensuring supply of the apparatus used in the test procedure portion of the test method. Sub. B Glossary¹⁵
- 3.1.20.1 *Discussion*—In some instances, such as a test method for chemical analysis, an ASTM working group can be the sponsor of the test method. In other instances, a company with a self-interest may or may not be the developer of the test procedure used within the method, but is the sponsor of the test method.
- 3.1.21 *used oil*, *n*—any oil that has been in a piece of equipment (for example, an engine, gearbox, transformer, or turbine), whether operated or not. **D 4175**

- 3.1.22 *varnish*, *n*—in internal combustion engines, a hard, dry, generally lustrous deposit that can be removed by solvents but not by wiping with a cloth. **D 5302**
- 3.1.23 *wear*, *n*—the loss of material from, or relocation of material on, a surface. **D** 5302
- 3.1.23.1 *Discussion*—Wear generally occurs between two surfaces moving relative to each other, and is the result of mechanical or chemical action, or by a combination of mechanical and chemical actions.

4. Summary of Test Method

4.1 Prior to each test, the power section of the engine is disassembled, solvent-cleaned, measured, and rebuilt in strict accordance with the specifications. A new piston, ring assembly, and cylinder liner are measured and installed for each test. The engine crankcase is solvent-cleaned and worn or defective parts are replaced. The test stand is equipped with feedback control systems for fuel rate, engine speed, and other engine operating conditions. A suitable system for filtering, compressing, humidifying, and heating the inlet air shall be provided along with a system for controlling the engine exhaust pressure. Test operations involve the control of the single-cylinder diesel test engine for a total of 360 h at specified speeds and fuel rate input using the test oil as a lubricant. A defined break-in precedes each test and is also used when restarting an engine. At the end of the test, the piston deposits are rated, the piston, rings and liners are photographed, inspected and measured, oil consumption is calculated and the oil is analyzed to determine the test results. Critical engine conditions are statistically analyzed to determine if the test was precisely operated. Test acceptability parameters for each calibration test are also statistically analyzed to determine if the engine/test stand produce the specified results.

5. Significance and Use

5.1 This is an accelerated engine oil test, performed in a standardized, calibrated, stationary single-cylinder diesel engine that gives a measure of (1) piston and ring groove deposit forming tendency, (2) piston, ring and liner scuffing and (3) oil consumption. The test is used in the establishment of diesel engine oil specification requirements as cited in Specification D 4485 for appropriate API Performance Category C oils (API 1509). The test method can also be used in diesel engine oil development.

6. Apparatus and Installation

- 6.1 The test engine is an electronically controlled, direct injection, in-head camshaft, single-cylinder diesel engine with a four-valve arrangement. The engine has a 137.2 mm bore and a 165.1 mm stroke resulting in a displacement of 2.4 L.
- 6.1.1 The electronic control module (ECM) defines the desired engine fuel timing, monitors and limits maximum engine speed, maximum engine power, minimum oil pressure, and, optionally, maximum engine crankcase pressure. The ECM also controls the fuel injection duration that defines the engine fuel rate based on set conditions from the test cell feedback control systems. The oil pressure is also set by the ECM with signals to the 1Y3867 engine air pressure controller

- (Mamac) to modulate the facility air supply to the 1Y3898 Johnson Controls relief valve.
- 6.1.2 The 1Y3700 engine arrangement also consists of inlet air piping and hoses from the cylinder head to the air barrel and exhaust piping and bellows from the cylinder head to the exhaust barrel that are specifically designed for oil testing.¹⁶
- 6.2 Equip the engine test stand with the following accessories or equipment:
- 6.2.1 *Intake Air System*—The intake air system components from the cylinder head to the air barrel are a part of the basic 1Y3700 engine arrangement. These components consisting of an adapter, elbow, hose, clamps, and flanged tube can be found in the 1Y3700 Parts Book.¹⁷
- 6.2.1.1 The 1Y3978 intake air barrel (which is almost identical to the exhaust barrel except for the top cover) has been specifically designed and shall be purchased from one of the three approved manufacturers. ¹⁸ Install the intake air barrel at the location shown in Annex A7. Do not add insulation to the barrel.
- 6.2.1.2 Paint the inside of the intake air piping with Caterpillar yellow primer or red Glyptal prior to installation.¹⁹
- 6.2.1.3 Install the air heater elements in the intake air barrel as specified in Annex A7 (even if they will not be supplied with electricity).²⁰
- 6.2.1.4 Use an air filter capable of 10 μ (or smaller) filtration.
- 6.2.1.5 Use a Sierra Model 780 airflow meter with Feature 1 = F6, Feature 2 = CG and calibration temperature = 60°C to measure intake airflow for each calibration test.²¹ Annex A4 shows the piping requirements for the installation of the Sierra Model 780 airflow meter.
- 6.2.1.6 Measure the inlet air temperature at the location shown in Annex A2. Measure the inlet air pressure at the air barrel as shown in Annex A7. The location of the 1Y3977 humidity probe is shown in Annex A8. The sample line may require insulation to prevent dropping below dew point temperature and shall not be hygroscopic. Drain taps may be installed at the low points of the combustion air system.
- 6.2.1.7 Use feedback-equipped controls to maintain filtered, compressed, and humidified inlet air at the conditions specified in Annex A12.
- 6.2.2 Exhaust System—The exhaust system components from the cylinder head to the exhaust barrel are part of the basic 1Y3700 engine arrangement. These components consisting of an adapter, elbow, bellows, flange, and clamps can be found in the 1Y3700 Parts Book.

¹⁶ See the Caterpillar Service Manual. Available from Caterpillar Inc., Engine System Technology Development, P.O. Box 610, Mossville, IL 61552-0610.

¹⁷ Available from Caterpillar Inc., Engine System Technology Development, P.O. Box 610, Mossville, IL 61552-0610.

¹⁸ Cimino Machinery Corp., 5958 South Central Ave., Chicago, IL 60638; Gaspar Inc., 4106 Mahoning Rd. N.E., Canton, OH 44705; M.L. Wyrick Welding, 2301 Zanderson Highway 16 N, Jourdanton, TX 78026.

¹⁹ Crankcase Paint Primer: BASF Coating and Colorant Div., P.O. Box 1297, Morganton, NC 28655. (Primer No.A123590 and BASF Part No.U27YD005, Yellow CAT Primer Part No.IE2083A.)

²⁰ Watlow Air Heaters, Chicago, IL 708-490-3900.

²¹ Sierra Instruments, Inc., 5 Harris Ct., Monterey, CA 93940.

- 6.2.2.1 The 1Y3976 exhaust barrel (which is almost identical to the intake barrel except for the top cover) has been specifically designed and shall be purchased from one of the three approved manufacturers. ¹¹ Install the exhaust barrel at the location shown in Annex A7. Do not add insulation to the barrel.
- 6.2.2.2 Install a restriction valve downstream from the exhaust barrel. The distance between the valve and barrel is not specified. The location of the exhaust thermocouple is shown in Annex A2. Measure the exhaust pressure at the exhaust barrel shown in Annex A7.
- 6.2.2.3 Use feedback-equipped controls to maintain the exhaust gases at the pressure specified in Annex A12.
- 6.2.3 Fuel System—The fuel system schematic is shown in Annex A5. Desired fuel injection timing is controlled by the engine computer at 13° BTC. Measure the fuel rate using micro motion device with a 90 kg/h maximum range scaled to the 1P operation range specified in Annex A12.²² Use the day tank specified in Annex A5. Measure fuel temperature at the fuel filter base as shown in Annex A2 and control it using the cell facility feedback system. Use the required fuel heat exchanger(s) and arrange them as specified in Annex A5. Use the Fisher regulator specified in Annex A5.
- 6.2.4 *Oil Consumption System*—Use an oil scale system to accurately measure oil consumption (see Figs. A6.2 and A6.3). The oil scale system shall have a resolution as listed in Annex A2. Use flexible hoses similar to Aeroquip flexible hose, FC352-08, to-and-from the oil scale reservoir to eliminate measurement errors.²³ Use No.5 TFE-fluorocarbon, steel-braided hoses to and from the oil scale pumps. The hose length to-and-from the oil scale cart shall not exceed 2.7 m. Use the special oil pan adapter described in Fig. A6.4. The flow rates for the oil consumption oil scale pumps shall be 23.6-24.9 kg/h for the oil being pumped from the oil pan to the oil scale, and 16.3-17.7 kg/h for the oil being pumped from the oil scale to the oil pan. See Annex A6 for the procedure to verify these flow rates.
- 6.2.5 Engine Oil System—A schematic of the oil system is shown in Fig. A6.1. Measure oil pressure at the engine oil manifold (see Annex A2). An engine oil pressure sensor transmits a signal to the ECM that maintains oil pressure at 415 kPa. The ECM transmits a signal to an engine-mounted Mamac air pressure controller. The Mamac modulates the facility air pressure of 280 kPa to levels that vary between 0 to 140 kPa and directs it to the normally closed Johnson Controls relief valve. Because the engine oil pressure sensor calibration may vary from the cell data acquisition transducer, vary the oil pressure adjust signal to the ECM to maintain the oil pressure at the test specifications. See the Electronic Installation and Operation manual for additional information. The ECM maintains the oil pressure regardless of engine speed. Measure the oil temperatures at locations shown in Annex A2.
- 6.2.5.1 *Oil Heating System*—Use an external oil heating system provided by the test facility to maintain the engine oil manifold temperature specified in Annex A12. An example

system is shown in Appendix X1. A special 1Y3908 oil cooler bonnet has been designed to allow separate fluids to the engine coolant tower arrangement (see Fig. A6.9). Plug the 1Y3660 oil cooler adapter and 1Y3908 heat exchanger bonnet as shown in Annex A6. Use Paratherm NF for the heating fluid.²⁴ The temperature of the Paratherm NF is measured by the thermocouple shown in Annex A2.

- 6.2.5.2 *Oil Sample Valve*—Refer to Annex A2 for the installation location and component makeup of the oil sample valve. Use of alternate equivalent components for the sample valve is permitted.
- 6.2.6 Engine Coolant System—The coolant system schematic is shown in Annex A3. Control the coolant temperature out of the engine using a cell facility feedback system. Use a 1Y3898 Johnson Controls valve or equivalent fail-open valve to regulate the coolant temperature out of the engine as shown by the schematic in Annex A3. If the 1Y3898 Johnson valve is used, supply facility air pressure at 280 kPa to the controller that regulates air pressure to the valve at 0-140 kPa. Install a feedback-equipped control system to pneumatically adjust the valve. Remove the 1Y3832 hose originally supplied with the engine and install a sight glass using the components shown in Annex A3.
- 6.2.7 Engine Instrumentation—Use feedback-equipped systems to control the engine operating temperatures, pressures, and flow rates. Measure the engine operating conditions at the locations shown in Annex A2. For temperature measurements, use thermocouples 1Y468 (intake air), 1Y467 (engine exhaust) and 1Y466 (fluids-water, oil, and fuel) or equivalent thermocouples as specified in Annex A2. Instrument measurement and reporting resolutions are shown in Annex A2.
- 6.2.8 A dynamometer with feedback control to maintain engine load and speed. Use a starting system capable of at least 136 Nm breakaway and 102 Nm sustained torque at 200 r/min.
- 6.2.9 Compressed air at 35 kPa to the top of the coolant tower as specified in Annex A3 to ensure water does not boil out of the antifreeze mixture and result in less heat rejection from the engine.
- 6.2.10 Measure engine blowby down stream of the engine breather housing by measuring the delta pressure across an orifice or an equivalent device.
- 6.2.11 The crankcase pressure is above atmospheric pressure with this engine arrangement. Measure it at the location shown in Annex A2.
- 6.3 Obtain information concerning the test engine, engine electronics system, new engine parts, replacement parts, and permissible substitution or replacement parts from Caterpillar, Inc.
- 6.4 Engine and parts warranty information can be found in Annex A1. Use the form listed in Annex A9 for returning defective parts.

7. Reagents and Materials

7.1 *Purity of Reagents*—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents conform to the specifications of the Committee on

²² Micro Motion, Inc. 7070 Winchester Circle, Boulder, CO 80301.

²³ Aeroquip Industrial Div, 1225 W. Main Street, Van Wert, OH 45891.

²⁴ Paratherm NF Oil, Conshohocken, PA 19428.

Analytical Reagents of the American Chemical Society where such specifications are available.²⁵ Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

- 7.2 Diesel Piston Rating Booth, as described by CRC Manual 18.²⁶
- 7.3 Diesel Piston Rating Lamp, as described by CRC Manual 18.
 - 7.4 Dispersant Engine Cleaner.²⁷
- 7.5 Engine Coolant—Use a mixture of 50 % mineral-free water and 50 % Caterpillar brand coolant (P/N 8C684 for 1 gal or 8C3686 for 55 gal drum) for engine coolant. Mineral-free water is defined as water having a mineral content no higher than 34.2 ppm total dissolved solids. The coolant mixture may be reused for up to 1600 h. Keep the mixture at a 50:50 ratio as determined by using either Caterpillar testers 5P3514 or 5PO957 or an equivalent tester. Keep the coolant mixture contamination free. Total solids shall remain below 5000 ppm. Keep the additive level correct using Caterpillar test kit P/N 8T5296.
- 7.6 *Lead Shot*, commercial grade, approximately 5 mm in diameter.
 - 7.7 Light Grease.
- 7.8 *Mobil EF-411*, as supplied by Mobil for engine assembly and calibration of the oil scale pump flow rates.²⁸
- 7.9 Paratherm NF, as supplied by Paratherm and used as the fluid to heat the engine oil. 24
- 7.10 *Pentane (Solvent)*, 99 + %, high-performance, liquid chromatography grade.
- 7.11 Reference Oil, as supplied by the TMC for calibration of the test stand.
- 7.12 *REO 217*, as supplied by the CRC and used when any copper components are changed.
 - 7.13 Sodium Bisulfate (NaHSO₄), commercial grade.
 - 7.14 Stoddard Solvent, Specification D 235, Part 1.
- 7.15 *Test Fuel*—The specified test fuel is Specified Fuels & Chemicals LSRD-4 diesel test fuel. The specifications are shown in Annex A14.
- 7.16 *Test Oil*—The total amount of oil needed for each lubricant test is approximately 42 L.
 - 7.17 Trisodium Phosphate (Na_3PO_4), commercial grade.
 - 7.18 5.4000 in. Ring Bore Standard Class Z Master.²⁹

8. Oil Samples

8.1 Take a 250 mL purge sample at 48, 72, 120, 144, 168, 192, 216, 264, 312 and 336 h. Following removal of the purge

sample, remove a 30 mL sample, then add 317 \pm 10 g of new oil. It is not necessary to perform analysis on these 30 mL samples. Use the purge sample to return to the full mark. At 0 (new), 24, 96, 240, 288 and 360 h, take a 250 mL purge sample. Following removal of the purge sample, remove a 90 mL sample and add 370 \pm 10 g of new oil. Analyze all 90 mL samples for 100 and 40 °C viscosity by Test Method D 445, TBN by Test Method D 4739, TAN by Test Method D 664, and the wear metals Al, Cr, Cu, Fe, Pb, Si by Test Method D 5185. Analyze the 24, 240, and 360 hour samples for fuel dilution by Test Method D 3524. See Figs. A6.7 and A6.8 for two graphical examples and a sample worksheet.

9. Preparation of Apparatus

- 9.1 General Engine Assembly Practices—As a part of good laboratory practice, inspect all components and assemblies that are exposed when the engine is disassembled and record the information for future reference. Inspect valve train components, bearings, journals, housings, seals and gaskets, and so forth and replace as needed. Assemble the engine with components and bolt torques as specified in the 1Y3700 engine Service Manual (see Annex A10 for a partial list). It is the intent of this procedure for all engine assemblies and adjustments to be targeted to the mean of the specified values. Clean and lubricate the components in keeping with good assembly practices. Keep airborne dirt and debris to a minimum in the assembly area. Maintain standard engine assembly techniques and practices (such as staggering piston ring gap positions, and so forth).
- 9.2 Complete Engine Inspection—Perform a complete engine inspection at intervals of 13 000 h. Ensure that wearing surfaces such as main bearings and journals, rod bearings and journals, camshaft bearings, valve train components, fuel system components, and so forth all are within manufacturer's specifications. Refer to the 1Y3700 Service Manual for disassembly, assembly, inspections, and specifications. Paint crankcases as necessary with either Caterpillar yellow primer or red Glyptal.¹⁹
- 9.3 *Copper Components*—Anytime a copper part is replaced, run an engine test using REO 217 until two consecutive 12-h periods show a stable copper level.
- 9.4 Engine Lubricant System Flush-Flush the engine of used oil before every test. Annex A11 shows the engine flush procedure and apparatus. A flushing instruction sheet shown in Annex A11 gives the step-by-step process required for flushing. The 1Y3700 engine arrangement includes five flushing nozzles in the crankcase and front cover (see Annex A11). These nozzles are piped in parallel with the 1Y3935 filter flushing adapter (or equivalent) from a laboratory provided manifold that pressurizes fluids supplied by a flush cart (see Appendix X1). Seal the gear train housing during flush with a 1Y3917 round plug with a 117-8801 o-ring as shown in Annex A11. Seal the crankcase using a 1Y3979 block flush cover with an internal bleed passage for the cam oil supply. Bolt a 1Y3980 plastic jet aiming fixture to the flush cover that is also used for flushing (see Annex A11). If the test oil is not available at engine assembly, Mobil EF411 oil may be substituted.
- 9.5 Engine Piston Cooling Jets—The piston cooling jets are flow-checked at the supplier and serialized to ensure proper

²⁵ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.

²⁶ Available from the Coordinating Research Council Inc., 3650 Mansell Road Suite 140, Atlanta, GA 30022-8246.

 $^{^{\}rm 27}$ Available from The Lubrizol Corp., 29400 Lakeland Blvd., Cleveland, OH 44092

²⁸ Mobil EF-411 may be purchased from Golden West Oil Co., 3010 Aniol St., San Antonio, TX 78219.

²⁹ Available from Morse-Hemco, 457 Douglas Ave., Holland, MI 49423.

performance, but the rod clearances are minimal which may result in jet movement during assembly. Verify proper jet flow positioning using EF-411 before each test with the 1Y3980 plastic jet aiming fixture and 415 kPa oil pressure to the manifold. Record the cooling jet serial number.

9.6 Engine Measurements and Inspections—Measure and inspect the engine components prior to each test (see Table A10.2 for partial specification list). Refer to the 1Y3700 Service Manual for information concerning component reusability and assembly not found in this procedure. The part numbers of components that need replacing are found in the 1Y3700 Parts Manual. Record the crankshaft angles at the specified maximum injector lift, exhaust, and intake maximum lift before each test using the reference listed in Fig. A10.7. Record component part numbers and serial numbers and other required measurements as shown in the test report. Inspect and reuse the rocker arm roller followers and camshaft lobe surfaces based on Caterpillar Service Publication SEBF8256.¹⁷

9.7 Cylinder Head—A reconditioned head is required for each test. Measurements after reconditioning shall be within specifications as shown in the 1Y3700 Service Manual. Do not swap the cylinder head/jug assembly from test stand-to-test stand. Use the head/jug assembly used to calibrate the stand for all non-reference oil testing in that stand. Fig. A10.1 shows the cylinder head nut torque sequence.

9.8 Valve Guide Bushings—Clean the valve guide bushings with a solvent and bristle brush prior to assembly. Lubricate the bushings and valve stems with Mobil EF-411 prior to assembly. See the 1Y3700 Service Manual for guide reusability specifications. Install new valve guide seals for each test.

9.9 Fuel Injector—Remove the fuel injector from the cylinder head before reconditioning commences. Refer to the 1Y3700 Service Manual for removal and assembly. Return defective fuel injectors to Caterpillar for warranty and failure-mode testing using the form listed in Annex A9.

9.10 Piston and Rings—Use a new piston (1Y3400 iron crown, 1Y3659 aluminum skirt) and new rings (1Y3802, 1Y3803, 1Y3804) for each test. Clean all three rings with pentane and a lint-free 100% cotton towel. Measure the ring side clearances and ring end gaps for all three rings (see Fig. A10.1 and Table A10.1). Keystone ring side clearance measurements require the ring to be confined in a dedicated slotted liner (see Appendix X1) or a 137.16 mm ring gage.²¹ Measure the side clearances using four feeler gages of equal width and 0.01 mm thickness at 90° intervals around the piston. Measure the rectangular ring side clearance this way as well. Measure the minimum side clearance as specified in CRC Manual 18. Record the measurements for these parts before and after each test. Compare the measurements before the test and after the test to determine the amount of wear. Assemble the piston with the part number toward the camshaft.

9.11 Cylinder Liner—Use a new 1Y3805 cylinder liner for each test. After removing the protective oil/grease with Stoddard solvent, clean the liner bore with a hot tap water and heavy-duty clothes washing detergent solution, then rinse with hot tap water. Measure and record the liner surface finish. Oil the liner bore with only Mobil EF-411. Assemble the cylinder liner, block and head with the torque specification shown in the

1Y3700 Service Manual or Fig. A10.1. Measure the liner with a dial bore gage to ensure that the out-of-round and taper conditions are within specified tolerances measured at seven intervals as shown in Fig. A10.3. Measure the cylinder liner projection using the modified indicator shown in Fig. A10.4. Torque the cylinder liner support ring using the procedure shown in Fig. A10.5.

9.12 Compression Ratio—Before starting each test, measure the piston-to-head clearance to ensure the proper compression ratio is used. Determine this dimension by using approximately 3.5 mm diameter lead balls. Locate four lead balls on the top of the piston at 90° intervals on the major and minor piston diameters. Hold them in place with light grease. With the piston near the top of the stroke, install the head and block assembly and torque to specifications. Turn the engine over top center by hand to compress the lead balls then remove the head and block assembly and measure the thickness of the lead balls to obtain the average piston-to-head clearance. The piston-to-head clearance specification is 1.62 mm \pm 0.07 mm. Use multiple 1Y3817 block gaskets to adjust the clearance. If the piston-to-head measurement exceeds the tolerance specification, check the crankshaft main and rod journals, connecting rod and main bearings, and piston pin and rod bushing for excessive wear. The specified compression ratio for the 1Y3700 engine is 16.2 to 1.

9.13 Engine Timing—The engine ECM sets desired fuel injection timing to 13° BTC. Record this timing using the engine technician service tool. Mechanically time the actual engine components as shown in Annex A10. Install the electronic sensors as shown in the Electronic Installation and Operation manual. Both the mechanical and electrical systems shall be correctly assembled to produce the desired fuel timing.

9.14 Engine Coolant System Cleaning Procedure—Clean the coolant system when visual inspections show the presence of any oil, grease, mineral deposits, or rust following the procedure listed in Annex A3.

9.15 After the engine components have been prepared and assembled, perform the following:

9.15.1 Fill the crankcase with 5800 ± 50 g of test oil.

9.15.2 Install a new 1R0713 oil filter.

9.15.3 Fill the coolant system with coolant specified in Section 7.

9.15.4 Ensure the facility coolant to the engine heat exchanger is operational.

9.15.5 Pressurize the fuel system to remove air, then return the system to a non-pressurized state before starting engine.

9.15.6 Ensure all other systems and facilities are operational before starting the engine break-in.

10. Calibration and Standardization

10.1 Test Cell Instrumentation—Calibrate all facility readout instrumentation used for the test immediately prior to subsequent stand calibration. Instrumentation calibration prior to subsequent stand calibration tests (that is, those that follow a failed or invalid first attempt) are at the discretion of the test laboratory. Refer to Annex A2 for calibration tolerances and allowable system time constants.

10.2 *Instrumentation Standards*—Calibrate all temperature, pressure, flow, and speed measurement *standards* on a yearly

basis. The calibration of all standards shall be traceable to a national bureau of standards. Maintain all calibration records for a minimum of two years.

10.3 Coolant Flow—Calibrate the coolant flow rate as follows: (1) calibrate the differential pressure transducer as outlined in 10.1 and 10.2 and, (2) replace the Barco venturi every two years. We the following relationships as conversion factors from the differential pressure across the Barco venturi to L/min: 3.0 in. $H_2O = 24.3$ L/min, 7.1 in. $H_2O = 37.8$ L/min and 28 in. $H_2O = 75.7$ L/min or use Eq 1 where ΔP is measured in in. H_2O .

$$L/min = \sqrt{\Delta P} 14.44 - 0.69$$
 (1)

10.4 Re-calibration Requirements—Re-calibration due to parts replacement is not required unless the engine crankcase or crankshaft, or both, require replacing or regrinding, or the crankshaft is removed for any other purpose besides bearing replacement, or the head/jug suffer a failure for any reason during the calibration period.

10.5 Fuel Injectors—The fuel injectors are calibrated during the manufacturing process. These fuel injectors can not be re-calibrated in the usual manner and require special test equipment to ensure proper flow, timing response, and spray patterns. Therefore, replace the fuel injector at the start of every calibration test (unless that test is the second of two required tests for a new stand or is a re-run of a previous calibration attempt). If the fuel injector is replaced on a calibrated stand, re-calibration is not required.

10.6 Air Flow—Install the Sierra Model 780 airflow meter to measure intake airflow. This meter should be calibrated yearly at a temperature of 60 °C. Measure the intake airflow during the break-in of every calibration test. Record the last value recorded during step five of the break-in as shown in Annex A12.

10.7 *Intake Air Barrel*—Prior to each stand calibration test, inspect the intake air barrel for rust or debris. This may be done through either of the pipe flanges using a borescope or some other optical means.

10.8 Fuel Filter—Change the fuel filter before every calibration test.

10.9 *Oil Scale Flow Rates*—Verify the oil scale flow rates before the start of every calibration test using the procedure listed in Annex A6.

10.10 Calibration of Test Stands—A stand calibration test is required every nine months with the test results falling within the required values before non-reference oils are run. Use a blind calibration oil from the TMC to calibrate the engine stand every nine months. The nine-month calibration period begins at the start of the last acceptable calibration test. Actual test completion dates may differ from scheduled completion dates because of unexpected downtime. Accordingly, if the last non-reference test before a new calibration is interrupted because of unscheduled shutdowns, stand calibration will continue through the completion of this non-reference test. The intention is that the non-reference test be started in time to

finish within the nine-month period, had the unscheduled shutdowns not occurred. A test stand is considered calibrated when the test results are within the acceptability limits as published by TMC and the test is operationally acceptable. The TMC may request stand checks on calibration tests that fail because of statistical reasons. Laboratory and referee rate piston deposits for all operationally valid calibration tests. Use the laboratory rating results to determine test acceptability and use the referee rating as a secondary measurement. For calibration tests, electronically send the test data to the TMC within seven days from end-of-test (EOT) in order for the test to be considered valid. The TMC will issue to the testing laboratory a control chart analysis for each calibration test (see Annex A14). The test stand is not considered calibrated for invalid or non-interpretable calibration tests.

10.11 Extending Test Stand Calibration Period—There may be occasions when laboratories conduct a large portion of calibration tests in a short period of time. This may result in an unacceptably large time frame when very few calibration tests are conducted. To ensure proper severity and precision monitoring, calibration tests shall be conducted throughout the year. The TMC is permitted to move up or extend calibration tests to enhance calibration test program design and test severity monitoring. An extensive test stand check will be required for any engines having extended test stand calibration periods.

10.12 *Test Run Numbering*—Number each test to identify the test stand number and the test run number. Number all runs sequentially. Append repeat calibration runs with a letter that is also sequential (that is, number the first re-run of test 45 as 46A, the second as 47B, and so forth). Maintain the letter suffix sequencing for each calibration test until the calibration has been accepted. Increment the run number for any test start.

10.13 Humidity Calibration Requirements—The accuracy of the laboratory's primary humidity measurement system shall be within \pm 0.6 g of the humidity measuring chilled mirror dew point hygrometer. Calibrate the primary laboratory humidity measurement system during the first 24 h of each calibration test at each stand using a chilled mirror dew point hygrometer with an accuracy of at least ± 0.55 °C at a 24°C dew point. The calibration consists of a series of paired comparison measurements between the primary system and the chilled mirror dew point hygrometer. The comparison period lasts from 20 min to 2 h with measurements taken at 1 min to 6 min intervals, for a total of 20 paired measurements. The measurement interval should be appropriate for the time constant of the humidity measuring instruments. Ensure that the flow rate is within the equipment manufacturer's specification. Take all measurements made with the dew point hygrometer at atmospheric pressure and correct them to standard pressure conditions (101.12 kPa). Compute the difference between each pair of measurements and calculate the mean and standard deviation of the differences. The absolute value of the mean difference shall not exceed 0.6 g and the standard deviation shall be less than or equal to 0.3 g. The primary humidity measurement system is deemed calibrated only if both of these requirements are met. If either of these requirements is not met, investigate the cause, make repairs, and recalibrate. Maintain the calibration data for a minimum of two years.

³⁰ Available from Hyspan Precision Products, Inc., 1685 Brandywine Avenue, Chula Vista, CA 91911.

10.14 Calibration of Piston Deposit Raters—The piston deposit raters shall be trained by the CRC Rating Task Force and maintain rating expertise by attending the rating seminars. Each calendar year, each facility shall send at least one Heavy Duty Diesel Piston Rater to either the Task Force meeting held every Spring or the expanded Heavy Duty Piston Rating Workshop held every Fall. Each rater shall rate a minimum of six diesel pistons. If this schedule is not suitable to a particular rater or test laboratory, then make alternative arrangements as soon as possible to have the rater calibrated.

11. Procedure

- 11.1 Engine Break-in Procedure—Open any drain taps at the low points of the combustion air system (if they are installed) during the start of the break-in and warm-ups, and following any shutdowns. The engine break-in and operational conditions are specified in Annex A12. The total break-in time is 85 min. During the break-in, fix all leaks and make adjustments to ensure proper engine operation. Record the ECM personality module part number and release date. After the break-in period and while the engine is hot, drain the oil from the crankcase, oil cooler, engine oil filter, and weigh scale for 30 min. Then weigh 5800 ± 50 g of new test oil into the engine. Start the engine, warm it up, and operate it for 360 h at the test conditions specified in step five of Annex A12 with no oil changes. Turn on the oil scale pumps once the engine has reached the beginning of Step 5 of the warm-up sequence. Record the oil weight in the oil scale as the full mark at the end of the first test hour. Throughout the test, record the oil scale reading at least once every 6 min. Count test time from the moment the warm-up time is completed. The oil sample frequency is described in section eight. Do not remove the cylinder head, piston, or power assembly from the engine during a test.
- 11.1.1 Reinitialize engine timing calibration after the cam shaft/gear or cylinder head has been removed. See the electronic installation and operation manual. Complete this during the first step of the break-in.
- 11.2 Cool-down Procedure—Except for emergency (uncontrolled) stops, shut the engine down by operating it at conditions shown in Steps 4, 3, 2, and then 1 in Annex A12.
- 11.3 *Warm-up Procedure*—Use the same procedure used for engine break-in to warm-up the engine for all subsequent starts throughout the test.
- 11.4 Shutdowns and Lost Time—Record the test h, date, and length of off-test conditions for all occurrences. Record when the engine has early inspections or early test termination with the reasons for the occurrences. If the cool down procedure is not used, identify the shutdown as an Emergency Shutdown. A maximum of 125 h of off-test conditions is allowed. If the engine shuts down, immediately stop the oil scale pumps. In the event of an emergency shutdown, leave the engine shut down for 2 h (or more) to allow complete engine cool down before restarting. In order to limit foreign matter entering the combustion chamber and to protect piston deposits, rotate the engine to top dead center of the compression stroke during downtime.
- 11.5 Periodic Measurements—Record all engine conditions listed in Step 5 of Annex A12 as a snapshot at least once every

- 6 min. Record humidity readings using the laboratory's primary humidity measurement system. Correct the recorded humidity values to standard pressure conditions of 101.12 kPa. Record the fuel position as indicated by the electronic technician at test hours 24, 240, and 360.
 - 11.6 Engine Control Systems:
- 11.6.1 Engine Coolant—Pressurize the coolant system to 35.0 ± 7 kPa as shown in Annex A3 to ensure the water does not boil out of the antifreeze. Manually adjust the coolant flow rate by turning the valve on top of the coolant tower to maintain the conditions specified in Annex A12.
- 11.6.2 Engine Fuel System—Control the fuel rate by modifying the fuel limit adjusting the ECM using a facility controller that compares the actual fuel rate to the specified fuel rate listed in Annex A12. See the Electronic Installation and Operation manual for more details. Manually adjust the Fisher regulator to control fuel pressure. Maintain the fuel pressure and temperature as specified in Annex A12.
- 11.6.3 Engine Oil Temperature—Maintain the oil manifold temperature to test specifications as shown in Annex A12. The temperature of the Paratherm NF shall not exceed 165 °C at any time during break-in, warm-up, or testing. Shut off the external oil heater (but not its circulating pump) the moment the engine goes to cool-down.
- 11.6.4 Exhaust Pressure—Set the pressure as specified in Annex A12 using a facility feedback-controlled restrictor valve.
- 11.6.5 *Intake Air*—Filter, compress, and humidify the inlet air to the conditions specified in Annex A12. Heat (or cool, if necessary) the inlet air to the conditions in Annex A12.
- 11.7 *Post-Test Procedures*—Remove the piston and ring assembly from the engine. Mark the location of the ring gaps on top of the piston.
- 11.7.1 Piston Ring Side Clearances—Measure the piston ring side clearances prior to removal of the rings to determine the level of deposit formation (see Annex A10). Align ring gaps to the EOT ring gap marks on the top of the piston. Do not force the feeler gages between the ring and groove to disturb or remove the deposits.
- 11.7.2 Piston Ratings—Immerse the piston assembly in Stoddard solvent and air-dry it prior to any rating. Process and measure the piston deposits according to the Modified CRC Diesel Piston Rating Method described in CRC Manual No. 18 modified by the directions listed in Annex A13. Rate only two levels of carbon (heavy and light) on the second groove and all lands, and only one level of carbon (light) for the under-crown and cooling groove. Use a combined varnish rating method for the third groove, third land, fourth land, under-crown, and cooling groove (see Annex A13). An example rating worksheet is shown in Appendix X1. Another heavy-duty engine deposit rater shall verify all piston deposit ratings done by the testing laboratory. In special cases where another rater is not available, the rating may be verified by other qualified laboratory personnel. Record the initials of both the rater and the verifying rater.
- 11.7.2.1 *Referee Ratings*—The referee laboratory rates the entire piston. Wrap all pistons to be referee-rated in paper with CRC desiccant chips. Then place them in plastic and seal

before shipping to the referee laboratory. Report referee ratings to the TMC within ten days of EOT for calibration tests. Referee-rate piston deposits for all non-reference tests reviewed by Caterpillar.

11.7.3 *Ring End Gap Increase*—Remove all carbon from the rings. If scraping of the rings is necessary, use only a wooden instrument or equivalent. Measure and record the ring end gaps.

11.7.4 Cylinder Liner Wear—Use a surface profile measurement to determine the liner wear step in both transverse and longitudinal directions relative to the crankshaft. Remove deposits on the liner above the piston ring travel. Take transverse and longitudinal measurements at the wear step location approximately 13 mm from the top of the liner at four locations. Record the measurements as the liner wear step.

11.7.5 Cylinder Liner Bore Polish—Section the cylinder liner through the front and rear axis and measure the cylinder liner to determine the amount of bore polishing. Use the liner rating method listed in Annex A13.

11.7.6 *Photographs*—Photograph the piston and rings showing the thrust, anti-thrust, front, rear, and undercrown positions (see Appendix X1). Place the rings on top of the piston to show ring gaps (thrust view) and 180° from gaps (anti-thrust view). Show the piston from the crown down to at least the bottom of the pin bore. Photograph the piston crown and skirt as one assembly. Photograph the bore ID of the sectioned liner (see Appendix X1).

12. Calculation or Interpretation of Results

12.1 Test Validity—If a test was run for 360 h according to this test method, declare the test valid. If a test was not run as specified by this test method, then the test is operationally invalid. Some examples of an invalid test are: use of nonspecified hardware, non-specified assembly methods, a test run whose downtime is greater than 125 h, a test that has a Quality Index value for a controlled parameter below the threshold of zero (see DACA II Report),³¹ and so forth. If a test has greater than four consecutive hours without data acquisition on any controlled parameter, the test will be considered operationally invalid. If a test completes 360 h and the piston, rings, or liner exhibit distress, then consider the test to be non-interpretable. Likewise, if the test is terminated *prior* to completing 360 h for reasons including purchaser request, excessive oil consumption, or piston, ring, or liner distress, then consider the test non-interpretable.

12.2 *Calculations*—Use the same set of data for all calculations and graphs in the test report.

12.2.1 *Quality Index*—Calculate and plot the Quality Index according to the instructions in Annex A2.

12.2.2 *Oil Consumption*—Calculate oil consumption in g/h over 24 h intervals. Delete the first 4 h of readings after an oil add from the linear regression. The linear regression technique is shown in Figs. A6.5 and A6.6. Calculate the overall average oil consumption, the initial average oil consumption, and end-of-test (EOT) average oil consumption. The initial average

is the average of the 24th and 48th h data points from the oil consumption graph. The EOT average is the average of the 336th and 360th h data points for a full length test, or for a short-term test it is the average of the last two data points from the oil consumption graph. Calculate the natural logarithmic transformation of the average and EOT oil consumption values using the following equations:

transformed average oil consumption = ln(average oil consumption)

transformed EOT oil consumption = ln(EOT oil consumption) (3)

12.2.3 For a 24-h period including a shutdown, calculate the oil consumption as follows:

12.2.3.1 Do not include the first 4-h oil weight readings after a shutdown in the linear regression.

12.2.3.2 Calculate the linear regression for the period before the shutdown.

12.2.3.3 Calculate the linear regression for the period after the shutdown.

12.2.3.4 Calculate a time weighted average from both regressions to obtain the oil consumption for that 24–h period. For example, a test experiences a 7-h shutdown at test hour 12. The slope for the first 8-h period (hour 4 to 12) is 10.7 g/h, and the slope for the second 8-h period (hour 16 to 24) is 2.1 g/h. The weighted average is calculated as follows:

weighted average =
$$\frac{(10.7g/h)(8h) + (2.1g/h)(8h)}{8h + 8h}$$
 (4)

13. Report

13.1 Forms and Data Dictionary—Refer to Annex A15 and Annex A16 for the forms and data dictionary used by this test method. Test report forms should closely resemble those listed in Annex A15. Report values for all the field names listed in the report forms. Some fields may be blank for short-term tests. Report all deposits, wear, and engine operational data as shown in the test report. The data dictionary defines the field lengths, decimal size, data type, units and format for the field names listed in the test report forms.

13.2 Test Validity—Document on the first sheet of the test report in Annex A15 whether the test is Valid, Invalid, or Non-interpretable. For a valid stand calibration run, report the test data to TMC who will include the test data in the operationally valid database and determine statistical validity using the LTMS method.³² For an invalid or non-interpretable stand calibration run, report the test data to TMC with comments describing why the test is considered invalid or non-interpretable. TMC will not include the test data in the operationally valid database. All operationally invalid and non-interpretable calibration tests are reported by the TMC to the ASTM Single Cylinder Diesel Surveillance Panel in periodic testing summaries. For a valid CMA Registered Oil Test, report the data to Registration Systems, Inc. (RSI).³³ For

³¹ Available from ASTM Test Monitoring Ctr., 6555 Penn Ave., Pittsburgh, PA 15206-4489.

³² The LTMS method tracks the severity and precision of stand and laboratory test results. For a complete definition, refer to the LTMS manual which is available from ASTM Test Monitoring Center, 6555 Penn Avenue, Pittsburgh, PA 15206-4489.

³³ Registration Systems, Inc., CMA Monitoring Agency, 4139 Gardendale, Suite 205, San Antonio, TX 78229.

an *invalid or non-interpretable CMA Registered Oil Test*, report the test data to RSI with supporting comments describing why the test is considered invalid or non-interpretable. When non-calibration oil tests are presented to Caterpillar for review, include the data from all tests that were registered with RSI as part of the program.

13.3 Report Specifics:

13.3.1 If more than one fuel batch is used, report the fuel batch analysis that is most representative of the fuel in the tank.

13.3.2 Report any causes for any missing or bad test data in the comment section of Form 7. If any alternative data acquisition method is used, document it in the comment section of Form 7.

13.3.3 If a calibration period is extended beyond the normal nine-month period, make a note in the comment section of Form 7 and attach a written confirmation from the TMC to the test report. List the outcomes of previous calibration runs in the comment section of Form 7.

13.3.4 Include the fuel analysis provided by the fuel supplier as Form 14. For calibration tests, include a copy of the TMC control chart analysis as Form 17. It is recommended that test purchasers include the form shown in Fig. X1.8 as Form 18 when presenting the test results against specification limits, such as those in Specification D 4485 or military specifications.

14. Precision and Bias

14.1 *Precision*—Test precision is established on the basis of operationally valid reference oil test results monitored by the

ASTM Test Monitoring Center. Table 1 summarizes reference oil precision and reproducibility of the test as of February 13, 2001.

14.1.1 *Intermediate Precision (IP)*—The difference between two results obtained by the same operator or laboratory using the same test method on the same oil would, in the long run, in the normal and correct conduct of the test method, exceed the values shown in Table 1 in only one case in twenty.

14.1.2 Reproducibility (R)—The difference between two single and independent results obtained by different operators working in different laboratories on the same oil would, in the long run, in the normal and correct conduct of the test method, exceed the values shown in Table 1 in only one case in twenty.

14.2 *Bias*—Bias is determined by applying an accepted statistical technique to reference oil test results, and when a significant bias is determined, a severity adjustment is permitted for non-reference oil test results. Currently, there are two types of severity adjustments - Industry and Laboratory. There are no test stand severity adjustments. Industry severity adjustments are determined by the Single Cylinder Surveillance Panel under ASTM Committee D02, Subcommittee B. Laboratory severity adjustments are determined by the instructions listed in the Lubricant Test Monitoring System (LTMS) document.³¹

15. Keywords

15.1 caterpillar 1P test procedure; oil consumption; piston deposits; single cylinder oil test

TABLE 1 Reference Oil Test Precision

Note-Legend:

 S_{ip} = standard deviation for intermediate precision

 $I\dot{P}$ = intermediate precision

 S_r = standard deviation for reproducibility

R = reproducibility

Test Parameter	S_{ip}	IP	S_r	R
WDP (weighted demerits for the 1P test method)	46.06	128.97	49.79	139.41
TGC (top groove carbon piston deposits)	8.15	22.82	8.15	22.82
TLC (top land carbon piston deposits)	10.06	28.17	10.07	28.17
LN(AOC) (natural log of the average oil consumption)	0.2633	0.7372	0.2994	0.8383
LN(FOC) (natural log of the final oil consumption)	0.4816	1.3485	0.4816	1.3485

ANNEXES

(Mandatory Information)

A1. ENGINE AND PARTS WARRANTY

- A1.1 Engine Warranty—Caterpillar Inc. warrants single cylinder test engines sold by it to be free from defects in material and workmanship for a period of 12 months starting from the date of delivery to the first user. If a defect in material or workmanship is found during the warranty period, Caterpillar will provide the replacement parts to be installed by the user. There will be no charge to the user for parts furnished by Caterpillar. User at its own expense, shall return all defective parts to Caterpillar at Caterpillar's request. User will be responsible for giving Caterpillar timely notice of a warranty failure. User will also be responsible for labor costs and any applicable local taxes. Caterpillar is not responsible for failures resulting from abuse, neglect, and/or improper repair. THIS WARRANTY IS EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. REMEDIES UNDER THIS WARRANTY ARE LIMITED TO THE PROVISION OF PARTS AS SPECIFIED HEREIN. CATERPILLAR IS NOT RESPONSIBLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.
- A1.2 Engine Parts Warranty—All parts for the 1Y3700 engine which are nonconforming by reason of faulty manufacture should be discussed with Engine System Technology Development (ESTD).
- A1.2.1 The test laboratories should contact ESTD (R.A. Riviere, Telephone: 309-636-5247, Fax: 309-675-1598) when they believe a part is nonconforming:

- A1.2.2 ESTD will determine if they want the part returned, or provide warranty without viewing the part.
- A1.2.3 If ESTD determines that the part is nonconforming without viewing the part, the test laboratories will be asked to return the part to their Caterpillar dealer. ESTD will contact the Dealer and let them know the part is coming and to provide warranty for it.
- A1.2.4 If ESTD wants to view the part, they will issue a Return Goods Authorization No. (RGA) to the test laboratory. The laboratory will fill out the form shown in Annex A9 and send the part and the form to Caterpillar Inc., Tech Center TC-L, Wing 4 - Rm 406, 14009 Old Galena Rd., Mossville, IL 61552, Att: A.C. Hahn.
- A1.2.5 The test laboratories should fax a copy of the RGA claim form to Caterpillar Inc., Tech Services Div., Tech Center Bldg L, Fax: 309-578-4232, Att: A.C. Hahn.
- A1.2.6 If ESTD determines that the part is nonconforming, they will contact the dealer for the test laboratory and have the dealer provide warranty.
- A1.2.7 A sample of the RGA claim form is shown in Annex A9 and should include: return goods authorization no., part name, hours on the part, part no., quantity, engine serial no., date purchased, test laboratory that purchased the part and contact person's name, phone, fax, and address, dealer's name that sold the part, measurements or photographs, or both, to document the nonconformance.

A2. INSTRUMENT LOCATIONS, MEASUREMENTS, AND CALCULATIONS

- A2.1 Tables A2.1-A2.6 and Figs. A2.1-A2.5 provide detailed information.
 - A2.2 Requirements for the Quality Index Calculation:
- A2.2.1 Round the recorded values in accordance with the specifications listed in Table A2.5.
- A2.2.2 Use the values listed in Table A2.6 for all calculations.
 - A2.2.3 Use 6-min data to calculate the Quality Index.
- A2.2.4 Reset data that is greater than the high values listed in Table A2.6 from the Over and Under Range Values column to the high value for that particular parameter.
- A2.2.5 Reset data that is less than the low values listed in Table A2.6 from the Over and Under Range Values column to the low value for that particular parameter.
 - A2.2.6 Round the Quality Index values to the nearest 0.001.

- A2.2.7 Report Quality Index values on Form 2 of the test report.
- Note A2.1—Refer to the DACA II Final Report for calculating the Quality Index involving the loss of test data or bad quality test data.
 - A2.3 Formula to calculate the Quality Index:

$$QI = 1 - \frac{1}{n} \sum \left(\frac{U + L - 2X_i}{U - L} \right)^2$$
 (A2.1)

where:

 X_i = recorded test measurement parameter, U = upper specification for that parameter,L = lower specification for that parameter, and

= total number of data points taken as determined from test length and procedural specified sampling rate.

TABLE A2.1 Instrument Locations

Parameter	Data Acquisition and Control	Engine Computer Sensors	Facility Feedback Control (if separate sensor is required)
Cam speed and timing sensor		A	
Crankshaft speed and timing sensor		В	(at dyno)
Coolant pressure to jug	1		
Coolant temperature to jug	2		
Oil temperature to cooler	3		
Atmospheric pressure		С	
Crankcase pressure	4	D	
Facility air pressure to cooling tower	5		
Oil manifold temperature	6	E	6 or W
Oil sampling valve	7		
Oil manifold pressure	8	F	
Coolant temperature from engine	9	Н	9 or X
Coolant pressure from engine		G	
Coolant flow barco delta pressure	10		
Air inlet manifold pressure	(at barrel)	I	(at barrel)
Air inlet manifold temperature	11		11 or Y
Fuel temperature from filter	Z		12
Fuel pressure from head	13		
Fuel flow rate	(at micro motion)		(at micro motion)
Exhaust manifold temperature	14	J	
Exhaust manifold pressure	(at barrel)		(at barrel)
Humidity	(at barrel)		(at barrel)
Air flow rate	(at meter)		
Blowby flow rate	(at meter)		

TABLE A2.2 Thermocouple Diameters, Lengths and Immersion Depths

Location	Diameter, in.	Length, in., max	Depth, \pm 3 mm
Oil to manifold	not applicable	6	22
Oil to cooler	not applicable	6	27
External heating oil	not applicable	6	27
Coolant in	not applicable	6	40
Coolant out	not applicable	6	26
Inlet air	not applicable	6	57
Exhaust	not applicable	6	67
Fuel	not applicable	6	34

TABLE A2.3 Calibration Tolerances

Parameters	Tolerance
Load	not applicable due to differences within the industry; TMC will verify each laboratory it visits
Fuel flow rate	0.4 g/min
Air flow rate	±2 % of reading from 10-100 % of calibrated range;
	±0.5 % of FS below 10 % of calibrated range
Humidity	listed in this test method
Temperatures	°C
Fuel at filter	0.5
Coolant to jug	0.25
Coolant from engine	0.25
Oil to cooler	0.5
Oil manifold	0.5
External heating oil	0.5
Air inlet manifold	0.5
Exhaust manifold	1.0
Pressures	kPa
Fuel from head	0.7
Oil manifold	0.7
Air inlet	0.3
Exhaust	0.3
Crankcase	0.02

TABLE A2.4 Maximum Allowable System Time Constants

Measurements	Time, s
Speed	3.0
Fuel flow rate	20.0
Air flow rate	3.0
Oil weight	TBD
Temperatures	
Fuel at filter	3.0
Coolant to jug	3.0
Coolant from engine	3.0
Oil to cooler	3.0
Oil manifold	3.0
External heating oil	3.0
Air inlet manifold	3.0
Exhaust manifold	3.0
Pressures	
Fuel from head	3.0
Oil manifold	3.0
Air inlet	3.0
Exhaust	3.0
Crankcase	3.0

TABLE A2.5 Measurement and Reporting Resolutions

Parameter	Units	Tol	Specification	Minimum Measurement Resolution	Round Values to the Nearest Whole Number
Speed	RPM	±3	1800	1	whole number
Power	kW	approximately	55	0.1	tenth
Torque	N⋅m	approximately	285	0.1	tenth
Fuel rate	g/min	±1	185	0.1	tenth
Fuel timing	BTC		13		
Humidity	g/kg	±1.7	17.8	0.1	tenth
Oil weight	g			2	whole number
Temperatures °C	Č				
Fuel into head		±3	42	0.1	tenth
Coolant into jug		approximately	86	0.1	tenth
Coolant from head		±3	90	0.1	tenth
Oil to cooler		approximately	128	0.1	tenth
Oil manifold		±3	130	0.1	tenth
External heating oil			165 max	0.1	tenth
Inlet air manifold		±3	60	0.1	tenth
Exhaust manifold		approximately	480	1	whole number
Pressures kPa					
Fuel from head		±20	275	1	whole number
Coolant into jug		approximately	81	1	whole number
Oil manifold		±20	415	1	whole number
Inlet air barrel (abs)		±1	272	0.1	tenth
Exhaust barrel (abs)		±1	265	0.1	tenth
Crankcase		approximately	0.10	0.01	hundredth
Flows					
Coolant	L/min	±2	75	0.1	tenth
Blowby	L/min	approximately	35	1	whole number
Air	kg/h	approximately	315	0.1	tenth

TABLE A2.6 Quality Index Calculation Values and Plotting Axis Scale Definitions

		Quality Index U and L Values ^A Over and Under Range Values		r Range Values ^B		C		
Controlled Parameters	units	L	U	low	high	min	max	increment
Speed	r/min	1798.530	1801.470	1710	1890	1770	1830	10
Fuel flow	g/min	183.970	186.030	125	245	175	200	5
Humidity	g/kg	16.780	18.820	5	21	5	40	5
Coolant flow	L/min	73.060	76.940	0	82	60	90	5
Coolant out	°C	89.379	90.622	55	125	70	110	5
temperature								
Oil to Manifold	°C	128.798	131.202	60	200	120	150	5
Temperature								
Inlet air	°C	59.360	60.640	20	100	50	70	5
temperature								
Fuel into head	°C	40.885	43.116	0	75	30	60	5
temperature								
Oil to manifold	kPa	404.384	425.616	0	690	380	450	10
pressure								
Inlet air pressure	kPa	271.449	272.551	242	302	265	280	5
Exhaust pressure	kPa	264.150	265.850	215	315	250	280	5
Fuel pressure	kPa	271.471	278.529	125	425	230	300	10
Uncontrolled Parame	ters							
Power	kW					50	60	1
Torque	N⋅m					230	310	10
Blowby	L/min					5	65	5
Coolant in	°C					75	100	5
temperature								
Coolant delta	°C					0	10	1
Oil cooler in	°C					120	140	5
temperature								
Heating oil	°C					120	165	5
temperature								
- Exhaust	°C					450	500	10
temperature								
Crankcase	kPa					0.0	1.5	0.1
pressure								
Coolant pressure	kPa					60	95	5

^A The threshold for operational validity is 0.00.

^B Only to be used in the calculation of Quality Index and Average and does not affect how process is graphed.

^C Quality Index Scales are to range from -0.3 to 1.0 with increments of 0.1. The axis for test time is 0 to 360 h in 30-h increments. X-axis length should be at least 8.0 in. Y-axis length should be at least 5.5 in.

∰ D 6681 – 01

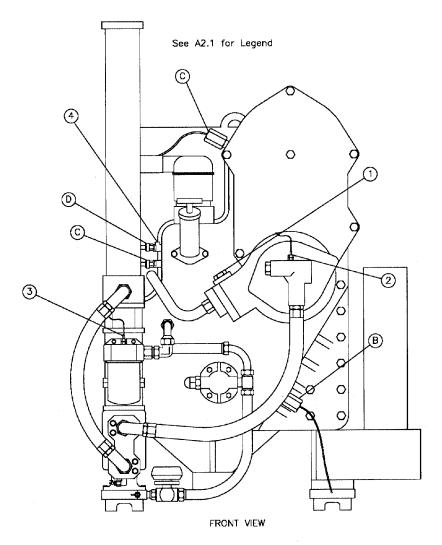


FIG. A2.1 Instrument Locations—Engine Front View

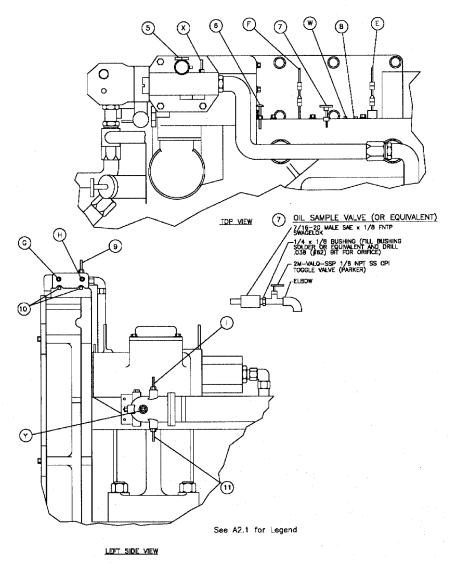
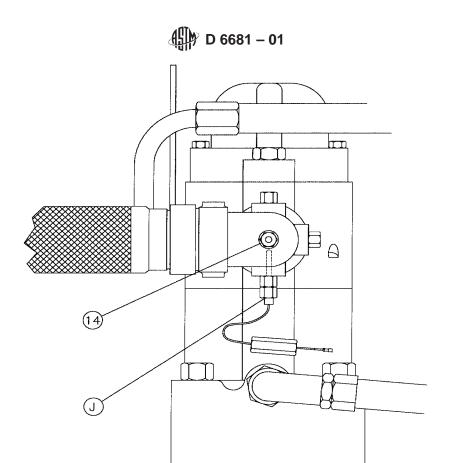
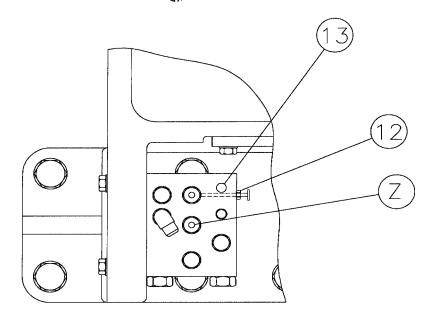
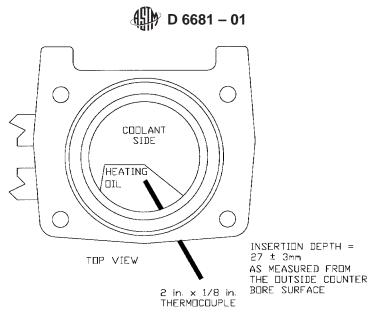
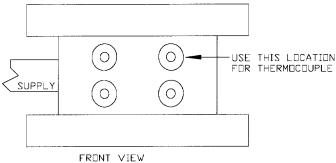




FIG. A2.2 Instrument Locations—Top and Left Engine Views


RIGHT SIDE VIEW
See A2.1 for Legend


FIG. A2.3 Instrument Locations—Right Engine View

TOP VIEW
See A2.1 for Legend

FIG. A2.4 Instrument Locations—Top Engine View

Note—Turn oil filter block drain valve 180° so that it is facing out and easier to use.

FIG. A2.5 Engine Heating Oil Thermocouple Location

A3. COOLING SYSTEM ARRANGEMENT

- A3.1 Install a sight glass as shown using the following components listed in Table A3.1.
- A3.1.1 Reuse one of the straight 37° flare swivel hose fittings on the existing hose for the tower side of assembly. The 90° fitting in the cylinder head is also still used. Installation angle will be slightly different.
- A3.2 Cleaning Procedure for the Engine Coolant System—Clean the coolant system when visual inspections show the presence of any oil, grease, mineral deposits, or rust. The engine cooling system arrangement is shown in Fig. A3.1.
- A3.2.1 To remove oil and grease from the cooling system:
- A3.2.1.1 Operate the engine until oil and water operating temperatures are attained; shutdown the engine and drain the cooling system.
- A3.2.1.2 Fill the cooling system with a solution of 454 g of trisodium phosphate (Na₃PO₄) to 38 L of water; operate the engine for 5 min to ensure complete mixing of the solution with any material remaining from the previous fill.
- A3.2.1.3 Shutdown the engine and drain and flush the engine with fresh water and drain the water from the system.

TABLE A3.1 Coolant Sight Glass Components

Item	Quantity	Part No.	Source	Description	Location
1	1	2061-20-20S	Aeroquip	45° SAE O-ring port to 37° flare	inlet to top of coolant tower
2	1	190265-20S	Aeroquip	45° Elbow – SAE O-ring to 37° flore swivel	head outlet
3	2	412-16-20S	Aeroquip	Male pipe re-usable fitting	inlet and outlet of sight glass
4	1	4288 1 in. NPT Female	Gits ^A	style OL flow gage (sight glass)	locate in middle of hose assembly
5	1	FC350-20	Aeroquip	hose ~ 51/2 in.	head side of assembly
6	1	FC350-20	Aeroquip	hose ~ 6½ in.	tower side of assembly

^A Gits Manufacturing Co.

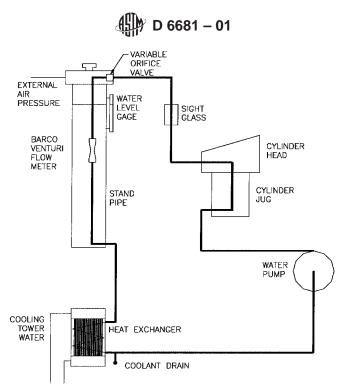
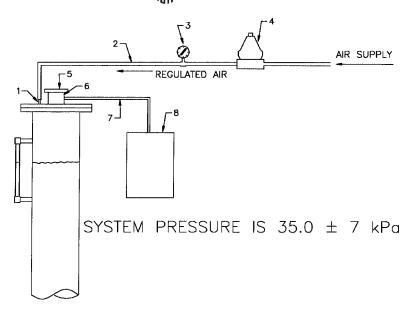



FIG. A3.1 Engine Cooling System Arrangement

- A3.2.2 To remove mineral deposits from the cooling system:
- A3.2.2.1 Operate the engine until oil and water operating temperatures are attained; shutdown the engine and drain the cooling system.
- A3.2.2.2 Fill the cooling system with a solution of 454 g of commercial sodium bisulfate (NaHSO₄) to 19 L of water; then run the engine at operating temperatures for 30 min.
- A3.2.2.3 Shutdown the engine, drain and flush the engine with fresh water and drain the water from the system.
- A3.2.2.4 Fill the cooling system with a solution of 454 g of trisodium phosphate (Na₃PO₄) to 38 L of water; operate the

- engine for 5 min to ensure complete mixing of the solution with any material remaining from the previous flush.
- A3.2.2.5 Shutdown the engine and drain the engine, flush with clear water and drain after flushing.
- A3.2.2.6 Disassemble the engine and prepare for the next test.
- A3.2.3 If the cooling system is contaminated by oil and mineral deposits, remove the oil from the system, then remove the mineral deposits. Alternatively, the cylinder head coolant passages may be cleaned after the head is removed.
- A3.2.4 The coolant pressurization system is shown in Fig. A3.2 and the cooling tower water circuit is shown in Fig. A3.3.

∰ D 6681 – 01

Note-Legend:

- 1. 1/4 in. NPT-to-No.4AN (male connector)
- 2. No. 4 hose
- 3. Pressure gage 0-15 psig
- 4. Pressure regulator (self bleeding)
- 5. Radiator cap 15-16 psig
- 6. Radiator filler neck
- 7. Overflow tube (optional)
- 8. Overflow tank (optional)

FIG. A3.2 Coolant Pressurization System

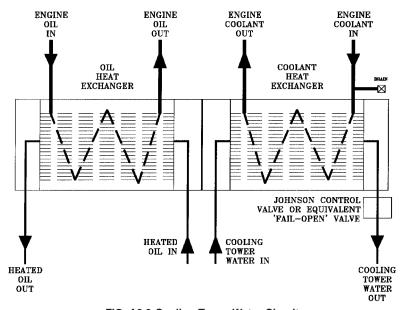
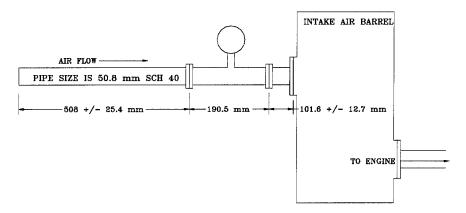



FIG. A3.3 Cooling Tower Water Circuit

A4. INTAKE AIR MASS FLOW SENSOR INSTALLATION

A4.1 The intake air sensor installation is shown in Fig. A4.1.

Note-Meter: Model 780 in-line mass flow meter by Sierra Instruments;

Accuracy: ±2 %;

Part No.: 780-F6-CG-(other options).

FIG. A4.1 Intake Air Sensor Installation

A5. FUEL SYSTEM DESIGN AND REQUIRED COMPONENTS

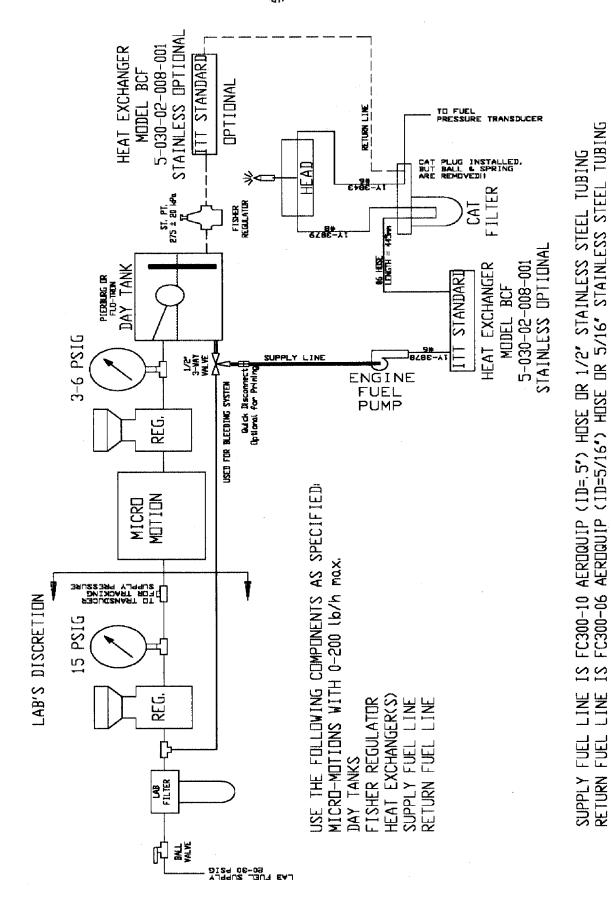


FIG. A5.1 Fuel System Design and Required Components

∰ D 6681 – 01

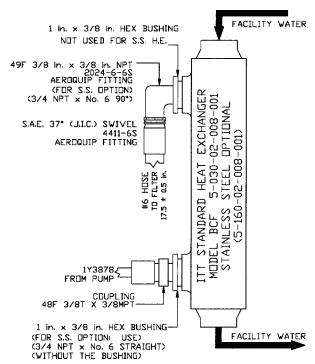


FIG. A5.2 Fuel Heat Exchanger Plumbing Connections

TABLE A5.1 Fisher Regulator Information

Type	Pressure	Inlet,	Spring	Trim	Allowable Inlet
98	Units	max	Range	Material	Pressure, max
H-17	PSIG	75	22-75	SST	250

A6. OIL SYSTEM

- A6.1 *Verification of Oil Scale Pump Flows*—Verify the oil scale pump flow rates with EF-411 at $26.5 \pm 5.5^{\circ}$ C as the test fluid using the following procedure. The following equipment is needed.
 - A6.1.1 One stopwatch.
 - A6.1.2 One to 2 gal of EF411 oil at 26.5 ± 5.5 °C.
 - A6.1.3 One temporary reservoir pan.
 - A6.1.4 One temporary discharge pan.
 - A6.2 Procedure for Flow from Oil Pan to Oil Scale:
- A6.2.1 Disconnect the line from the oil pan and place in temporary reservoir pan.
- A6.2.2 Disconnect the line from the oil scale and place in the temporary discharge pan.
- A6.2.3 The height of the pump relative to the reservoir and discharge pans shall be within 3 ft to reduce any head pressure differences, which may affect the flow rates.
- A6.2.4 Prime the system (both hoses and pump), then shutdown.
 - A6.2.5 Empty the discharge pan and record the weight of it.

- A6.2.6 Turn the system on and start the stop watch at the same time.
 - A6.2.7 Let the system run for 4 min and then stop it.
- A6.2.8 Weigh the oil in the discharge pan, subtracting the empty weight.
 - A6.2.9 Determine the flow rate.
 - A6.3 Procedure for Flow from the Oil Scale to the Oil Pan:
- A6.3.1 Repeat the above procedure by disconnecting the line from the oil scale and placing it in the temporary reservoir pan and disconnecting the line at the oil pan and placing it in the temporary discharge pan.
 - A6.3.2 The following materials are needed.
- A6.3.2.1 *Steel Tubing*, ½ in. OD, ¾ in. ID, approximately 1 in. long.
- A6.3.2.2 Adapter Fitting, ½ in. NPT to desired connection type (Fig. A6.4 shows an Aeroquip No. 2000-4-4B for a #4, 45° flare).
 - A6.3.2.3 Silver Solder.
 - A6.3.3 Procedure:

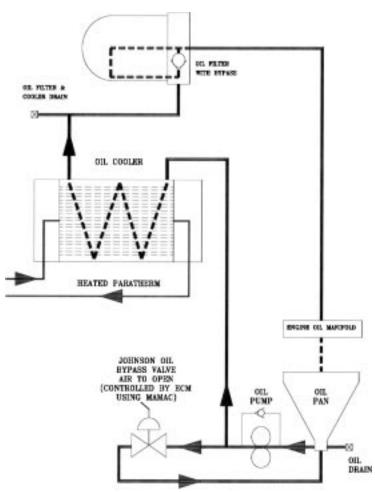


FIG. A6.1 Oil System

A6.3.3.1 Drill adapter fitting on pipe thread end to ½ in. nominal diameter, ½ in. min depth.

A6.3.3.2 Insert tube into fitting until bottomed out in the $\frac{1}{4}$ in. hole.

A6.3.3.3 Silver solder the tube-to-fitting joint.

A6.3.3.4 Remove oil pan from engine and install the fitting in location specified.

A6.3.3.5 Mark the tube location to achieve 5 \pm 1 mm protrusion into the oil pan.

A6.3.3.6 Remove the fitting and cut to length.

A6.3.3.7 Re-install fitting in pan, check protrusion, and re-install oil pan on engine.

A6.4 Oil Consumption Linear Regression Method—If there is good reason to assume that a variable *Y* is dependent upon another variable *X* and that the relationship is linear, the best-fit line describing this relationship can be plotted using the following equations. Also see Figs. A6.5 and A6.6.

$$m = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$
(A6.1)

$$b = \left[\frac{\sum y_i}{n} - m \frac{\sum x_i}{n}\right] \tag{A6.2}$$

$$r^{2} = \frac{\left[\sum x_{i}y_{i} - \frac{\sum x_{i} \sum y_{i}}{n}\right]^{2}}{\left[\sum (x_{i})^{2} - \frac{(\sum x_{i})^{2}}{n}\right]\left[\sum (y_{i})^{2} - \frac{(\sum y_{i})^{2}}{n}\right]}$$
(A6.3)

where:

 y_i = oil weights taken at time x,

 x_i = times at which oil weight observation x are made,

m = slope of best-fit line = oil consumption,

b = y intercept, and

 r^2 = goodness of fit (1 if perfect, 0 if not fit at all).

A6.5 Oil Sampling Procedure:

A6.5.1 Record oil scale reading at test hour four _____ g. This is the *Full Mark*.

A6.5.2 Record the *oil weight* from the 24th hourly reading _____ g.

A6.5.3 Remove 250 mL purge sample from sample valve on the oil manifold.

$$\frac{g}{purge + container} - \frac{g}{container} = \frac{g}{purge}$$

A6.5.4 For test hours 24, 96, 240, 288 and 360, remove a 90 mL sample from the sample valve on the oil manifold.

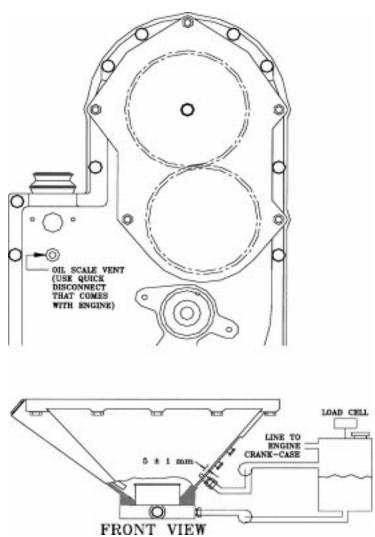


FIG. A6.2 Oil Scale Measurement System

$$\frac{g}{sample + container} - \frac{g}{container} = \frac{g}{sample}$$

A6.5.4.1 Add 370 \pm 10 g of *NEW test oil* to the oil weigh tank.

$$\frac{1}{new\ oil + container} - \frac{g}{container} = \frac{g}{new\ oil}$$

A6.5.5 For *test hours 48, 72, 120, 144, 168, 192, 216, 264, 312 and 336,* remove a *30 mL sample* from the sample valve on the oil manifold.

$$\frac{g}{sample + container} - \frac{g}{container} = \frac{g}{sample}$$

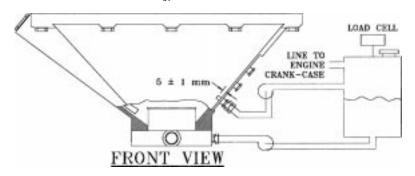
A6.5.5.1 Add 317 \pm 10 g of *NEW test oil* to the oil weigh tank.

$$\frac{1}{new\ oil + container} - \frac{g}{container} = \frac{g}{new\ oil}$$

A6.5.6 Add back enough purge sample to return the oil weigh tank to its Full Mark using the following formula:

purged to be returned =
$$FM - A$$
 (A6.4)

where:


$$A = \frac{1}{\text{#2; 24th Hourly Reading; (Scale Weight)}} - \frac{1}{\text{#3; Purge Weight}} - \frac{1}{\text{#4; Sample Weight; (if taken)}} + \frac{1}{\text{#5; New Oil Weight}}$$

A6.5.7 Record the weight of *unused* purge sample by using scale.

$$\frac{g}{\textit{unused purge} + \textit{container}} - \frac{g}{\textit{container}} = \frac{g}{\textit{unused purge left over}}$$

 $\mbox{Note }A6.1\mbox{---}\mbox{If you are short in returning to the full mark, use fresh oil to make up the difference.}$

∰ D 6681 – 01

Note—(1) Suction Pump and Hose (or equivalent)

Type: Viking C-90 Pump Flow: 6 ± 1.5 g/h Speed: 285 r/min

Hose: 0.25 in. ID TFE-fluorocarbon steel braided 9 ft max length

Pulley: 4.95 in. OD

(2) Return Pump and Hose (or equivalent)

Type: Viking C-92 Pump Flow Differential: 3 ± 1 g/h

Speed: 163 r/min

Hose: 0.25 in. ID TFE-fluorocarbon steel braided 9 ft max length

Pulley: 8 in. OD

(3) Pump Motor (both pumps) (or equivalent)

Type: 56 Nema Grainger 6K949

Speed: 1140 r/min HP: 3/4

Pulley: 1.5 in. OD

(4) Vent Line: 0.25 in. ID hose

(5) Oil in Reservoir: 1000 g (approximately)

(6) Scale Precision: See Procedure

(7) Flexible Hose: (to and from fixed external sump support) (or equivalent): Aeroquip FC352-08

FIG. A6.3 Low Flow Oil Scale System

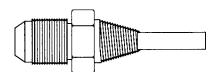


FIG. A6.4 Oil Pan Suction Fitting to Oil Scale

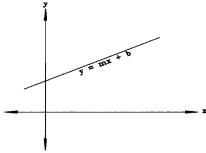


FIG. A6.5 Equation of a Straight Line

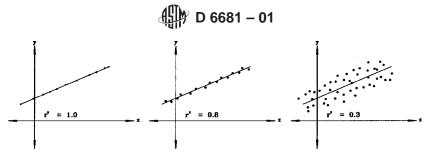
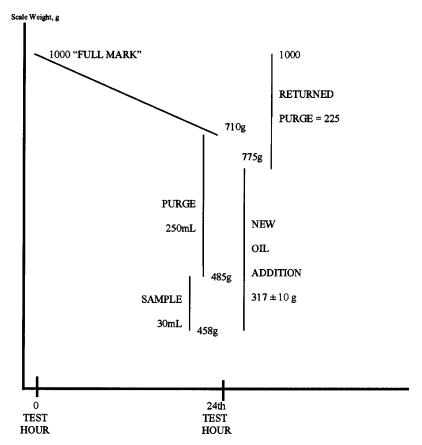
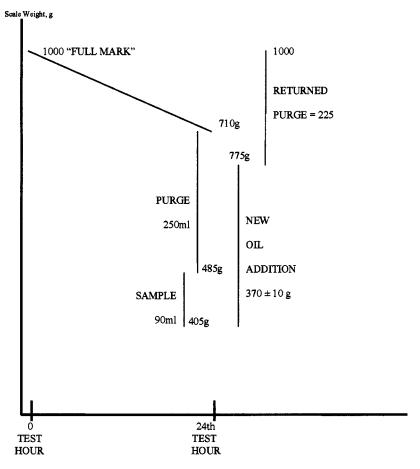




FIG. A6.6 Examples of the Goodness of Fit

Note—Taken at 48, 72, 120, 144, 168, 192, 216, 264, 312, 336 h. FIG. A6.7 Example of Oil Addition Procedure with 30 mL Sample

 $Note — Taken \ at \ NEW, \ 24, \ 96, \ 240, \ 288, \ 360 \ h.$ FIG. A6.8 Example of Oil Addition Procedure with 90mL Sample

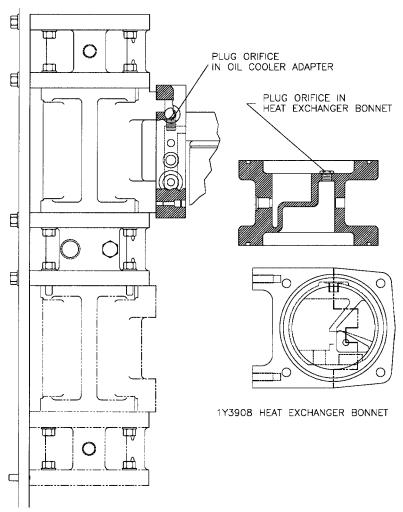


FIG. A6.9 Engine Oil Heating Hardware

A7. EXHAUST AND INTAKE BARREL PIPING

 $A7.1\,$ The exhaust and intake barrel piping are illustrated in Figs. A7.1 and A7.2.

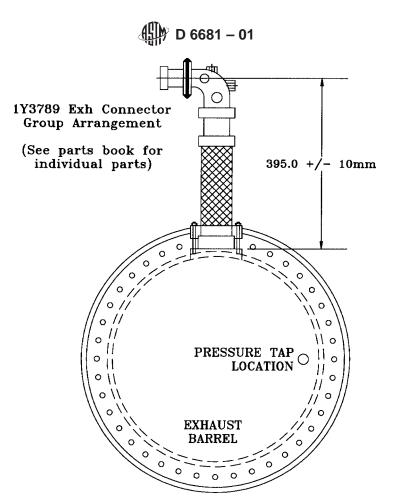
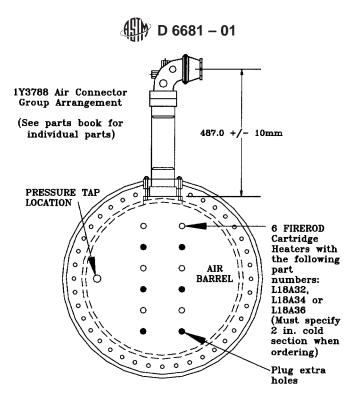



FIG. A7.1 1Y3978 Exhaust Barrel and Piping

Note 1—Dummy heater elements may be substituted for the FIREROD cartridge heaters, as long as they are the same dimension of 21 in. \times 5% in. diameter. The 21 in. is from end-to-end. Length tolerance is 3 in. and the diameter tolerance is $\frac{1}{64}$ in.

Note 2—FIREROD cartridge heaters may be purchased from Southwest Heater and Controls, 12052 Forestgate Dr., Dallas, TX 75243.

FIG. A7.2 1Y3976 Intake Air Barrel and Piping

A8. HUMIDITY PROBE INSTALLATION

A8.1 Figs. A8.1 and A8.2 illustrate the humidity probe installation locations.

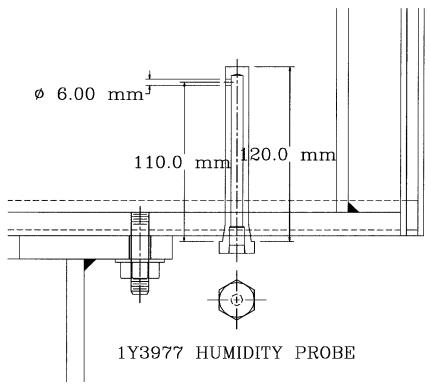


FIG. A8.1 Humidity Probe Installation Location

Bottom of Intake Air Barrel

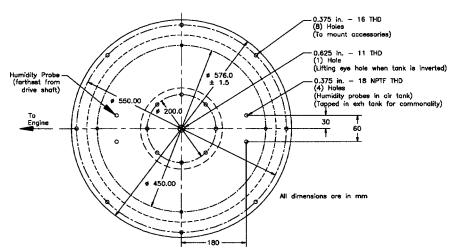


FIG. A8.2 Humidity Probe Installation Location—Barrel Bottom

A9. RETURN GOODS AUTHORIZATION

 $A9.1\;\; Fig.\, A9.1$ is a sample return goods authorization claim form.

Return Goods Authorization Number:	
Claim Date:	
Contact:	Caterpillar Inc Engine System Tech Dev. P.O. Box 610 Mossville, Il 61552 Phone: 309-636-5247 Fax: 309-675-1598 Attn: R.A. Riviere
Part Number / Quantity:	
Part Name / Hrs On Part:	
Date Part Purchased:	
Engine Serial Number:	
Test Lab	
	Name:
	Address:
	Contact Person's Name:
	Phone Number:
	Fax Number:
Name of Dealer That Sold Part:	

INCLUDE DOCUMENTATION AND PHOTOS OF NONCONFORMING PART FIG. A9.1 Sample Return Goods Authorization Claim Form

A10. ENGINE ASSEMBLY INFORMATION

A10.1 1Y3700 Engine Mechanical Timing—Remove the camshaft gear to replace cylinder head components after test and re-time as follows (see Fig. A10.6):

A10.1.1 Rotate the engine to position the piston at TDC.

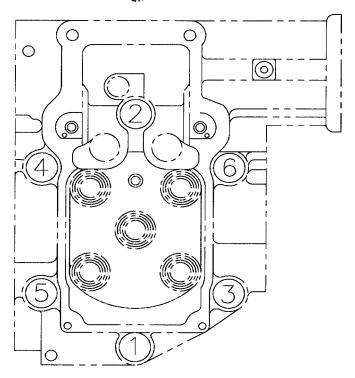
Note A10.1—The TDC mark on the flywheel will align with the timing pointer. The 6.28 mm diameter 1Y3919 timing pin will insert in the crank gear key-way slot through the timing hole in the front housing near the oil pump flange.

A10.1.2 Pin the camshaft with a second 6.28 mm diameter 1Y3919 timing pin.

A10.1.3 Mesh the camshaft gear with the adjustable idler gear and with the UP mark on the front face of the camshaft gear in the 12:00 o'clock position. Assemble the camshaft gear to the camshaft.

A10.1.4 Set lash between the adjustable idler gear and the camshaft gear and torque the six socket head bolts at the stub-shaft flange.

A10.1.5 Remove both 6.28 mm diameter timing pins.

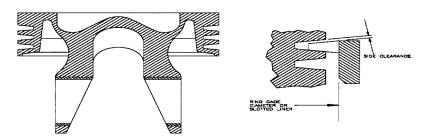

A10.2 1Y3700 Engine Mechanical Timing—General Information:

Note A10.2—This is not part of the normal engine timing procedure.

A10.2.1 This procedure is to be followed only on new engine assembly or in the event that a new timing disk, or crankshaft, or flywheel, or front housing is assembled on an old engine.

A10.2.2 With the crankshaft connecting rod journal at top dead center (TDC), the tooth valley V mark on the crankshaft gear is 35.38° clockwise from the vertical and the key-way is 68.48° clockwise from vertical. With the crankshaft gear fixed, assembly of the cluster idler gear on its stub-shaft causes the cluster idler gear to rotate 2.87° clockwise, so that its dash marked tooth is 145.73° counterclockwise from vertical. The V and dash marks line up valley-to-tooth.

∰ D 6681 – 01



Note 1—(1) Lubricate stud threads and both washer faces with Mobil EF411 engine oil.

- (2) Tighten cylinder head nuts with hand torque wrench:
- (a) Tighten nuts 1 through 6 in numerical sequence to $100 \pm 15 \text{ N} \cdot \text{m}$.
- (b) Tighten nuts 1 through 6 in numerical sequence to 200 \pm 15 N·m.
- (c) Tighten nuts 1 through 6 in numerical sequence to $400 \pm 15 \text{ N} \cdot \text{m}$.

Note 2—Coat valve stems with Mobil EF411 engine oil immediately prior to installation.

FIG. A10.1 Cylinder Head Tightening Procedure

Note—Piston part nos: Skirt 1Y3659, Crown 1Y3400; Rings part nos: Top 1Y3802, Intermediate 1Y3803, Oil 1Y3804.

FIG. A10.2 Piston and Ring Specifications

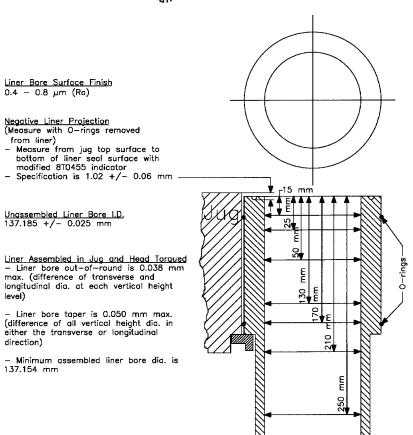
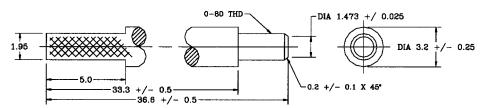
A10.2.3 Assembly of the adjustable idler gear with its UP mark at the top orients the three kidney-shaped openings in the gear web to allow access to the socket head bolts that attach the adjustable idler gear stub-shaft to the front housing plate.

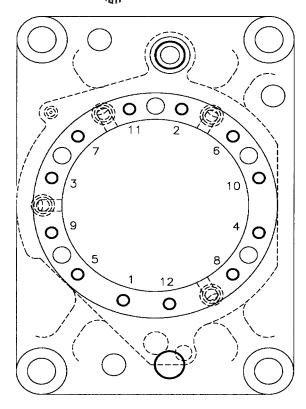
A10.2.4 Assembly of the camshaft gear with its V mark and UP mark at the top and with the camshaft pinned to the cylinder head, by design, results with the 0.50 in. bolts on-center of the 17 mm diameter clearance holes in the camshaft gear. Additive tolerances for all the involved parts can cause the bolts to be off-center in either direction. The purpose of the oversize holes is to ensure that the gears will mesh at all off-nominal, but in tolerance dimensions of the parts

A10.2.5 With the camshaft and the crankshaft pinned, the engine is necessarily at top dead center on the firing stroke. The

flywheel pointer is at 0° (TDC). The leading edge of a 3° timing notch on the camshaft gear is on the centerline of the cam sensor hole in the front housing. The leading edge of a 6° notch on the crankshaft timing disk is on the centerline of the crankshaft sensor hole in the front housing.

A10.2.6 With the flywheel pointer at 3° after top dead center, a 1Y3918 pin inserted in the crank timing sensor hole in the front housing shall also slide into a 6° wide notch of the crankshaft timing disk. This verifies that the leading edge of a notch on the timing disk is on the centerline of the crankshaft sensor which sets TDC for the electronic control module (ECM).


FIG. A10.3 Cylinder Liner Measurements and Specifications

Note 1—Grind the tip to 1.95 \pm 0.02 mm diameter for 5.0 \pm 0.5 mm long from spherical end. All dimensions are in mm.

Note 2—Indicator measures liner recession from the jug deck surface to the bottom of the liner combustion seal groove. The tip of the 8T0455 indicator rod requires modifications as indicated.

FIG. A10.4 Cylinder Liner Projection Measurement Indicator Modifications

Note 1—Center the support ring I.D. to the cylinder liner with four feeler gages of equal thickness, hand tighten the stud nuts, but remove feeler gages before tightening stud nuts.

Note 2—Tighten the stud nuts in numerical order as shown with a sequence level of 15, 55, and 105 \pm 10 N·m.

Note 3—The cylinder liner support ring torque sequence may be used after the cylinder head torque sequence as an alternate method if the liner bore distortion is out of test specifications.

FIG. A10.5 Cylinder Liner Support Ring Tightening Procedure

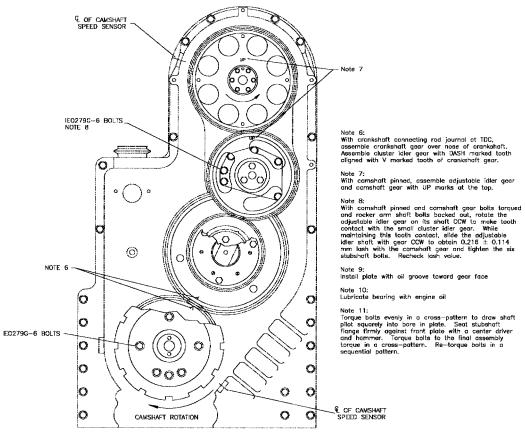



FIG. A10.6 1Y3700 Engine Timing

VALVE TIMING TOLERANCE ± 4°

Note—(a) Timing events in crankshaft degrees (reference only).

- (b) As viewed from front.
- (c) intake valve clearance set cold at 0.38.
- (d) intake valve clearance set cold at 0.76.
- (e) 1998 Scote engine.

FIG. A10.7 Timing Events in Crankshaft Degrees (for reference purpose only)

TABLE A10.1 Piston and Ring Specifications

	Top Ring ^A	Intermediate Ring ^A	Oil Control Ring ^A
Width of groove in piston for piston ring (new) Thickness of piston ring (new)			$3.21 \pm 0.01 \text{ mm}$ $3.137 \pm 0.006 \text{ mm}$
Side clearance between groove and piston ring (new) End gap clearance between end of ring (new)	0.080 mm, min	0.140214 mm	0.057 - 0.089 mm
installed in 137.160 mm diameter gage	0.585 - 0.737 mm	1.004 - 1.156 mm	0.382 - 0.636 mm

^A This engine uses keystone style piston rings and grooves in the piston. The piston ring lands are also elliptically ground; therefore, measure ring side clearance as follows:

- (a) Assemble piston ring on the piston with UP side toward the top of the piston.
- (b) Install piston and ring in a 137.60 mm diameter ring gage or modified slotted liner (see Appendix X1).
- (c) Push piston and ring until ring to be measured is at the top of the gage. Keep the piston in the center of the gage.
- (d) Measure the side clearance with a feeler gage at both major (90° from the centerline of the pin bore) and minor diameters. Each measurement should be within specification shown.
- (e) Install the oil control ring with gap in the spring 180° away from the gap in the ring.

TABLE A10.2 Engine Assembly Measurements, mm

Items to be checked		Specifications		Actual
	min	mean	max	
Crankshaft end play	0.11	0.34	0.57	
Camshaft end play	0.175	0.25	0.325	
Main bearing clearance (no.1) (front)	0.089	0.138	0.187	
Main bearing clearance (no.2)	0.089	0.138	0.187	
Main bearing clearance (no.3)	0.089	0.138	0.187	
Main bearing clearance (no.4)	0.089	0.138	0.187	
Nozzle tip projection	1	1.3	1.6	
Cam gear backlash	0.102	0.216	0.33	
Piston to head clearance	1.55	1.62	1.69	
ntake valve (1) Recess (closest to manifold)	2.2	2.5	2.8	
ntake valve (2) Recess	2.2	2.5	2.8	
Exhaust valve (1) Recess (closest to manifold)	1.2	1.5	1.8	
Exhaust valve (2) Recess	1.2	1.5	1.8	
nitial intake valve lash (cold)		0.38		
nitial exhaust valve lash (cold)		0.76		
nitial injector setting		78 ^A		Α
After test intake valve lash (cold)	0.3	0.38	0.46	
After test exhaust valve lash (cold)	0.68	0.76	0.84	
After test injector setting	77.8 ^A	78 ^A	78.2 ^A	Α
lywheel adapter runout (bore TIR)			0.15	
lywheel adapter runout (face TIR)(at R95)			0.15	
iming sensor location in front housing	2° ATDC	3° ATDC	4° ATDC	
iner negative projection	1.12	1.17	1.22	
iner ID taper			0.051	
iner ID out of roundness			0.038	
iner ID smallest anywhere			137.154	
lign pointer with TDC mark on flywheel.				
erify top of liner is below jug surface.				
low cooling jet to verify aim.				
njector and valve max lifts				
njector plunger lift at 72° crank	17.3	18.0 mm	18.7	
Exhaust valve lift at 247° crank	13.0	13.7 mm	14.4	
ntake valve lift at 456° crank	15.3	16.0 mm	16.7	

^A Go/No-Go gage

A11. FLUSHING INSTRUCTIONS AND APPARATUS

A11.1 Table A11.1 is the flushing instruction sheet and Figs. A11.1-A11.3 illustrate the flushing apparatus.

TABLE A11.1 Flushing Instruction Sheet

Step	Procedure	Flushing Fluid	Relief Valve ^A
1	Drain used oil from sump, cooler, oil scale and remove oil filter Install 1Y3916 plug in front plate (in place of fuel cam/cylinder head) Install 1Y3979 cover on top of block Install 1Y3980 piston jet aim fixture on top of 1Y3979 cover Connect flush cart outlet to filter flush adapter 1Y3935 and 5 spray		
	nozzles		open
2	Connect flush cart pump inlet to solvent tank Install new oil filter on the oil flush cart		opo.i
	Open engine sump drain. Then pump solvent into engine to flush	7.6 L Stoddard solvent	
	used oil	no recirculation	closed
3		Cleaning mixture of	
	Connect flush cart pump inlet to engine oil sump	1.9 L Dispersant Engine	
	Close engine sump drain	Cleaner	closed 5 min.
	Circulate fluid with flush cart and oil scale pumps turned on	5.7 L Stoddard Solvent	open 5 min.
4	Drain mixture from sump, cooler, oil scale, flush cart and filters		open
5			open 5 min.
	Circulate fluid with flush cart and oil scale pumps turned on	7.6 L Stoddard Solvent	closed 5 min.
6	Drain fluid from sump, cooler, oil scale, flush cart and filters		open
7	Repeat steps 5 and 6 two times or as needed until solvent remains clean		
8			open 5 min.
	Circulate EF-411 to flush Stoddard solvent	5.6 L EF-411	closed 5 min.
9	Drain oil from sump, cooler, oil scale, flush cart and filters		open
10	Circulate EF-411 at 415 kPa manifold pressure and align piston jets	5.6 L EF-411	open 5 min.
11	Drain oil from sump, cooler and oil scale. Rebuild engine for test		open
12	After engine is rebuilt, motor engine at a minimum of 200 r/min	5.6 L EF-411	Reconnect for normal operation
13	Drain oil from sump, cooler and oil scale		open

^A Supply 50 kPa air pressure to open the Johnson Controls oil relief valve.

∰ D 6681 − 01

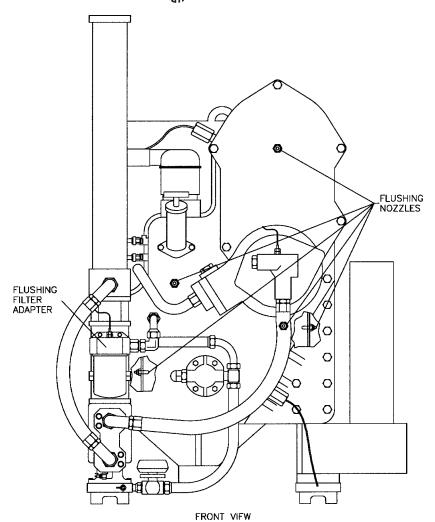


FIG. A11.1 Flushing Nozzle Locations

♣ D 6681 – 01

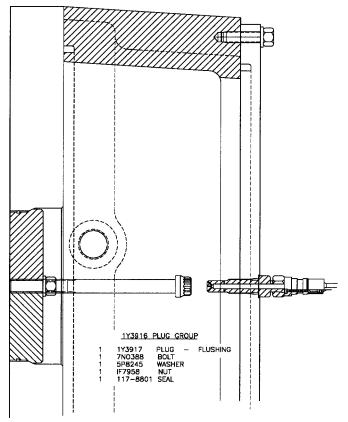


FIG. A11.2 Flushing Plug

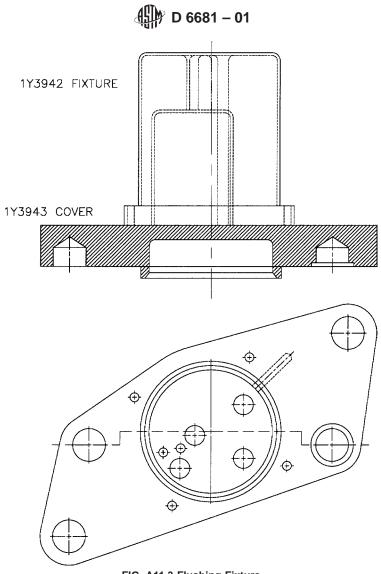


FIG. A11.3 Flushing Fixture

A12. WARM-UP, COOL-DOWN, AND TESTING CONDITIONS

A12.1 See Table A12.1.

TABLE A12.1 Warm-up, Cool-down, and Testing Conditions

Parameter	Units	Tol	Test Specifications					
			Step 1	Step 2	Step 3	Step 4	Step 5	
			5 min	5 min	5 min	10 min	60 min	
Speed	r/min	±3	1000	1000	1400	1800	1800	
Power	kW		idle	10	26	41	~55	
Torque	N·m	(a) ±5		100	176	219	~285	
Fuel rate	g/min	(b) ±1		48	95	148	185	
Fuel timing	BTC		13	13	13	13	13	
Humidity	g/kg	±1.7					17.8	
Temperatures °C								
Fuel into head		±3	~31	~32	~33	~36	42	
Coolant into jug			~41	~51	~82	~86	86	
Coolant from head		±3	42	52	83	90	90	
Oil to cooler							~128	
Oil manifold		±3					130	
External heating oil			165 max	165 max	165 max	165 max	165 max	
Intake air manifold		±3			60	60	60	
Exhaust manifold			~120	~275	~340	~370	~480	
Pressures kPa								
Fuel from head		±20	275	275	275	275	275	
Coolant into jug		(c)	~44	~44	~70	~81	~81	
Oil manifold		±20	415	415	415	415	415	
Intake air barrel (abs)		±1	120	120	157	225	272	
Exhaust barrel (abs)		±1		104	146	217	265	
Crankcase						~.05	~.10	
Flows								
Coolant	L/min	±2	~34	~34	~55	75	75	
Blowby	L/min					~35	~35	
Air	kg/h						~315	

Note 1—(a) Engine controlled to torque specification for Steps 2, 3, 4 and 5 min of Step 5.

A13. PISTON AND LINER RATING MODIFICATIONS

A13.1 The 1P piston deposits are accessed using the Modified CRC Diesel Piston Rating Method described in CRC Manual No. 18. Three levels of carbon (heavy, medium, and light) are rated for grooves one and three. Only two levels of carbon (heavy and light) are rated for the second groove and all lands, and only one level of carbon (light) is rated for the cooling gallery and under-crown. The carbon deposit factors are 1.00 for heavy, 0.5 for medium, and 0.25 for light carbon. The varnish merit values range from 1.0 to 10 using the CRC Rust/Varnish Rating Scale where 10 is clean and 1.0 is maximum intensity. The merit varnish values are converted to demerit values resulting in deposit factors that range from 0 for clean to 9.0 for maximum intensity. The merit varnish values are converted to demerit values using Eq A13.1:

Demerit Varnish Zonal Rating = Area $\% \times (10 - Merit Rating)$ (A13.1)

A13.1.1 *Example*—15 % \times (10.0 – 8.5) = 0.15 \times 1.5 = 0.22 demerits using rounding guidelines presented in Practice E 29.

A13.1.2 Fig. A13.1 shows the deposit rating areas for the under-crown and cooling gallery of the piston crown.

A13.2 The rating location factors were chosen to yield separation between low and high calibration oils. All required rating equipment, such as the rating booth and particular lamp used, are described in CRC Manual No. 18.

A13.3 Use the following procedure for calculating this test method's piston deposit ratings:

A13.3.1 Rate the piston as is normally done according to the Modified CRC Diesel Piston Rating Method described in CRC Manual No. 18.

A13.3.2 For groove three, land three, land four, the cooling gallery and under-crown, replace the rater-assigned varnish merit values with the restricted factors listed in Table A13.1.

A13.3.3 Calculate a demerit value for each area.

A13.3.4 Round each demerit to the nearest 0.01 demerits according to Practice E 29.

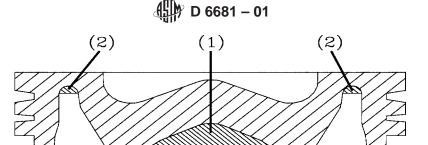
A13.3.5 Add the demerits to get the individual unweighted demerit value for each piston location.

A13.3.6 Multiply the unweighted demerit value by its location factor to get the individual weighted demerit rating for each piston location.

⁽b) Engine controlled to fuel rate specification for last 55 min of Step 5.

⁽c) Air pressure at coolant tower controlled to 35 kPa.

Note 2—Ramp Up Conditions Between Warm-up Steps:


⁽a) Torque (Nm/min); at 5 min (beginning at Step 2)— 20 Nm/min.

⁽b) Speed (r/min); at 10 min (beginning at Step 3)— 100 r/min/min.

⁽c) Inlet air pressure (kPa); at 10 min (beginning at Step 3)—12 kPa/min.

⁽d) Exhaust air pressure (kPa); at 10 min (beginning at Step 3)— 12 kPa/min.

⁽e) Inlet air temperature (°C); at 10 min (at start of test)— 5°C/min.

Note—Area 1—Under-crown: All surfaces of the under-crown including transition radius, but not the vertical sides of the pin bore struts. Area 2—Cooling gallery: Only the upper radius area.

FIG. A13.1 Under-crown and Cooling Gallery Rating Areas

TABLE A13.1 Grouped Varnish Rating Factors

Rater-Assigned Varnish Merit Value	Restricted Factor
1.0–4.0 4.1–7.0	7.5 4.5
7.1–9.9	1.5

A13.3.7 Round each individual weighted demerit rating to the nearest 0.01 demerits.

A13.3.8 Add all individual weighted demerit ratings to get WDP

A13.3.9 Round WDP to the nearest 0.1 demerits.

A13.3.10 Top groove carbon (TGC) equals the total carbon demerits for groove one.

A13.3.11 Top land carbon (TLC) equals the total carbon demerits for land one.

A13.4 *Liner Rating Procedure*—Liner rating should follow the sequence outlined herein. If deposits above ring travel are to be evaluated this should be done immediately upon completion of the test or disassembly.

A13.4.1 Liner Preparation:

A13.4.1.1 *Marking*—Thrust and anti-thrust sides are marked T & AT along with appropriate test identification (run number, and so forth). See Fig. A13.2.

A13.4.1.2 *Cutting*—Liners are cut along the front and rear, leaving the thrust and anti-thrust halves.

A13.4.1.3 Surface Preparation—Caution should be observed in the handling of the liners due to the sharpness of the

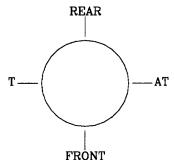


FIG. A13.2 Liner Thrust and Anti-Thrust Locations

cut edges. Wipe both halves of the liner using Stoddard solvent on a dampened soft rag followed by a clean soft dry rag.

A13.4.2 *Definition of Terms*—A clear plastic segmented overlay (see Fig. X1.6) is recommended as a useful rating aid in estimating the percentage of the area covered.

A13.4.2.1 *Bore Polishing*—Those areas of surface which are instantly recognizable as mirror finish regardless of random crosshatch honing marks.

A13.4.2.2 *Scuffing*—Localized adhesive wear distinguished by concentrated marks in the direction of motion, observed as a matte finish which is caused by a momentary welding and tearing of metal.

Note A13.1—Bore polishing and scuffing should be differentiated between and reported separately.

A13.4.2.3 *Scratching*—Random singular lines in the direction of motion generally a result of debris or installation of components. These need not be quantified, but should be noted in the appropriate remarks section.

A13.4.3 Liner Rating:

A13.4.3.1 *Rating Environment*—Rate liners in the CRC rating booth with the same light as specified to rate pistons or a two-bulb fluorescent desk lamp.

A13.4.3.2 *Bore Polishing*—The overlay is inserted in the liner half and the 10 to 15 % segments with 1 % indicators used as a guide in estimating the amount of polishing. Record the percent polish for each segment and then summarize those ten areas for each half. Tracing paper or equivalent may be used for a permanent record of the liner polishing.

A13.4.3.2.1 *Area Rated*—The area to be rated is generally defined as the area swept by the rings which is the distance from the top of the first ring at TDC to the bottom of the ring at BDC. On many occasions, it is required that the area above top ring travel be rated.

A13.4.3.3 *Liner Scuffing Rating*—Liner scuffing can be rated in a similar manner as bore polishing.

A13.4.3.4 Above Top Ring Travel Conditions—Area percentages may be determined in the liner by use of the 20-segmented template. Carbon deposits can be rated in two levels. Other conditions such as polishing, scratching/scuffing can be reported in area covered, if required.

A14. ADDITIONAL REPORT FORMS

A14.1 Figs. A14.1 and A14.2 are sample report forms.

LSRD4

	rarp.	•	
Product:		Batch No.:	
		TMC No.:	
Product No.:		TMO No.:	
		Tank No.:	
		Analysis Date:	
		Shipment Date:	

	I		SPEC	IFICAT	IONS		
TEST	METHOD	UNITS	MIN	TARGET	MAX	RESULTS 'C	RESULTS 'F
Distillation - IBF	D-86	('C) 'F	(177) 350		(199) 390		
10%		('C) 'F	(210) 410		(232) 450		
50%		('C) 'F	(249) 480		(277) 530		
90%		('C) 'F	(299) 570		(327) 620		
Distillation - EP		('C) 'F	(327) 620	1	(360) 680		
Recovery		vol%		REPORT			
Residue		vol%		REPORT			
Loss		vol%		REPORT			
Gravity	D-4052	'APl	32.0		36.0		
Pour Point	D-97	('C) 'F			(-17) 0		
Cloud Point	D-2500	('C) 'F			(-12) 10		
Flash Point	D-93	('C) 'F	(54) 130		, ,		
Viscosity @ 40°C	D-445	cSt	2		3.2		
Mercaptan Sulfur	D-3227	wt%		REPORT			
Sulfur	D-2622	wt %	0.030		0.050		
Composition, Aromatics	D-1319	vol%	28.0		35.0		
Composition, Olefins	D-1319	vol%		REPORT			
Composition, Saturates	D-1319	vol%		REPORT			
Basic sediment & water	D-2709	vol%			0.05		
Ramsbottom Carbon, 10 % residue	D-524	w: %			0.35		
Ash content	D-482	wt %			0.01		
Total Acid Number	D-664	mg KOH/g		REPORT			
Strong Acid Number	D-664	mg KOH/g		REPORT			
Accelerated Stability	D-2274	mg/100 ml		REPORT			
Copper Corrosion	D-130				3		
Cetane Number	D-613		42.0		48.0		
Aliphatic paraffins	D-2425	wt%		REPORT			
Monocycloparaffins	D-2425	wt %		REPORT			
Dicycloparaffins	D-2425	wt%		REPORT			
Tricycloparaffins	D-2425	wt %		REPORT			
Alkylbenzenes	D-2425	wt %		REPORT			
Indanes/Tetralins	D-2425	wt%		REPORT			
Indenes	D-2425	wt %		REPORT			
Naphthalene	D-2425	wt%		REPORT			
Naphthalnenes	D-2425	wt%		REPORT			
Acenaphthenes	D-2425	wt%		REPORT			
Acenaphthylenes	D-2425	wt%		REPORT			
Tricyclic aromatices	D-2425	wt %		REPORT			

Approved by:	 Analyst

 $\label{eq:Note-Include} Note-Include a copy of Suppliers Fuel Sheet in the Test Report. \\ \textbf{FIG. A14.1 Fuel Batch Analysis Example}$

Fax To: Company: Fax Number:	:						Monitoring Charts And	g Center **** alysis ***	*				
Start EOT date EOT time LTMS date	= =]	Lab Stand Run Reporte		mm			CMII IND Analy	R = = vsis Com	piled:
LTMS time Parameter	=	Reported Value		Trans Value	sforme	d	1997021 Mean	S	Note:	When tw	r is the \	<i>N</i> arning	
WDP TGC TLC AOC EOTOC			-				• • • • • • • • • • • • • • • • • • • •		Keys:	and the lo	on alarn	1	on Limit.
				EWM		Stand A	nalysis			SHEWH	ART		
	N	Z(i)	Severity Limit	Al		Precision Limit	n Al	V(i)	Severity Limit	Al		Precision Limit	Al
WDP TGC TLC AOC EOTOC													
				EWM		Laborat	tory Analy	sis		SHEWH	ART		
	N	Z(i)	Severity Limit	Al		Precision Limit	n Al	Y(i)	Severity Limit	Al		Precision Limit	Al
WDP TGC TLC AOC EOTOC							_						
		WDP S				tory Lev	vel Severity	Adjustments	TLC SA				
STAND is Ca	alihrated		AOC SA ≈ O_(Circle		ed)				ЕОТОС	SA =			
Calibration E				_									
A TMC Valid	•	-		AC = A	-		libration.						
STAN	D PULI	LED FROM	A LTMS S					tance Criteria Reviewer					

^A Based on review of call-in report of operational data and control chart analysis shown above.

FIG. A14.2 Example of Fax Copy of TMC Control Chart Analysis for Calibration Tests

A15. REPORT FORMS

A15.1 Figs. A15.1-A15.20 are example report forms.

VERSION 19980921

CONDUCTED FOR TSTSPON1 TSTSPON2

	V = VALID
LABVALID	I = INVALID
	N = RESULTS CAN NOT BE INTERPRETED AS
	REPRESENTATIVE OF OIL PERFORMANCE (NON-
	REFERENCE OIL) AND SHALL NOT BE USED IN
	DETERMINING AN AVERAGE TEST RESULT USING
[MULTIPLE TEST CRITERIA

Test Number					
Test Stand: STAND	Engine Run No	o.: ENRUN			
EOT Time: EOTTIME	EOT Date: D7	EOT Date: DTCOMP			
Oil Code ^A : OILCODE/CMIR					
Formulation/Stand Code: FORM					
Alternate Codes: ALTCODE1	ALTCODE2	ALTCODE3			

In my opinion this test OPVALID been conducted in accordance with the 1P TestMethod (D-XXXX) and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

AOil Code (or CMIR if this is a reference oil test)

SUBMITTED BY:	SUBLAB
	Testing Laboratory
	SUBSIGIM
•	Signature
	SUBNAME
	Typed Name
	SUBTITLE
	Title

FIG. A15.1 Final Report Cover Sheet

1P Form 1

TEST REPORT SUMMARY

LAB: LAB	EOT DATE: DTCOMP	END TIME: EOTTIME	METHOD: METHOD							
STAND: STAND RUN NUMBER: ENRUN										
FORMULATION/STAND CODE: FORM										
OIL CODE/CMIR: OILCODE/CMIR										

START DATE: DTSTRT	TOTAL TEST LE	NGTH: TESTLEN	TMC OIL TYPE. A IND
LAB INTERNAL OIL CODE:	LABOCODE	ENGINE SERIAL NUM	MBER: ENGSN

i i	SPECTIVE DATE	WDP	TOC	TLC	OL CONSUMPTION On	TRANSPORMED OL CONSUMPTION	EOTOC gh	TRANSFORMED EGTOC
UNADJUSTED LAB RATING	and the same	MD.	10C	TLC	oc	OCT	ROPOC	17007
DENSITRY CORRECTION OF ANY)	DATACE	WOCF	10004	TLCCF		OCTCF	100-31	RIOCICA
SUBTOTAL.	Challeton .	MOCCH	TOCCOR	TECCOR	0.00	OCTOR	10000	ETOCITOR
LAB SEVERITY ADJUSTMENT [®] OF ANY)	DATEKA	WZSA	TOXIX	TICH		OCTEA		170C754
TOTAL	1400	WORNS.	LOCART	TICPML	OCMA	OCTINE	BOTOCINE.	17007/96

	EMICTIFE DATE	WDP	TGC	TLC	ONSUMPTION ON	TRANSFORMED OIL CONSUMPTION	EOTOC gh	TRANS-DRMED E000C
TEST TAINIET MEAN!	EFFERTE	WIN	ROOM	TLOW	77 71 7	OCTM	196-5	SOTOCIM
TEST TARRET STD ^A	EPPDATE	MIR	POLY	71.03		OCTE	3/1950	8070078

	MATERIALISM	WDP	TOC	TLC		THE	
REFERENCE RATE-NOS ^A	MEAB	RSW(2)	RATION	RATIC	10000000	THE REAL PROPERTY.	

	TOP	INT.1	OIL.	PISTON	PISTON SKIRT	LINER
RING LOSS OF HIDE CLEARANGE (non.)	LSCTOP .	LSCINT	LSCOIL			611111
RINO END GAP INCREASE (WII)	MNGGTI	ADVGGIII	AINGFOI			
IS THE RING STUCK!	STUCKTOP	STUCKINI	STUCKOU			
SCUPPIED ABELA %	SCUFFTOP	SCUFFENI	SCUFFOIL	SCUPCHON	SCUPSKET	SCUFFLIN
AVERAGE WEAR STEP (run)	3/858 L B	111111111111	THE REAL PROPERTY.	1	03 V 100 V	AWEARST
% BORE POLISH	BOOK OF THE PERSON NAMED IN			Contraction of the last		BOREFOL

Notes: AReference oil tests or referee ratings requested by the test sponsor BNon-reference oil test only

FIG. A15.2 Test Report Summary

1P FORM 2 OPERATIONAL SUMMARY

LAB: LA	AB	EOT DATE	: DTCOMP		END TIME:	EOTTIME	METHOD:	METHOD		
STAND:	STAN	ID.	RUN NUMBER:	ENRUN						
FORMULATI	FORMULATION/STAND CODE: FORM									
OILCODE (or	CMIR):	OILCOD	DE/CMIR							

Г	OPERATING	QUALITY	GUALITY INDEX		PROCESS	ı	TO	TAL DATA PO	NTS
1	PARAMETER	THRESHOLD	INDEX	UNITS	TARGET	AVERAGE	SAMPLES A	BQD P	OVER ON DER C
1	ENGINE SPEED	0.00	ORPM	r/min	1800	ARPM	NRPM	BRPM	ORPM
	FUEL FLOW	0.00	QFFL0	g/min	185	AFFLO	NFFLO	BFFLO	OFFLO
	HUMIDITY	0.00	QHUMID	g/kg	17.8	AHUMID	NHUMID	BHUMID	OHUMID
	COOLANT FLOW	0.00	acolflo	L/min	75	ACOLFLO	NCOLFLO	BCOLFLO	OCOLFLO
æ	TEMPERATURE								
Ē	COOLANT OUT	0.00	QCOLOUT	°C	90	ACOLOUT	NCOLOUT	BCOLOUT	OCOLOUT
PARAMETERS	OIL TO MANIFOLD	0.00	QOMANTM	ů	130	AOMANTMP	NOMANTMP	BOMANTMP	OOMANTMI
_	INLET AIR	0.00	QINAIRT	°C	60	AINAIRT	NINAIRT	BINAIRT	OINAIRT
CONTROLLED	FUEL INTO HEAD	0.00	QFUELTMP	°C	42	AFUELTMP	NFUELTMP	BFUELTMP	OFUELTMP
NO	PRESSURES								
٥	OIL TO MANIFOLD	0.00	QOMANPR	kPa	415	AOMANPR	NOMANPR	BOMANPR	OOMANPR
	INLET AIR (ABSOLUTE)	0.00	QINAIRP	kPa	272	AINAIRP	NINAIRP	BINAIRP	OINAIRP
	EXHAUST (ABSOLUTE)	0.00	QEBP	kPa	265	AEBP	NEBP	BEBP	OEBP
	FUEL FROM HEAD	0.00	OFUELPR	kPa	275	AFUELPR	NFUELPR	BFUELPR	OFUELPR

П	OPERATING		PROCESS		TO	TAL DATA PO	
	PARAMETER	UNITS	TYPICAL RANGE	AVERAGE	BAMPLES ^A	BOD®	OVERVAPERO
	INTAKE AIR FLOW(reference test only)	kg/h	312-378	AAIRFLO			
	POWER	kW	53-57	APWR	NPWR	BPWR	OPWR
	TORQUE	Nm	248-301	ATORQUE	NTORQUE	BTORQUE	OTORQUE
ERS	BLOWBY	L/min	20-56	ABLOBY	NBLOBY	BBLOBY	OBLOBY
PARAMETERS	TEMPERATURE						
AR/	COOLANT IN	•c	86-88	ACOLIN	NCOLIN	BCOLIN	OCOLIN
_	COOLANT DELTA T	•c	2-6	ACOLDT	NCOLDT	BCOLDT	осоцт
3 0	OIL COOLER IN	°C	128-131	AOCOOLIN	NOCOOLIN	BOCOOLIN	OOCOOLIN
Ň	HEATING OIL	•c	165 maximum	AHEATOIL	NHEATOIL	BHEATOIL	OHEATOIL
NON-CONTROLLED	EXHAUST	•c	463-492	AEXHTIMP	NEXHTMP	BEXHTMP	OEXHTMP
Z	PRESSURES						
	CRANKCASE	kPa	0.09-0.33	ACCV	NCCV	BCCV	occv
	COOLANT TO JUG	kPa	64-92	ACOLPR	NCOLPR	BCOLPR	OCOLPR

- A Total number of data points taken as determined from test length and procedural specified sampling rate
- B Number of Bad Quality Data points not used in the calculation of the statistical measures
- C Number of points clipped by over/under range limits of the statistical measures
- D Gathered from 1P Matrix Test data

FIG. A15.3 Operational Summary

1P

FORM 3 ASSEMBLY MEASUREMENTS AND PARTS RECORD

LAB: LAB	LAB: LAB EOT DATE: DTCOMP			END TIME:	EOTTIME	METHOD:	METHOD			
STAND: STA	ND	RUN NUMBER:	ENRUN							
FORMULATION	FORMULATION/STAND CODE: FORM									
OILCODE:	OILCC	DE/CMIR								

Additives y vigas (18)	MINERAL PROPERTY OF PRODUCTION
INJECTOR SETTING (GO / NO-GO)	INJSET
WAS TIMING INITIALIZED? (YES/NO)	TINIT
PISTON/HEAD CLEARANCE mm	PISTONCL
CAM GEAR BACKLASH mm	CAMLASH
DESIRED FUEL TIMING *BTC	FUELTIM
INTAKE VALVE OPEN "ATC	INVALOPN
INJECTOR PLUNGER LIFT mm @ 72°	PLUNLIFT
INTAKE VALVE LIFT mm @ 456°	INLIFT
EXHAUST VALVE LIFT mm @ 247°	EXLIFT

	PART NUMBER	R	SERIAL NUMBER		DATE CODE	INSPECTION CODE
LINER	LINERPN	A	LINERSN	A	LINERDC B	
TOP RING	TOPPN	С	TOPSN	B		
INTERMEDIATE RING	INTPN	С	INTSN	В		
OIL RING	OILPN	С	OILSN	B		
PISTON CROWN	CROWNPN	D	CROWNSN	D	CROWNDC F	CROWNIC G
PISTON SKIRT	SKIRTPN	н	SKIRTSN	1		
FUEL INJECTOR	NOZZLEPN	J	NOZZLESN	K		
ECM EPROM	ECMPN				ECMDC	
PISTON COOLING JET	PTUBEPN		PTUBESN			

- A On liner O.D.

 B On liner O.D. (NNAN)
- B On paper envelope containing the ring
 F Number below "E" located on piston top
- H On bottom surface of skirt rim
 1 On bottom surface under pin bore

- C On box label
 D On top of piston
- G Number above "B" located on piston top
- J On top surface of plunger
- K On top surface of plunger -6 digits

FIG. A15.4 Assembly Measurements and Parts Record

FORM 4 PISTON RATING SUMMARY

TE	ST IDENTIFICA	ATION	LAB:	LAB	EO	T DATE	:DTC	OMP	END	TIME: EO	TTIN	ИЕ	STANE	: STAI	VD	RUN	#; ENR	// ME	THOD:	METH	OD .
FO	FORMULATION/STAND CODE: FORM OILCODE/CMIR: OILCODE/CMIR																				
	ST FUEL: TES			FUEL	BATCH	: FUEL	BTID		DATE	ATE RATED: DTRATE RATER INITIALS: RINIT VERIFIED BY: VRINIT							·				
	LAST STAND REI	ERENÇE ON	D/	TE CO	MPLETI	ED: <i>LF</i>	DTCO	ИP	STAND	#: STAN			UN #:	LREN			OIL CO				
				WD	P		TGC		1	LC	OIL	CONSUM g/h	APTION	TRAN CON	SFOMED SUMPTION	OIL DN		TOC /h	TI	ANSFO FOTO	RMED C
L	AST REF. THIS	STAN	D <i>U</i>	RWD		LRTO	3 <i>C</i>		LRTLC		LR	OC.		LRO	CT		LRE01	ос	LR	ETOCT	
L	NDUSTRY AV	ERAGE	LI	RAWD		LRA	TGC		LRATL	С	**********		**************	LRA	ост				LR	AETOC	7
L	INDUSTRY	STD	LI	RSWD		LRS	TGC		LRSTL	C				LRŞ	OCT_				LR.	SETOC	T
TO	OTAL PISTON RATINGS SUMMARY									,											
Ι,		GROO		· · · · · ·		LAND	•					GROO	VE	LAND	S	,			OOLING		DER
	DEP.	NO). 2	NO		NC). 2	DEP.			. 3). 3	_	<u>0. 4</u>		LERY	CRO	OWN
Ш	FACTOR	A,%	DEM.	A,%	DEM.	A,%	DEM.	A,%	DEM.	FACTO	R	A,%	DEM.	A,%	DEM.	A,%	DEM.	A,%	DEM.	A,%	DEM.
C	HC - 1.0	G1HCA	G1HCD	G2HCA	В 2НСD	L1HCA	LIHCD	L2HCA	L2HCD			G3HCA	GЗHCD	1.3HCA	L3HCD	LAHCA	L4HCD				
R	MC - 0.5	G1MCA	G1MCD									G3MCA	G3MCD								
В	LC25	GILCA	GILCD	G2LCA	GZLCD	LILGA	LILCO	LZLGA	LZLCD			G3LCA	G3LCD	L3LC4	Tatco	LALCA	LALCD	OGLCA	OGLCD	UCLCA	UCLCD
0				1													7				
N	TOTAL	GIACTOI	G1DCTO	G2ACTO	твгостот	LIACTO	LIDCTOI	LZAÇTO	1200707			3 <i>ACTOT</i>	630CT0TE	3ACTOT	L3DCTOTA	АСТОТ	L4DCTOT	SACTOT	рвостоп	CACTOT	рсостот
			G1V9D		G2V9D													1			r
	8 - 9	GIVBA GIVBA	GIVED	G2V8A	G2V8D	LIV9A LIV8A	LIV9D LIV8D	L2V8A	L2V9D						L3V75D						
	7 - 7.9	GIV7A	G1V7D	G2V7A	G2V7D	LIVOA	LIVID	L2V0A	12770	7.5		G3V75A	G3V750	LSV/SA	LSV/SD	140/54	(47/50	DGV75A	OGV75D	UCV/5A	UCV750
١.,	6 - 6.9 5 - 5.9	GIV6A	G1V6D	GZV6A	G2V6D	LIVEA	LIVED	LZV6A	L2V6D		\dashv				 -	<u> </u>	╂			<u> </u>	
Ă	4 - 4.9	GIV5A	GIV5D	G2V5A	G2V5D	LIV5A	LIVED	LZVSA	L2V50	4.5		G3V45A	G3V45D	120454	L3V45D	LAVASA	LAV45D	DOVASA	OGV45D	UCV454	UCV45D
R	3 - 3.9	G1V4A	G1V4D	G2V4A	GZV4D	LIV4A	LTV4D	LZV4A	L2V4D	4.5			55,455	20174				00173		-	*******
N	2 - 2.9	G1V3A	G1V3D	G2V3A	G2V3D	L1V3A	L1V3D	L2V3A	LZV3D								<u> </u>		 		
s	1 - 1.9	G1V2A	G1V2D	G2V2A	G2V20	L1V2A	L1V2D	L2V2A	L2V2D	1.5	-	G3V15A	G3V15D	L3V15A	L3V150	4V15A	L4V15D	DGV15A	OGV15D	UCV15A	UCV150
н	>0 - 0.9	GIVIA	GIVID	G2V1A	G2V1D	LIVIA	LIVID	L2V1A	L2V1D												1
	CLEAN 6	VCLNA	0 (SACTATA	0	1VCLNA	0	2VCLNA	0	CLEAN	1	SVCLNA	0	3VCLNA	0 4	IVCLNA	0	GVCLNA	0 4	CVCLNA	0
	TOTAL 61	4VTOT	G1DV704	2AVTOT	G20VTOT1	IAVTOT	LIDVTOT	2 <i>AVTOT</i>	LZDVTOT		-	3AVTOT	33DVTOT E	SAVTOT	LSDVTOTE	4AVTOT	L4DVTOT	GAVTOT	οσοντοτυ	CAVTOT	COVIOT
RA	TING	G1U	WD	G2U	<i>IWD</i>	L10	JWD	L2U	IWD			G3U	WD .	L3U	WD	L4	UWD	OGU	JWD	UC	IWD
LOC	ATION FACTOR	2	2	3		1		;	3			2	0		0		60	0	.6		1
IN	RATING	G11	ND	G2	WD	L1\	ND	L2	WD			G3	WD	L3	WD	L4	#WD	OG	WD	UC	WD
WDP TGC					TLC UNWEIGHTED DEP. T.L. FLAKED CAR				CARBO	N %											
W	D			TGC	<u> </u>				TLC				UN	/D				TLFC			

FIG. A15.5 Piston Rating Summary

1P Form 4A PISTON RATING WORKSHEET^A

LAB: LAB	EOT DATE: DTCOMP	END TIME: EOTTIME	METHOD: METHOD						
STAND: STAND	RUN NUMBER: ENRU	V							
FORMULATION/STAN	D CODE: <i>FORM</i>								
OIL CODE/CMIR: OILCODE/CMIR									

RATEWSIM

 A Refer to Appendix X1 for an example of a Piston Rating Worksheet. FIG. A15.6 Piston Rating Worksheet

1P

FORM 5 SUPPLEMENTAL PISTON DEPOSITS (GROOVE SIDES AND RINGS)

LAB:	LAB		EOT DATE	DTO	COMP			END TI	νίΕ:	EOTTIM	E ME	THOD:	METHOD)				
STAND:	STA	ND	RU	N NUMBE	R:	ENRUN												
FORMULATION	i/STA	ND CO	DE: FORM	1														
OILCODE/CMIR	: }:		OILCODE/	CMIR														
				CARBON			VARNISH											
DEPOSIT TYPE			нс	МС	LC	8 - 9	7 - 7.9	6 - 6.9	5 - 5.9	4 - 4.9	3 - 3.9	2 - 2.9	1 - 1.9	>0 - 0.9	CLEAN			
	1		G1THCA	G1TMCA	GITLCA	G1T9A	G178A	G1T7A	G176A	G175A	GITAA	G1T3A	G1T2A	GITIA	GITCLNA			
		В	G1BHCA	G1BMCA	G1BLCA	G189A	G1B8A	G187A	G186A	G185A	G184A	G183A	G1B2A	G1B1A	G1BCLNA			
GROOVE TOP	**********	Т	G2THCA	GZTMCA	G2TLCA	G2T9A	G278A	G277A	G276A	G275A	G2T4A	G273A	G2T2A	G2T1A	G2TCLNA			
AND	2	В	G2BHCA	G2BMCA	G28LCA	G289A	G288A	G2B7A	G286A	G285A	G284A	G283A	6282A	G281A	G2BCLNA			
воттом																		
	3	T B	G3THCA G3BHCA	G3TMCA G3BMCA	G3TLCA G3BLCA	G379A G389A	G3TBA G3B8A	G317A G387A	G3T6A G3B6A	G375A G385A	G374A G384A	G373A G383A	G3T2A G3B2A	G371A G381A	G3TÇLNA G3BCLNA			
												l.		1				
		Т	RITHCA	RITMCA	RITLCA	R1T9A	#1TBA	R177A	R176A	R175A	R1T4A	R1T3A	R1T2A	RITIA	RITCLNA			
	1	В	RIBHCA	R1BMCA	RIBLCA	R1R9A	R188A	R187A	R186A	R1B5A	A184A	R1B3A	R182A	RIBIA	R1BCLNA			
	*********	BK	R1BKHCA	R1BKMCA	R1BKLCA	R1BK9A	R1BK8A	R1BK7A	R1BK6A	R1BK5A	R1BK4A	R1BK3A	R18K2A	R18K1A	R18KCLNA			
		Т	RZTHCA	RZTMCA	RZTLCA	R2T9A	R2T8A	R2T7A	R2T6A	R2T5A	R2T4A	R2T3A	R2T2A	R2T1A	R2TCLNA			
TOP BOTTOM	2	В	R2BHCA	R28MCA	RZBLCA	RZBSA	R2B8A	#287A	R286A	R2B5A	R2B4A	R2B3A	R2B2A	R2B1A	R2BCLNA			
RINGS		ВК	R2BKHCA	RZBKMCA	R2BKLCA	H2BK9A	R2BK8A	R2BK7A	R2BK6A	R2BK6A	R2BK4A	R2BK3A	R2BK2A	R2BK1A	R2BKCLNA			
	_	T	R3THCA	R3TMCA	R3TLCA	R3T9A	R3T8A	R3T7A	R3T6A	R3T5A	R3T4A	R3T3A	R3T2A	R3TIA	RSTCLNA			
	3	B BK	R3BHCA R3BKHCA	R3BMCA R3BKMCA	RBBLCA	R3B9A R3BK9A	R3B8A R3BK8A	R3B7A R3BK7A	R3B6A R3BK6A	R3B5A R3BK5A	R3B4A R3BK4A	R3B3A R3BK3A	R3B2A R3BK2A	R381A R3BK1A	R3BCLNA R3BKCLNA			
		- DK					1.55.						1					
ADDITIONAL D	EPOS	IT & C	ONDITION	RATINGS														
PISTON CROW	N		CROWNAD															
PISTON SKIRT			SKIRTAD						.,									
RINGS			RINGSAD											-				
LINER			LINERAD															

FIG. A15.7 Supplemental Piston Deposits (Groove Sides and Rings)

1P FORM 5A REFEREE RATING

TEST IDENTIF	ICATION						
LAB:	LAB	EOT DATE:	DTCOMP	END TIME:	EOTTIME	METHOD:	METHOD
STAND:	STAND	RUN #:	ENRUN				
FORMULATIO	N/STAND CODE:	FORM					
OILCODE/CM	R:	OILCODE/CMIR					
REFEREE RAT	ING INFORMATION						
COMPANY	RRI AR	BATING NUMBER	RRNO	DATE BATED:	RRDATE	DATED:	RRINIT

то	TAL PISTON R	ATIN	3S SUN	MARY	1															
۱ _			GRO	OVES			LAI	NDS			GRO	OVES		LAI	NDS		OIL C	OOLING	UN	DER
1 1	DEP.	N). 1	NO	D. 2	NO). 1	N	0. 2	DEP.	N	0. 3	N	0. 3	N	0. 4	GAI	LERY	CR	OWN
نلـــا	ACTOR	Α,%	DEM.	A,%	DEM.	A,%	DEM.	A,%	DEM.	FACTOR	A,%	DEM.	A,%	DEM.	A,%	DEM.	A,%	DEM.	A,%	DEM.
d	HC-1.0	N G1HCA			RRG2HCD	-			RRL2HCD		RAG3HC/	RRG3HCD	RRL 3HCA	AAL3HCD	RRLAHCA	RRL4HCD				
ĬĂ		RG1MCA	RRG1MCD								RRG3MC/	RRG3MCD								
R		RRG1LCA	ARG1LCD	RRG2LCA	RRGZLCD	RRLILCA	RRL1LCD	RRL2LCA	RRL2LCD		RRG3LCA	ARG3LCD	RRL3LCA	RALSLCD	RRL4LCA	RRL4LCD	RROGLCA	RROGLCD	RRUCLCA	ARUCLCD
B	20 /20																			
l Si				GZACTO	RG2DCTOT	LIACTO	ALIDCTOT	L2ACTO	RL2DCTOT		63АСТО	RG3DC TOT	L3ACTO	***************************************	L4ACTO	RL4DCTOT	обасто	POGDCTOT	UCACTO	RUCDCTO
╽┝	0.3	49G1V9A					RRL1V9D		Ļ											Ī
╽┝	7 - 7.5	VAG I VALA		RRG2V8A					RRL2V8D	7.5	RG3V75.	RAG3V75D	RRL3V75	RRL3V75D	RAL4V75A	RRL4V750	ROGV75	RROGV75D	RUCV75/	RRUCV75E
L	0 - 0.9		RAG1V7D						RRL2V7D								ļ			
╎╎	5 - 5.5	VHG1VBA	72.00		RRG2V6D	RRL1V6A			RRL2V6D					İ						
옶	4-4.3	NG1V54						-	RRL2V5D	4.5	MG3V45	RRG3V45D	RRL3V45/	RRL3V450	RRL4V45A	RRL4V45D	PROGV45	AROGV450	RUCV45	RRUCV450
N-	3.3.0	RG1V4A	RAG1V4D			ARL I V4A			RRL2V4D		ļ	ļ		ļ						
ı _	2-2.5	MG1V3A		RAG2V3A		ARL I V3A		ARL 2V3A				l								
S	1-1.3					RRL 1V2A	RRL1V2D	ARL2V2A		1.5	RG3V15	RAG3V15D	RRL3V15A	RRL3V15D	RRL4V154	RRL4V15D	ROGV15	MROGV15D	RUCV15	RRUCV150
╙	70-0.3	IRG1V1A		RRG2V1A	RRG2V1D	ARL1V1A		ARL2V1A												l
****	CLEAN	MGTVCL		IRG2VCL/	0	RRL I VCL		RRL2VCLA	0		RG3VCL	0	RESVEL	, ,	RRLAVCLA		ROGVCL		RUCVCL	0
			***************************************	A PROTECTION OF THE PARTY OF	RG2DVTOT							RG3DVTOT			_					
RA	TING	RRG	IUWD	RRG	2UWD	RRL 1	UWD	RRL	2UWD		RRG	3UWD	RRL:	3UWD	RRL4	1UWD	RRO	GUWD	RRU	CUWD
-	ATION FACTOR		2		3		1		3			20		20		30).5	711.0	1
							•		<u>-</u>							-				
IND	RATING	RRG	1WD	RRG	2WD	RRL	1WD	RRL	2WD		RRG	3WD	RRL	3WD	RRL	4WD	RRC	GWD	RRU	ICWD
	WDP					TGC				TLÇ		U	NWEI	HTED (DEP.		T.L. FL	AKED (ARBO	N %
R	RWD			RRT	GC			F	RRTLC			RRUV	VD			1	RRTLF	;		

FIG. A15.8 Referee Rating

1P Form 6 Oil analysis

TEST IDENTIFICA	TION						
LAB: LAB	EOT DATE:	DTCOMP	END TIME:	EOTTIME	METHOD:	METHOD	
STAND:	STAND	RUN NUMBER:	ENRUN				
FORMULATION/S	STAND CODE:		FORM				
OILCODE/CMIR:		OILCODE/CMIR					
TEST FUEL:	TESTF	TUEL	FUEL BATCH:	FUE	LBTID		

OIL ANALYSIS	NEW:	24	48	72	96	120	144	168	192	216	240	264	288	312	336	360
VISC @ 100°C	V100HNEW	V100H024			V100H096						V100H240		V100H288			V100H360
VISC @ 40°C	V40_HNEW	V40_H024			V40_H096						V40_H240		V40_H288			V40_H360
TBN D4739	TBN_HNEW	TBN_H024			TBN_H096						TBN_H240		TBN_H288			TBN_H360
TAN D664	TAN_HNEW	TAN_H024			TAN_H096						TAN_H240		TAN_H288			TAN_H360
WEAR METALS Fe (ppm)	FEWMHNEW	FEWMH02			FEWMH09						FEWMH24		FEWMH28			FEWMH360
Al (ppm)	ALWMHNEY	ALWMH02			ALWMH09						ALWMH24		ALWMH28			ALWMH36
Si (ppm)	SIWMHNEW	SIWMH024			SIWIMH096						SIWMH240		SIWMH280			SIWMH360
Cu (ppm)	CUWMHNEV	симмног	,		CUWMH09	,					CUWMH24)	CUWMH28			Симмнзв
Cr (ppm)	CRWMHNEY	CRWMH02			CRWMH09						CRWMH24	,	CRWMH28	,		CRWMH36
Pb (ppm)	PBWMHNEV	PBWMH02			PBWMH09						PBWMH24		PBWMH28			PBWMH38
FUEL DILUTION %		FDILH024									FDILH240					FDILH380
BLOWBY (L/min)		BLBYH024	BLBYHO48	BLBYH072	BLBYH096	BLBYH120	BLBYH144	BLBYH168	BLBYH192	BLBYH216	BLBYH240	BLBYH264	BLBYH288	BLBYH312	BLBYH336	BLBYH360
Oil Consumption g/h for hrs ending		OCOMHO24	OCONHO48	OCONHO72	OCONHO96	OCONH120	OCONH144	OCONH168	OCONH192	OCONH216	OCONH240	OCONH264	OCONH288	OCOMH312	осомн336	OCONH360
Oil Consumption		OCRRHO24	OCRRHO48	OCRRH072	OCRRH096	OCRRH120	OCRRH144	OCRRH168	OCRAH192	OCRRH216	OCRRH240	OCRRH264	OCRRH288	OCRRH312	OCRRH336	OCRRH360
FUEL POSITION (mm)		FPOSH024									FPOSH240					FPOSH360

FIG. A15.9 Oil Analysis

1P FORM 7

DOWNTIME SUMMARY

LAB:	LAB EC	T DAT	E: DTCOMP		END TIME:	EOTTIME	METHOD:	METHOD	
STAND:	STAND		RUN NUMBER:	ENRUN					
FORMULA	ATION/ST	AND C	ODE: : FORM						_
OILCODE	/CMIR:	OILCO	DDE/CMIR						_

Number of	Downtime	Occurrences	DWNOCR	
TEST HOURS	DATE	DOWNTIME		REASONS
DOWNHOO1	DDATHOO1	DTIMHO01	REAH001	
•				7.00
	1	TOTLDOWN	TOTA	L DOWNTINE (126 HR. MAX)

Commente		
Number of Comment Lines	тотсом	
ОСОМН001		

FIG. A15.10 Downtime Summary

1P FORM 8 RING MEASUREMENTS

LAB: LAB	EOT DATE: DTCOMP	END TIME: EOTTIME	METHOD: METHOD							
STAND: STAND	RUN NUMBER: ENRUM	V								
FORMULATION/STANI	FORMULATION/STAND CODE: FORM									
OIL CODE/CMIR: OILCODE/CMIR										

ALL RING MEASUREMENTS ARE MADE USING METRIC FEELER GAGES

RING GAPS (mm)	1Y3802 TOP	1Y3803 INTERMEDIATE	1Y3804 OIL
SPECIFICATIONS	$0.66 \pm 0.08 \text{mm}$	$1.08 \pm 0.08 \mathrm{mm}$	0.51 ± 0.13 mm
PRE-TEST	RINGGTE	RINGFI1E	RINGGOE
POST-TEST	RINGFTO	RINGGI 10	RINGGOO
INCREASE	RINGGTI	RINGGI 11	RINGGOI

	NG SIDE CARANCE ^A	A	В	С	D	AVG.	MIN.	SPECIFICATION
	PRE-TEST	SIDETPE 1	SIDETPE2	SIDETPE3	SIDETPE 4	ASIDETPE	ISIDETPE	
TOP	POST-TEST	SIDETO1	SIDETPO2	SIDETPO3	SIDETPO4	ASIDETPO	ISIDETPO	$0.13 \pm 0.04 \mathrm{mm}$
	LSC	LSCT1	LSCT2	LSCT3	LSCT4	LSCTOP	ILSCT	0.10 = 0.0
	PRE-TEST	SIDE 1 PE 1	SIDE1PE2	SIDE1PE3	SIDE1PE4	ASIDE I PE	ISIDE ! PE	
INT	POST-TEST	SIDE 1 PO 1	SIDE1PO2	SIDE I PO3	SIDE 1 PO4	ASIDE1PO	ISIDE1PO	$0.18 \pm 0.04 \mathrm{mm}$
	LSC	LSCI1	LSCI2	LSC13	LSCI4	LSCINT1	ILSCINT	0110 - 010 1 11111
	PRE-TEST	SIDEOPE 1	SIDEOPE2	SIDEOPE3	SIDE OPE 4	ASIDE OPE	ISIDEOPE	
OIL	POST-TEST	SIDEOPOI	SIDEOPO2	SIDE OPO3	SIDE OP 04	ASIDEOP	ISIDEOPO	$0.07 \pm 0.02 \mathrm{mm}$
						0		0.07 = 0.0 2 kim
	LSC	LSCO1	LSCO2	LSCO3	LSCO4	LSCOIL	ILSCO	

- ^A 1. Write STUCK in place of dimension when applicable.
 - 2. Write <0.03 mm for clearance when applicable.
 - 3. Write > before calculated decrease or average decrease values that incorporate a <0.03 mm in the calculation.
 - 4. LSC = Loss of Side Clearance.
 - 5. MIN: Oil ring minimum side clearance is measured 360° around piston.

FIG. A15.11 Ring Measurements

1P FORM 9 LINER MEASUREMENTS

LAB: LAB	EOT DATE: DTCOMP END TIME: EOTTIME METHOD: METHOD								
STAND: STAND	RUN NUMBER: ENRUN								
FORMULATION/STA	AND CODE: FORM								
OIL CODE/CMIR: O	OIL CODE/CMIR: O/LCODE/CM/R								

DISTANCE FROM TOP	TRANSVERSE	LONGITUDINAL	AVERAGE
130 mm	BBLFINTI	BBLFINLI	BBLFINAI
50 mm	BBLFINT2	BBLFINL2	BBLFINA2
25 mm	BBLFINT3	BBLFINL3	BBLFINA3
		TOTAL AVERAGE	BBLFIN

% LINER BO (ADD T/AT VALU	
THRUST	BOREPT
ANTI-THRUST	BOREPAT
TOTAL	BOREPOL

	BEFORE TEST	- DIAMETER (DI	AL BORE GAGE)	
BORE HEIGHT	LONGITU	DINAL TRA	ANSVERSE	OUT OF ROUND (0.038 mm max)	
250 mm	BBLON	GI B	BTRANI	OOR1	
210 mm	BBLON	G2 B	BTRAN2	OOR2	
170 mm	BBLON	G3 B	BTRAN3	OOR3	
130 mm	BBLON	G4 B	BTRAN4	OOR4	
50 mm	BBLON	G5 B	BTRAN5	OOR5	
25 mm	BBLON	G6 B	BTRAN6	OOR6	
15 mm	BBLON	G7 B	BTRAN7	OOR7	
TAPER (0.050 max) TAPRLO	NG T	APRTRAN		
	AFTER T	EST - (SURFACE	PROFILE)		
183 (253)	LONGIT	UDINAL	TR.	ANSVERSE	
minute la como S	FRONT	REAR	T	AT	
WEAR STEP @ 13 mm	AWEARLF	AWEARLR	AWEARTT	AWEARTAT	

FIG. A15.12 Liner Measurements

FORM 10 CHARACTERISTICS OF THE DATA ACQUISITION SYSTEM

LAB: LAB	EOT DA	TE; DTCOMP	END TIME:	EOTTIME	METHOD:	METHOD		
STAND: STA	ND	RUN NUMBER: ENRUM	"					
FORMULATION	I/STAND	CODE: FORM						
OILCODE/CMIR: OILCODE/CMIR								

PARAMETER	SENSING DEVICE	CALIBRATION	RECORD DEVICE	OBSERVATION FREQUENCY	RECORD FREQUENCY	LOG FREQUENCY	SYSTEM RESPONSE
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
OPERATION COMPATIONS							
ENGINE SPEED (R\min)	RPMSENS	RPMCALF	RPMRECO	RPMOBSF	RPMRECF	RPMLOGF	RPMSYSR
ENGINE POWER (kW)	PWRSENS	PWRCALF	PWRRECD	PWROBSF	PWRRECF	PWRLOGF	PWRSYSR
FUEL FLOW (g/min)	FFLOSENS	FFLOCALF	FFLORECD	PFL00BSF	FFLORECF	FFLOLOGF	FFLOSYSR
HUMIDITY (g/kg)	HUMSENS	HUMCALF	HUMREÇD	HUMOBŞF	HUMRECF	HUMLOGF	HUMSYSR
TEMPTRATURES IND							
COOLANT OUT	COTSENS	COTCALF	COTRECD	COTOBSF	COTRECF	COTLOGF	COTSYSR
COOLANT IN	CONSENS	CONCALF	CONRECD	CONOBSF	CONRECF	COMLOGF	CONSYSA
OIL TO MANIFOLD	OBRGSENS	OBRGCALF	OBRGRECO	OBRGOBSF	OBRIGRECF	OBRGLOGF	OBRGSYSR
OIL COOLER IN	OCOLSENS	OCOLGALF	OCOLRECO	OCOLOBS#	OCOLRECF	OCOLLOGF .	OCOLSYSA
INLET AIR	AIRTSENS	AIRTCALF	AIRTRECD	AIRTOBSF	AIRTRECF	AIRTLOGF	AMTSYSR
EXHAUST	EXTSENS	EXTCALF	EXTRECD	<i>EXTORSF</i>	EXTRECF	EXTLOGF .	EXTSYSR
FUEL TO HEAD	FUELSENS	FUELCALF	FUELRECO	FUELOBSF	FUELRECF	FUELLOGF	FUELSYSR
PRESSURES (SPS)							
OIL TO MANIFOLD	OBRPSENS	OBRPGALF	OBRPRECD	OBRPOBSF	OBRPRECF	OBRPLOGF	OBRPSYSR
INLET AIR	AIRPSENS	AIRPCALF	AIRPRECD	AIRPOBSF	AIRPRECF	AIRPLOGF	AIRPSYSR
EXHAUST	EXPSENS	EXPCALF	EXPRECD	EXPOBSF	EXPRECF	EXPLOGF	EXPSYSR
FUEL FROM HEAD	FFILSENS	FFILGALF	FFILRECD	FFILOBSF	FFILRECF	FFILLOGF	FFILSYSR
CRANKCASE	CCVSENS	CCVCALF	CCVRECD	CCVOBSF	CCVRECF	CCVLOGF	CCVSYSA
FLOWS (Limin)							
BLOWBY	BLBYSENS	BLBYCALF	BLBYRECD	BLBYOBSF	BLBYRECF	BLBYLOGF	BLBYSYSR
COOLANT FLOW	CFLWSENS	CFLWCALF	CFLWRECD	CFLWOBSF	CFLWRECF	CFLWLOGF	CFLWSYSR

LEGEND:

- I COMPUTER, USING MARUAL DATA ENTRY
 (7) COMPUTER, USING MARUAL DATA ENTRY
 (7) COMPUTER, USING MARUAL DATA ENTRY
 (8) THE TYPE OF DEVICE WHERE DATA IS RECORDED
 (1) HANDLOG SHET

 DL AUTOMATIC DATA LOGGER
 C.M. COMPUTER, USING MARUAL DATA ENTRY
 (7) COMPUTER, USING MARUAL DATA ENTRY
 (7) COMPUTER, USING MARUAL DATA ENTRY

- (5) DATA AREA OBSERVED BUT ONLY RECORDED IF OFF SPEC.

 (6) DATA ARE RECORDED BUT ARE NOT RETAINED AT EOT

 (7) DATA ARE IGGGED AS PREMAMENT RECORD, NOTE SPECIFY IF:

 SS. SNAPSHOT TAKEN AT SPECIFIED FREQUENCY

 AGX AVERAGE OF X DATA POINTS AT SPECIFIED FREQUENCY

 (8) TIME FOR THE OUTPUT TO REACH 63.2% OF FINAL VALUE FOR STEP CHANGE AT INPUT

FIG. A15.13 Characteristics of the Data Acquisition System

1**P** FORM 11 ENGINE OPERATIONAL DATA PLOTS^A

LAB: LAB	EOT DATE: DTCOMP	END TIME: EOTTIME	METHOD: METHOD						
STAND: STAND RUN NUMBER: ENRUN									
FORMULATION/STANI	FORMULATION/STAND CODE: FORM								
OIL CODE/CMIR: OILCODE/CMIR									

 $^{^{\}mathrm{A}}Refer$ to Table A2.6 for plotting axes ranges and increments.

FIG. A15.14 Engine Operational Data Plots

1P FORM 12 TORQUE AND EXHAUST TEMPERATURE HISTORY

LAB: LAB	EOT DATE: DTCOMP	END TIME: EOTTIME	METHOD: METHOD						
STAND: STAND RUN NUMBER: ENRUN									
FORMULATION/STAN	FORMULATION/STAND CODE: FORM								
OIL CODE/CMIR: OILCODE/CMIR									

Data From Last 10 Tests

OCPIM

72

96

Test No.	1	2	3	4	5	6	7	8	9	10
Avg. Exh.	AEXHHO01	AEXHH002	AEXHH003	AEXHH004	AEXHHD05	AEXHHD06	AEXHHO07	AEXHH008	AEXHH009	AEXHHD10
Temp. °C										
Avg. Eng.	ATORHO01	ATORHO02	ATORHO03	ATORHO04	ATORHO05	ATORHO06	ATORHO7	ATORHO08	ATORHO9	ATORHO10
Torque										
N·m										

FIG. A15.15 Torque and Exhaust Temperature History

1P FORM 13 OIL CONSUMPTION PLOT

						JIL CUI	APOINL	HUN P	LOI						
LAB:	LAE	?	EOT DATE:	DTCOMP				END TI	ME:	EOTTIME	MET	HOD: /	METHOD	_	
STAND:		STAN	D	RUN NUMBER	₹:	ENRUN									
FORMU	LATIO	N/STA	ND CODE: '	FORM											
OILCOD	E/CMI	R:	OILCOL	DE/CMIR											
Oil		,													
Consumption g/h															
	30							-					1		
	28												···		
Beginning of Test Oil Consumption	26														
вотос	24														
	22												 		
End of Test Oil Consumption	20		 												
EOTOC	18		<u> </u>										ļ		
	16														.
Overall Oil Consumption															
oc	14														
	12		 												 -
	10		<u> </u>										L		

FIG. A15.16 Oil Consumption Plot

192

216 240

264

288

312

336 360

144 168

HOURS

$\begin{array}{c} 1P \\ Form~14 \\ PISTON, RING~AND~LINER~PHOTOGRAPHS^A \end{array}$

LAB: LAB	EOT DATE: DTCOMP	END TIME: EOTTIME	METHOD: METHOD						
STAND: STAND	RUN NUMBER: ENRUN								
FORMULATION/STAND CODE: FORM									
OIL CODE/CMIR: OILCODE	VCMIR								

PRLIM

^ARefer to Fig. X1.7 for an example of a Photo Layout.

FIG. A15.17 Piston, Ring, and Liner Photographs

1P FORM 15 SEVERITY ADJUSTMENT HISTORY

	L	EO! DAIR	: DTCO	WP		END TIME:	EOTTI	ME M	ETHOD:	METHO	O
STAND	STAND)	RUN NUM	BER: <i>El</i>	VRUN						
FORMU	LATION/S	TAND CO	DE: FORM	,							
OILCOD	E/CMIR:	OILCOL	DE/CMIR			-					
USAGE	DATES	W	DP	TC	3C	т	c		ORMED	TRANSF EO	ORMED
START	TIME	Zi	S.A.	Zi	S.A.	Zi	S.A.	Zi	S.A.	Zi	S.A.
DTSTROO1	DTTMR001	WDZIRO01	WDSAR001	TGZIA001	TGSAR00	1 TLZIRO01	TLSAR001	OCZIRO01	OCSAR001	ETZIRO01	ETSAR001
						<u> </u>					
				-							
			·								

						1					

FIG. A15.18 Severity Adjustment History

1P Form 16 FUEL BATCH ANALYSIS^A

LAB: LAB	EOT DATE: DTCOMP	END TIME: EOTTIME	METHOD: METHOD
STAND: STAND	RUN NUMBER: ENRUN		
FORMULATION/STAND CODE:	FORM		
OIL CODE/CMIR: OILCODE/CM	TR .		

FUELIM

ARefer to Annex A14 for an example of a Fuel Batch Analysis page. Include a copy of the supplier fuel sheet in the test report.

FIG. A15.19 Fuel Batch Analysis

1P Form 17 TMC CONTROL CHART ANALYSIS^A (Reference Oil Test Only)

LAB: LAB	EOT DATE: DTCOMP	END TIME: EOTTIME	METHOD: METHOD
STAND: STAND	RUN NUMBER: ENRUN		
FORMULATION/STAND CODE:	FORM		
OIL CODE/CMIR: OILCODE/CM	IR		

CCHIM

^ARefer to Annex A14 for an example of a TMC Control Chart Analysis. Include a copy of the TMC Control Chart Analysis in the test report.

FIG. A15.20 TMC Control Chart Analysis

A16. DATA DICTIONARY

A16.1 Fig. A16.1 presents the data dictionary.

Description	1P VERSION 19980921 BETA	METHOD CONDICTED FOR FIRST LINE		ALIDA	STAND	ENGINE KON FING OF TREST TIME (UH:NA)	COMPLETED DATE (YYYYMMDD)	OIL CODE	CMIR	FORMULATION/STAND CODE	OIL CODE	ALIERNATE OIL CODE 2 ALTERNATE OIL CODE 3	T	SUBMITTED BY: TESTING LABORATORY	BY:	BY:	SUBMITTED BY: TITLE	LAB CODE CEARTING DAME (VEXYMAND)	TOTAL TEST LENGTH (HHH)	IMC OIL CODE	LABORATORY INTERNAL OIL CODE	ENGINE SERIAL NUMBER	WEIGHTED TOTAL DEMERITS UNADJUSTED LAB RATING (DEMERITS)	TOP GROOVE CARBON UNADJUSTED LAB RATING (DEMERITS)	TOP LAND CARBON (DEMERITS)	LAB RATING OLL CONSUMPTION (9/11)	UNADJUSTED LAB RATING TRANSFORMED OIL CONSUMPT (TRANS UNITS)	UNADJUSTED LAB RATING TRANSFORMED ECTOC (TRANS UNITS)	INDUSTRY CORRECTION DATE (YYYYMMDD)	CORRECTION	CORRECTION	INDUSTRI CORRECTION TOP LAND CARBON (DEMERTES) INDUSTRY CORPECTION TRANSPORMED OTT. CONSTRUCTO (TRANS INTES)	CORRECTION TRANSFORMED ECTOC (TRANS UN		CORRECTED TOP GROOVE CARBON (DEMERITS)		CORRECTED TRANSFORMED OIL CONSUMPTION (TRANS UNITS)	CORRECTED TRANSFORMED ECTOC (TRANS UNITS)	SEVERITY ADJUSTMENT	SEVERITY ADJUSTMENT	SEVERITY ADJUSTMENT	SEVERITY ADJUSTMENT	TAB SEVERITY ADJUSTMENT TRANSFORMED OIL CONSUM (TRANS UNITS)	TWEET COOK ITTE	
Units/Format	XXXXMMDD			V, I OR N		nn.nn	XXXXMMDD											CUMPANA	HHH	*******			DEMERITS	DEMERITS	DEMERITS	g/n	TRANS UNITS	TRANS UNITS	YYYYMMDD	DEMERITS	DEMERITS	DEMEKITS TOANS INTE	TRANS UNITS		DEMERITS	DEMERITS	TRANS UNITS	TRANS UNITS	YYYYMMDD	DEMERITS	DEMERITS	DEMERTIS	TRANS UNITS	FIG. A16.1 Data Dictionary	
Data Type	υ i	υt	ט ט	υ	U	י נ	ט ט	υ	υ	υ i	U	ט נ	ບ	υ	υ	υ	υ i	υι) k	ຸບ	v	υ	z	Z	z	2;	zz	: 2	ບ	Z	Z	2 2	2 2	z	Z	z	z	z	ပ	Z i	z	Z ;	z	2	
Dec. Size	0	00	0	0	0 (-	0	0	0	0 (0	>	0	0	0	0	0	> c	o c	· c	0	0	Н	c 4	(1)	٦ ،	m -	4 (*	0	~	(4)	74 M	ייי רי	,	c 4	61	m	ო	0	н ((4 (:4 (en (า	
Field Length	ω (N S	40	1	დ•	4 R	, ω	38	9	38	10	10	0	40	70	40	40	:4 0	יי ס	n ve	12	11	7	9	91	a (n o	, ve	- ω	7	9	e u	o vo	,	9	9	9	9	ထ၊	۲ ،	φ·	، م	ر م	Þ	
Field Fi Name Le	z	METHOD	TSTSPONZ	LABVALID	STAND	ENKON	DICOMP	OILCODE	CMIR	FORM	ALTCODE1	ALTCODE2	OPVALID	SUBLAB	SUBSIGIM	SUBNAME	SUBTITLE	LAB	TECTLEN	TND	LABOCODE	ENGSN	WD	TGC	TIC	ပ္ မ်	OCT	FOCE	DATECE	WDCF	TGCCF		RTOCTOR	WDCOR	TGCCOR	TLCCOR	OCICOR	ETOCTCOR	DATESA	WDSA	TGCSA	TICSA	OCTSA	#C10013	
																		۸. ۵		. ^	. n.	O.	٥.	O.	<u>α</u> . ι	o. i	1. 1.0	υQ	. 0.	٥.	ο.	n. r	. n	. n.	٥.	n,	۵	۵.	٥.	_			۱ ۵۰	.	
Test Area	1.5	1 <u>P</u>	15 15	11	1P	4 F	115	11	1.	15	1P	1 F	1 1	1B	1 P	1P	1P	d t	1 -	4 -	115	1P	1P	1P	1.5	d :	-	10	: ::	1P	1. 1. 1.	7 5	1 1	1.1	1.	1P	1 P	1P	1P	1.5	1.5	Du (1.P	7	
Test Sequence Form Area		0 1P		0 1P		0 TF		0 1P	0 1P	0 1P		0 15		0 1P	0 1P		0 1P	1	1 -	1		1 11	1 11	1 11	T .	·			17	1 11	1	T F	1 -	11	11 11	1 11	1 11	1 1:	1 11	1	1		A :	i -	

Description	FINAL WEIGHTED TOTAL DEMERITS (DEMERITS)	FINAL TOP GROOVE CARBON (DEMERITS)	TOP LAND CARBON	OIL CONSUMPTION (g/h)		FINAL BOTOC (g/h) FINAL FRANSFORMED FOTOC (TRANS INITS)		TEST TARGET MEAN WEIGHTED TOTAL DEMERITS (DEMERITS)	TARGET MEAN	TARGET MEAN TOP LAND CARBON (DEMERITS)	TARGET MEAN	TARGET	TARGET STD	TARGET STD	TARGET STD TOP LAND CARBON (DEMERITS)	TAKGET STD	NON DEBEDENCE DASS TIME DEBECTIVE DAME (VOYCHAUD)	TASS MINIT REFERRED BORNE	WEIGHTED TOTAL DEMEKTES TOP GROOVE CARBON (DEMER	T.TMT.T	PASS LIMIT OIL CONSUMPTION	PASS LIMIT EOTOC (q/h)	S LIMIT	LAB CODE	REFEREE RATING WEIGHTED TOTAL DEMERITS (DEMERITS)	REFEREE RATING TOP GROOVE CARBON (DEMERITS)	REFEREE RATING TOP LAND CARBON (DEMERITS)	TOP KING SIDE CLEARANCE LSC (mm)	INI. I KING SIDE CLEARANCE LISC (MM)	OLL KING SIDE CLEARANCE LSC (mm)	RMEDI	OIL RING END GAP INCREASE (mm)		THE	IS THE OIL RING STUCK? YES OR NO!!	AREA TOP (%)	AREA	AREA OIL (%)	PISTON	FISION SAIKI	AKEA LINEK (%)	-7		EOT QUALITY INDEX ENGINE SPEED AVG ENGINE SPEED (r/min)	LES ENG	parv (continued)
Data Type Inits/Rormat		N DEMERITS		d/b		N g/h N TRANS INITES				N DEMERITS	TRANS	-			N DEMERITS	TRANS	TKANS UNIT		N DEMEKITS													N rom	υ	υ	U	N N	-		op o	# (ж Z ;	nun N	*° Z ;	N r/min		FIG. A16.1 Data Dictionary (continued)
Dec.) 1 ←1	c⊲	СI	H	ന	⊣ (~) C	· 	l (4	СI	m	m	-	ঝ	ca c	m c	nο) ,	⊣ ¢	1 C	્ ⊢		0	0	Ţ	c⁄l	C1 (m (ന	n c	n m	m	0	0	0	0	0	0	0 (o 1) (, (v.	⊣ (a) ←	40	
Field Landth	7	9	9	വ	Q	n u	> 00	7	. ن	9	9	9	7	9	(O)	ه ی	ه د	o r	- u	o u	o ru	വ	ω	c -1	7	9	6	ا وا	ا و	ا ف	o vo	9										، ب	91		~ ഗ	
Field	н	TGCFNL	TICENT	OCENE	OCTENE	EOTOCENE	E FEDATE	WDM	TGCM	ILCM	OCIM	EOTOCTM	WDS	IGCS	TICS	OCTS	EOTOCIES	DICERE.	WDPL	1477	OCPL	ROTOCPL	CATEGORY	RRLAB	RRWD	RRIGC	RRTLC	LSCTOP	LSCINT	LSCOIL	RINGGIL	RINGGOI	STUCKTOP	STUCKINI	STUCKOIL	SCUFFIOR	SCOFFINI	SCUFFOIL	SCUFCRON	SCUFSKRI	SCUFFLIN	AWEARST	BOREPOL	QRPM	ARFM	! ! !
Test	1P	15	1.P	1₽	ΤÞ	T 50	ц <u>г</u>	1 -	1 4	1.P	15	1.P	1P	15	T.	д≀	그 .	À - -	H -	4 F	η <u>μ</u>	<u>.</u>	ıμ	ΪÞ	ΙЪ	ΗF	15	15	I.P.	1. 1. 1.	<u>т</u> н	급	1.5	1.5	1.P	ΉÞ	15	1.P	IΡ	Η	A.	Д.	∐.	다. 다.	4 A	1
£		Η	П	H	r-d	⊢ -	⊢	- ;	- ⊢	H	Н	∺	H	÷⁴	, ·	⊣ ,	⊣ +	⊣ ,		-		٠.	ı	 1	П	Η		; ·		<u> </u>		+ ,→	₩	;I	\vdash	-	₽Ħ	-	Η.	1	e	~ 1	1	сıс	4 CI	1
	510	520	530	540	550	560	0 / C	000	009	610	620	630	640	650	660	670	089	0 v 0	700	770	730	740	750	760	770	780	790	800	810	820	0000	850	860	870	880	068	006	910	026	930	940	950	096	970) () () ()) }

FIG. A16.1 Data Dictionary (continued)

	Description	BOD ENGINE SPEED TOTAL DATA FOINTS OVER FINDER BANCE BACTAE SPEED TOTAL DATA DOTATS	INDEX	AVG FUEL FLOW (g/min)	SAMPLES FUEL FLOW TOTAL DATA POINTS	BOD FUEL FLOW TOTAL DATA POINTS		EOT QUALITY INDEX HUMIDITY	LES HUMIE	BOD HUMIDITY TOTAL DATA POINTS	OVER/UNDER RANGE HUMIDITY TOTAL DATA POINTS	EOT QUALITY INDEX COOLANT FLOW	AVG COOLANT FLOW (L/min)	SAMPLES COOLANT FLOW TOTAL DATA POINTS DOD COOLANT FLOW TOTAL DATA DOINTS	OVER/UNDER RANGE COOLANT FLOW TOTAL DATA POINTS	EOT QUALITY INDEX COOLANT OUT	AVG COOLANT OUT (ØC)	SAMPLES COOLANT OUT TOTAL DATA POINTS	BOD COOLANT OUT TOTAL DATA POINTS	OVER/UNDER RANGE COOLANT OUT TOTAL DATA POINTS	EOT QUALITY INDEX OIL TO MANIFOLD TEMPERATURE		SAMPLES OLL TO MANIFOLD TEMPERATURE TOTAL DATA FOLNTS	BOUND OLD TO MAINTEOLD TEMPERATORE LOTAL DATA FOLINGS OVER TINDER RANGE OTT. TO MANTFOLD TEMP. TOTAL DATA POINTS	ROT OUALTY INDEX INDEX TARE TEMPERATURE	AVG INLET AIR TEMPERATURE (ØC)	SAMPLES INLET AIR TEMPERATURE TOTAL DATA POINTS	BOD INLET AIR TEMPERATURE TOTAL DATA POINTS	OVER/UNDER RANGE INLET AIR TEMPERATURE TOTAL DATA POINTS		AVERAGE FUEL & INJECTION HOUSING TEMP (SC.) SAMDLES WHEL & INJECTION HOUSING WEMP TOTAL DATA DOINTS	G INJECTOR HOUSING TEMP	OVER/UNDER RANGE FUEL GINJECTOR HOUSING TEMP TOTAL DATA POINT	EOT QUALITY INDEX OIL TO MANIFOLD PRESSURE		SAMPLES OIL TO MANIFOLD PRESSURE TOTAL DATA POINTS	BOD OIL TO MANIFOLD PRESSURE TOTAL DATA POINTS	OVER/UNDER RANGE OIL TO MANIFOLD PRESSURE TOTAL DATA POINTS	EOT QUALITY INDEX INLET AIR PRESSURE			OVER/UNDER RANGE INLET AIR PRESSURE TOTAL DATA POINTS	EOT QUALITY INDEX EXHAUST PRESSURE	AVG EXHAUST PRESSURE (KPa)	A16.1 Data Dictionary (continued)
ta	Type Units/Format	Z 2	2 2	N g/min	Z	z	z ;	N a / bar		Z	Z	N	N L/min	Z	. 2	Z	N ØC	N	Z	Z	Z	N N	2 2	2 2	: 2	N E		N	N		2 Z	: Z	×	N	N ktPa	Z	Z	z			z z	z	z	N kPa	FIG. A16.1 Data Dict
	Φ	- ·			0		5 (., (π	4 0	0	0	m		00			н			0	m	~ (.	o c	o en	٠ -	0	0	0	m,	c	0	0	e	-1	0	0	0 (v) -	- C	0	0	o m	Н	_
Field	Length	ņ	٠ ٦	7	S	ıcı	າດ	ى ~	o ro	£	, ro	7	7	ហេវ	ט גט	7	S	S.	ιO	S.						- 10	5	D.						7	ø	ស	ഗ	១០	~ u	o nu	, ro) LO	7	9	
Field	Name	BRPM	OFFLO	AFFLO	NFFLO	BFFTO	OFFIG	QHOMID	NHOMID	BHUMID	OHUMID	OCOLFTO	ACOLFLO	NCOLFTO PCOT ETO	OCOLFLO	OCOLOUT	ACOLOUT	NCOLOUT	BCOLOUT	OCOTOOL	QOMANTMP	AOMANTMP	NOMANTME	DOMANTME	OTNATRT	AINAIRI	NINAIRT	BINAIRT	OINAIRT	QFUELTMP	AFUELTMP	BFUELTME	OFUELTMP	QOMANPR	AOMANPR	NOMANPR	BOMANPR	OOMANPR	QINAIRP	NTNATRE	BINAIRP	OINAIRP	QEBP	AEBP	
Test	Area	1 F	15	11	1.P	1P	러 :	H E	1 E	115	115	1.5	119	1 1 1 1 1	1 E	15	15	1.P	15	1P	1 P	다.	IP u	- F	1 [H H	1P	1P	1P	115	1 F	1 [1.P	1P	JЪ	1B	1.P	Н Н	IP of	4 F	1E	15 15	1P	11	
ı	Form	N C	4 (4	(4	CΙ	CI (বে (54 C	1 (1	N	121	СI	c ⊲	ca c	ા લ	C)	СI	Сd	Ø	લ	CΙ	(व ((4 c	40	1 (1 (4	N	N	C4	c 4 c	0 C	1 C4	ı	Ø	Ø	C4	C4	C1 (9 C	4 (1 (1	1 (4	1 (4	7	
ı	Sequence Form	1010	1020	1030	1040	1050	1060	10/0	1090	1100	1110	1120	1130	1140	1160	1170	1180	1190	1200	1210	1220	1230	1240	1260	1270	1280	1290	1300	1310	1320	1330	1350	1360	1370	1380	1390	1400	1410	1420	1430	1450	1460	1470	1480	

	Description	SAMELES EARAGOI FALSSORE LOIAL DAIR FOINTS DOD EXHALIST DEFECTIVE TOTAL DATA DOTNIES	BOD EARTHOST FARSSONE TOTAL DATA FOINTS OVER/UNDER RANGE EXHAUST PRESSURE TOTAL DATA POINTS	EOT QUALITY INDEX FUEL @ FILTER HOUSING PRESSURE	AVG FUEL @ FILTER HOUSING PRESSURE (KPa)	SAMPLES FUEL @ FILTER HOUSING PRESSURE TOTAL DATA POINTS BOD FURT, @ FILTER HOUSING PRESSURE TOTAL DATA POINTS	OVER/UNDER FUEL @ FILTER HOUSING PRESSURE TOTAL DATA POINTS	AVG INTAKE AIR FLOW (kg/h)	AVG ENGINE POWER (KM)	SAMPLES ENGINE POWER TOTAL DATA POINTS	BOD ENGINE FOWER TOTAL DATA FOINTS OVER /INDER RANGE ENGINE DOWER TOTAL DATA POINTS	AVG TORQUE (Nm)				AVG BLOWBY (L/MLN) SAMPIES BLOWBY TOTAL DATA POINTS	BOD BLOWBY TOTAL DATA POINTS	OVER/UNDER RANGE BLOWBY TOTAL DATA POINTS	AVG COOLANT IN (ØC)	SAMPLES COOLANT IN TOTAL DATA POINTS	BOD COOLANT IN TOTAL DATA FOINTS OVER/INDER RANGE COOLANT IN TOTAL DATA POINTS	AVG COOLANT DELITA (ØC)	SAMPLES COOLANT DELTA TOTAL DATA POINTS	BQD COOLANT DELTA TOTAL DATA POINTS	OVER/UNDER RANGE COOLANT DELIA TOTAL DATA FOINTS	SAMPLES OIL COOLER IN TEMPERATURE TOTAL DATA POINTS	BOD OIL COOLER IN TEMPERATURE TOTAL DATA POINTS	OVER/UNDER RANGE OIL COOLER IN TEMPERATURE TOTAL DATA POINTS	AVG HEATING OIL TEMPERATURE (ØC)	SAMFLES HEALING OLD LEMFERALORE LOIAU DAIA FOLNES ROD HEATING OII, TEMPERATURE TOTAI, DATA POINTS	OVER/UNDER RANGE HEATING OIL TEMPERATURE TOTAL DATA POINTS	AVG EXHAUST TEMPERATURE (ØC)	SAMPLES EXHAUST TEMPERATURE TOTAL DATA POINTS	BOD EXHAUST TEMPERATURE TOTAL DATA POINTS	SOURT CONTROL FANGE EXHAUST TEMPERATURE TOTAL DATA FOINTS	AVG CRANKCASE VACUUM PRESSURE (REA) SAMPTES CRANKCASE VACUUM PRESSURE TOTAL DATA POINTS	BOD CRANKCASE VACUUM PRESSURE TOTAL DATA POINTS	OVER/UNDER RANGE CRANKCASE VACUUM PRESSURE TOTAL DATA POINTS	AVG COOLANT TO JUG (kPa)	SAMPLES COOLANT TO JUG TOTAL DATA POINTS	BOD COOLANT TO JUG TOTAL DATA POINTS	OVER/UNDER RANGE COOLANT TO JUG TOTAL DATA POINTS	onary (continued)
	Units/Format				kPa			kg/h	K			Nm			* /:	L/min			Dø.			Ď			ر	Š.			S S			Ď				K Pa			kPa				FIG. A16.1 Data Dictionary (continued)
Data	Type	Z 2	zz	z	Z	Z 2	z	Z	Z	Z	2 2	z	z	Z	z	Z	z	N	Z	z	Z 2	z	Z	Z	2 2	2 2	z	z	z	2 2	z	Z	Z	Z;	Z ;	2 2	Z	Z	Z	Z	Z	Z	Ë
Dec.	Size	>	0	m	Н	0 0	0	H	Н	0	0 0	o ⊷	0	0	o ,	- C	0	0	ᆏ	0 (o c	·	0	0	0 -	- 0	0	0	 (-	0	-	0	0)	N C	0	0	Н	0	0	0	
Field	Length	വ	ດມດ	7	9	വവ	υ c	7	9	rO.	v r	۲	S	ខា	s (១៤	, ro	ß	വ	ഥ	n u	വ	ß	ß					_	n 10		9	2	LO I	Ω.	ប្រ	വ	S	വ	S	r.	വ	
Field		NEBP	BEBP ORBP	QFUELPR	AFUELPR	NEUELPR	OFUELPR	AAIRFLO	APWR	NPWR	BPWR	ATOROUE	NTORQUE	BTORQUE	OTORQUE	ABLOBY	BBLOBY	OBLOBY	ACOLIN	NCOLIN	BCOLIN	ACOLDI	NCOLDT	BCOLDT	OCOLDI ACCOL IN	NOCOOL IN	BOCOOLIN	OOCOOLIN	AHEATOIL	DHEATOIL	OHEATOIL	AEXHTMP	NEXHTMP	BEXHTMP	OEXHIMP	ACCV	BCCV	OCCV	ACOLPR	NCOLPR	BCOLPR	OCOLPR	
Test	Area	4 5	- - - -	11	11	1P	15 15	11	115	1 P	1P	1 E	1 <u>P</u>	115	1F	IP or	115	115	115	1Þ	1P	1 #	1P	1P	H :	1 t	1 #	1P	1 <u>P</u>	IP C	15 15	1P	115	I.	E I	4 t	15	11	115	11	11	1P	
	Sequence Form	74 C	N C	1 (1	C 4	01 C	1 (1	N	C/I	(4	(4 C	4 (4	N	ca :	(4)	(A) (c)	1 (4	N	N	C4 (ca c	1 (1	C/1	C/I	C4 C	40	1 (4	C-1	C4 (rd r	1 (1	c 4	C/I	C4 (K1 ((4 C	1 (4	1 (4)	(4	Ø	N	C/I	

70

Description	INJECTOR SETTING (GO / NO-GO)	WAS TIMING INITIALIZED ? (YES / NO)		LASH (FUEL TIMING (Ø BTC)	INTAKE VALVE OPEN (Ø ATC) INTECTOD DIINGED LIET (mm)	INCECTOR FIRM (mm)	EXHAUST VALVE LIET (mm)	LINER PART NUMBER	LINER SERIAL NUMBER	LINER DATE CODE			INTERMEDIATE RING SET PART NUMBER				PISTON CROWN SERIAL NUMBER	PISTON CROWN DATE CODE	CROWN		PISTON SKIRT SERIAL NUMBER	FUEL NOZZIE FRAI NUMBER	ECH EPROM PART NUMBER	ECM EPROM DATE CODE	PISTON COOLING JET PART NUMBER	PISTON COOLING JET SERIAL NUMBER	TEST FUEL		RATING DATE (IIIMMUD)	VERIFIED BY INITIALS	LAST STAND REFERENCE DATE COMPLETED (YYYYMADD)	STAND REFERENCE RUN	STAND	LASI SIAND REFERENCE TOTAL MELGRIED DEMENTES (DEMENTES)	STAND REFERENCE EOTOC (g/km-h)	STAND REFERENCE INDUSTRY AVG WDK	STAND REFERENCE INDUSTRY AVG TGC	LAST STAND REFERENCE INDUSTRY AVG TAC (DEMEKTIS)						
Data Twoe Units/Format			N mm	Hall		N Ø ATC	TIMIL N			υ	U	υ	U	ບເ	ט נ) t) U	U	v	υ	υ	U (υt	ט נ	υ	υ	υ	υ	O	CXXXXMMDD	ນ ບ	C YYYYMMDD	υ		N DEMEKTIS		_	-					N DEMEKTI'S	FIG A16 1 Data Dictionary (continued)	
Dec.	2	0	က	۲۷	0	0 1	י רי	n m	0	0	0	0	0	0 0	> C	o c	0	0	0	0	0	0 (> C	0	0	0	0	0	0 0	>	0	0	0	0 ,	⊣ (1 C	1 ⊶	ю	ო	-	~ -1	C4 C	34 C	ו	
Field Length		ო	9	9	m	m 4	ט פ	9 V2	12	12	12	12	13	25	7 - 1) C-	1 2	12	12	12	12	12	7 -	2 C	12	12	12	10	10	∞ "	n m	ω	4	(O)	ه د	o vo	, ro	9	9	വ	9	v v	שפ	•	
Field I	E-	TINIT	PISTONCE	CAMLASH	FUELTIM	INVALOPN	TATTET	EXT.TFT	LINERPN	LINERSN	LINERDC	TOPPN	TOPSN	NTL	NETRIC	OTTEN	CROWNEN	CROWNSN	CROWNDC	CROWNIC	SKIRTPN	SKIRTSN	NOZZLEPN	RCMPN	ECMDC	PTUBEPN	PTUBESN	TESTFUEL	FUELBIID	DIKATE	VRINIT	LRDTCOMP	LRENRUN	LIND	LKWD	TRITIC	LROC	LROCT	LRETOCT	LREOTOC	LRAWD	LRAIGC	LRATIC	100001	
Test	10	11	11	1P	1 <u>P</u>	1P	4 F	1 1	15	15 15	1B	1 P	1B	15	4 5	11.	15	15	1P	1P	1P	1. 1. 1. 1.	- F	1 F	1.1	11	11	1P	1P	4 t	15	1P	11P	1P	4 t	1 F	15 15	1P	1 <u>P</u>	1P	1 P	15	1 P	4 4	
E C	#OF.	ო	m	m	ო	m r	n 0	n r	, m	m	m	m	က	m (יז מי	י ר	n m	m	m	ო	ო	m	יז רי	n m	m	m	ო	4	4	4 <	. 4	4	4	4.	₫ 4	# 4	4	4	4	4	4	♥ •	4.	r	
gonolipas	1980	1990	2000	2010	2020	2030	0407	2060	2070	2080	2090	2100	2110	2120	2130	2150	2160	2170	2180	2190	2200	2210	0777	2240	2250	2260	2270	2280	2290	2300	2320	2330	2340	2350	2360	2380	2390	2400	2410	2420	2430	2440	2450	00 %	

71

Description Tast stath Reference Indistry AUG TRANS ROTOC (TRANS UNITS)	STAND REFERENCE INDUSTRY STD WDK (DEMERIT	LAST STAND REFERENCE INDUSTRY STD IGC (DEMERITS)	STAND REFERENCE INDUSTRY STD	LAST STAND REFERENCE INDUSTRY STD TRANS ECTOC (TRANS UNITS) GROOVE #1 HC-1.0 CARBON AREA PERCENT (% AREA)	GROOVE #1 HC-1.0 CARBON DEMERITS (DEMERITS)	GROOVE #2 HC-1.0 CARBON AREA PERCENT (% AREA)		#1 HC-1.0 CARBON	LAND #1 HC-1.0 CARBON DEMERTIS (DEMERTIS) TAND #2 HC-1.0 CARBON AREA DERCENT (% AREA)	#		GROOVE #3 HC-1.0 CARBON DEMERITS (DEMERITS)	LAND #3 HC-1.0 CARBON AREA FERCEN! (\$ AREA)		#4	GROOVE #1 MC-1.0 CARBON AREA PERCENT (% AREA)		#3 MC-1.0 CARBON	GROOVE #3 MC-I.O CARBON DEMERITS (DEMERITS)	#1 LC-1.0	GROOVE #2 LC-1.0 CARBON AREA PERCENT (% AREA)	GROOVE #2 LC-1.0 CARBON DEMERITS (DEMERITS)		LAND #I IC-I.O CARBON DEMERITS (DEMERITS)	#2 LC-1.0 CARBON		GROOVE #3 LC-1.0 CARBON DEMERITS (DEMERITS)	LAND #3 IC-1.0 CARBON AREA PERCENT (% AREA)	#4 IC-1 O CARBON	#4	COLING	OIL COOLING GALLERY LC25 CARBON DEMERITS (DEMERITS)		UNDER CROWN IC25 CARBON DEMERITS (DEMERITS)	GROOVE #1 CARBON DEMERITS (DEM	GROOVE #2 CARBON		LAND #1 CARBON AREA PERC	TOTAL LAND #1 CAKBON DEWEKIIS (DEMEKIIS) TOTAL LAND #2 CARBON AREA PERCENT (% AREA)	nary (continued)
Data Type Units/Format	DEMERI	N DEMERITS N DEMERITS	TRANS	N TRANS UNITS N % AREA	N DEMERITS	N % AREA		N % AREA	N DEMERTIES N * ARRA	N DEMERITS			N & AKEA	-			E .	N & AREA	N DEMERTIES N * APEA		N & AREA	집		N DEMERITS				N & AREA	N & APPA					N DEMERITS	• <u>F</u>		N DEMERITS		N & AREA	FIG. A16.1 Data Dictionary (continued)
Dec. Size) 	ा ०	ım	m C	c 4	0	c 4	0 (NG) (c)	0	c a e	⊃ ເ	ч С	্ৰ	0	C-1	0 (N C	ં	0	c1	0 (ra ⊂	⊃ (1	0	cı	0 (d €	· (4)	0	сı	0	() C	o (<	0	СI	0 (40	
Field Length	9 0	w w	9	O 4	- 1	4	7	4 7° (~ 4	7	4	۲.	3" [~ 4		4	7	41	~ <		4	7	4		# [~	4	7	4.1	~ <	7	4	7	4	L «	, ,	4	7	4.1	, 4	
Field F Name I	LRSWD	LRSTGC	LRSOCT	LRSETOCT	GIHCD	GZHCA	GZHCD	LIHCA	LIMCD	LZHCD	G3HCA	G3HCD	LSHCA	L3HCD	L4HCD	GIMCA	GIMCD	G3MCA	GSMCD	GILCD	GZLCA	GELCD	LILCA	Lilco	LICO	GBLCA	GSICD	LSLCA	1.41.02	L4LCD	OGLCA	OCICD	UCICA	UCICD	GIDCTOT	GZACTOT	G2DCTOT	LIACTOT	LIDCTOL	
Test Area	4 4	1P	1 F	1.P	115	11	1P	1. 1. 1.	д Д	4	1P	1.5	ન ÷	4 F	1. 1.	1.P	1₽	<u>Д</u>	H H	I I	1.P	1.5	1P	di f	Д. Д.	1 P	1 P	1P	4 1	i i	1.P	1.		다. 다.	4 A		1P	1.5	4 T.	
Form	4 4	4 4	4 4	4 4	4	4	4	4.	4 4	7	4	4.	4.	4 4	7	4	4	4.	4 <	7	4	4	4	4.4	4 4	4	4	4	7 5	4 4	4	4	4	4 -	r 4	4	4	4	7 7	
Seguence	2480	4 ቢ	2510	2520	2540	2550	2560	2570	2580	2600	2610	2620	2630 2630	2650	2660	2670	2680	2690	2700	2720	2730	2740	2750	2760	2780	2790	2800	2810	0 7 8 7 0 3 8 8 9 0	2840	2850	2860	2870	2880	2900	2910	2920	2930	2940 2950	

72

	Description	TOTAL LAND #2 CARBON DEMERITS (DEMERITS)	TOTAL GROOVE #3 CARBON AREA PERCENT (% AREA)	GROOVE #3 CARBON DEMERITS (I	LAND #3	LAND #3	TOTAL LAND #4 CARBON AREA PERCENT (* AREA) TOTAL TAND #4 CARBON DEMENTES (DEMENTES)	OTT.			TOTAL UNDER CROWN CARBON DEMERITS (DEMERITS)	#1			GROOVE #2 8-9 VARNISH DEMERITS (DEMERITS)		#2 8-9 VARNISH	#2		7-7.9 VARNISH		GROOVE #2 7-7.9 VARNISH DEMERITS (DEMERITS)		# #	#2	GROOVE #3 7.5 VARNISH AREA PERCENT (% AREA)		LAND #3 /.3 VAKNISH AKEA FERCENI (* AKEA) IAND #3 7 5 VARNISH DEMORPTS (DEMERITS)	#4 7.5	#4 7.5 VARNISH	GALLERY	_	UNDER CROWN /.5 VARNISH AREA PERCENT (% AREA)	A.S VAKNISH	#1 6-6.9 VARNISH	#2 6-6.9 VARNISH	GROOVE #2 6-6.9 VARNISH DEMERITS (DEMERITS)	#1 6-6.9 VARNISH AREA PERC	#1 6-	#2 6-6.9 VARNISH AREA PERC	<u>.</u> و	#:		GROOVE #2 3-3.9 VAKNISH AKEA PEKCENI (* AKEA) CDOOVE #2 5-5 9 VARNISH DEWERITS (DEMERITS)	7	y (continued)
roj	e Units/Format	DEMERITS	& AREA			DEMERITS	* AREA	S AREA	DEMERITS	8 AREA	DEMERITS	I & AREA	DEMERITS	I & AREA	DEMERITS	F AKEA I DEMERITS	S AREA	DEMERITS	I & AREA	DEMERITS	I & AREA	DEMERITS	F AKEA			1 & AREA		A & AKEA I DEMEDITE			V & AREA	DEMERITS	N * AREA	N DEMEKLIS N 9 ADEM	N DEMERITS	V & AREA	N DEMERITS	N & AREA						N & AKEA N DEMEDITE	N DEMENTS	FIG. A16.1 Data Dictionary (continued)
Dec. Data	Size Type	Z N	0		0	Z .	2 2	12) (N	0	7 Z	Z	C)	Z	Z 2	2 2	10	i Z	0	C1	0	N C	2 Z	: Z	. C1	0	2 ;	2 Z	10		0	Z (10		0					(4)		- i	FIG.
ield	ength	7	4	7	4	7	4.	- 4	7	4	7	4	7	4		4 1	4	7	4	7	4 11	٠,	4 L	- 4	7	4	۲,	4 1	~ 🔻		4	7	4 1.14	~ <	* [-	· 47	7	4	7	♥ :	7	†	_ "	41 [•	
Field F	Name L	L2DCTOT	GSACTOT	G3DCTOT	L3ACTOT	L3DCTOT	LAACTOT	OGACTOT	OGDCTOT	UCACTOT	UCDCTOT	G1V9A	G1V9D	G2V9A	G2V9D	L1V9D	T.2V9A	L2V9D	G1V8A	G1V8D	G2V8A	G2V8D	L1V8A	L2V8A	L2V8D	G3V75A	G3V75D	L3V/5A	1.4V75A	L4V75D	OGV75A	OGV75D	UCV/5A	000/130	GIVID	G2V7A	G2V7D	L1V7A	L1V7D	L2V7A	L2V7D	GIV6A	GIV6D	GZV6A	70,75	
Test	Area	1P	1P	11	15	1.5	1P	1 L	14	1P	1 P	1 P	1P	1P	15	4 5	11 1D	14	1P	1P	1 <u>P</u>	15 15	1 t	1 <u>1</u>	1P	1.5	1P	4 F	ц <u>С</u>	1.P	11	15	T F	1 F	4 C	Н Н	1P	1.	1P	1.5	1.P	1.	IP T	4 t	41	
	Form	4	4	4	4	4	4 <	* 4	4	4	4	4	4	4	4.4	₹ 5	7	4	4	4	বা '	4	7 7	* 4	4	4	4	4 <	r 7	4	Ą	4	4 4	4 -	* 4	4	4	4	4	4	4.	4	4.	# <	4	
	Sequence	2960	2970	2980	2990	3000	3010	3020	3040	3050	3060	3070	3080	3090	3100	3110	3130	3140	3150	3160	3170	3180	3200	3210	3220	3230	3240	3250	3270	3280	3290	3300	3310	3320	3340	3350	3360	3370	3380	3390	3400	3410	3420	3430	† †	

ciption #1 5-5.9 VARNISH AREA PERC	LAND #1 5-5.9 VARNISH DEMERITS (DEMERITS)	#2 5-5.9	4-4.9	GROOVE #1 4-4.9 VARNISH DEMERITS (DEMERITS)	# 2	LAND #1 4-4.9 VARNISH AREA PERCENT (% AREA)	#1 4-4.9	LAND #2 4-4.9 VARNISH AREA PERCENT (% AREA)	LAND #2 4-4.9 VARNISH DEMEKTIS (DEMEKTIS) GROOVE #3 4.5 VARNISH AREA PERCENT (% AREA)	GROOVE #3 4.5 VARNISH DEMERITS (DEMERITS)	#3 4.5 VARNISH	LAND #3 4.5 VARNISH DEMERITS (DEMERITS)	4.5 VARNISH	GALLERY	OIL COOLING GALLERY 4.5 VARNISH DEMERITS (DEMERITS)	4.5 VARNISH		#1 3-3.9 VARNISH	GROOVE #1 3-3.9 VARNISH DEMERITS (DEMERITS)	4 ¢ ≠ #	į ψ	#1		۲ ۳	GROOVE #1 2-2 VARNISH AREA PERCENT (* AREA) GROOVE #1 2-2 9 VARNISH DEMERITS (DRMERITS)	# #	#2			LAND #2 2-2.9 VARNISH AKEA PERCENT (* AKEA) TAND #2 2-2 G WADNISH DEWEDTTS (DEMEDITS)	GROOVE #1 1-1.9 VARNISH ARRA PERCENT (% ARRA)		GROOVE #2 1-1.9 VARNISH AREA PERCENT (% AREA)	GROOVE #2 1-1.9 VARNISH DEMERITS (DEMERITS)	LAND #1 1-1.9 VARNISH AREA PERCENT (* AREA)				GROOVE #3 1.5 VARNISH AREA PERCENI (* AREA) GROOVE #3 1.5 VARNISH DEMERITS (DEMERITS)	1.5 VARNISH AR	(population)
	DEMERITS	* AKEA DEMERITS	% AREA	DEMERITS	DEMERITS	& AREA	DEMERITS	& AREA	DEMEKITS % AREA	DEMERITS	% AREA	DEMERITS	5 ANEA DEMESTES	8 AREA	DEMERITS	& AREA	DEMERITS	8 AREA	DEMERITS	* AKEA	% AREA	DEMERITS	% AREA	DEMERITS	* AKEA	8 AREA	DEMERITS	8 AREA	DEMERITS	* AKEA	PERIENTS S AREA	DEMERITS	& AREA	DEMERITS	& AREA	DEMERITS	& AREA	DEMERITS	* AREA	& AREA	1 Data Dictionary
Data Type N	z	zz	Z	Z	2 2	Z	Z	z	zz	Z	Z	Z;	2 2	z	Z	Z	z	z	z	2 2	: Z	z	z	Z;	2 2	2 2	Z	Z	z	2 2	2 2	z	z	Z	Z	z	z	z	Z 2	Z	=IG A16
Dec. Size	(1)) (0	(1 C) (4	0	(1	0 (N C	c 4	0	(4)	⊃ (·	10	· (4	0	C 4	0	(1)) c	10	C 4	0	c 4 0) c	10	(4	0	(1)	o r	4 C	6 (4	0	থে	0 1	C) (0 ((4 C	o 6	10	_
Field Length	7	4 /	4	r •	r /	4	7	4,1	- 4	7	4	۲.	# F	- 4	7	4	7	4	۲.	4 1	- 4	7	4	۲.	4 L	- 4	7	7	۲.	4 , (~ 4	, ,	4	7	47' ∣	7	⊲ †' [4 C	. 4	
Field Name LlV6A	L1V6D	L2V6D	GIV5A	G1V5D	G2V5D	L1V5A	LIV5D	L2V5A	L2V5D G3V45A	G3V45D	L3V45A	L3V45D	14745A	OGV45A	OGV45D	UCV45A	UCV45D	G1V4A	G1V4D	G2V4A	LIV4A	L1V4D	L2V4A	L2V4D	GIV3A	G2V3A	G2V3D	L1V3A	LIV3D	LZV3A TOTTO	12√3D ⊄1√2A	GIV2D	G2V2A	G2V2D	LIVZA	LIV2D	LZVZA	L2V2D	G3V15A	L3V15A	
Test Area 1P	1P	1 E	1.	1P	15 15	1P	1.	1.P	IP G	1.P	11	1 <u>P</u>	4 5	1 1	1.P	1P	1P	1F	1P	1 t	1P	1.5	1.	1. 1.	IP d	1 F	1 P	1P	1. 1.	I L	1 F	1 1	1.P	1.P	15	1.5	1P	15	4 t	1 <u>P</u>	
Form 4	₹ ₹	4 4	4	4.	. 4	4	4	4	4 4	4 44	4	♥・	# <	r 4	4	47	4	4	4.	4. 2	r 4	4	4	4.	4 <	1 4	4	4	4	4. 4	# ₹	7	4	4	4	4	7 -	4 -	ক ব	7	
	91	34/0	3490	3500	3520	3530	3540	3550	3560	3580	3590	3600	3610	3630	3640	3650	3660	3670	3680	3590	3710	3720	3730	3740	3750	3770	3780	3790	3800	3810	3830	3840	8	3860	3870	3880	3890	3900	3910	3930	

FIG. A16.1 Data Dictionary (continued)

Description LAND #3 1.5 VARNISH DEMERITS (DEMERITS) LAND #4 1.5 VARNISH AREA PERCENT (% AREA) LIAND #4 1.5 VARNISH DEMERITS (DEMERITS) OIL COOLING GALLERY 1.5 VARNISH AREA PERCENT (% AREA) OIL COOLING GALLERY 1.5 VARNISH DEMERITS (DEMERITS) UNDER CROWN 1.5 VARNISH AREA PERCENT (% AREA) UNDER CROWN 1.5 VARNISH DEMERITS (DEMERITS)	GROOVE #1 0-0.9 VARNISH AREA PERCENI (# AREA) GROOVE #1 0-0.9 VARNISH AREA PERCENI (# AREA) GROOVE #2 0-0.9 VARNISH AREA PERCENT (# AREA) GROOVE #2 0-0.9 VARNISH AREA PERCENT (# AREA) LAND #1 0-0.9 VARNISH AREA PERCENT (# AREA) LAND #2 0-0.9 VARNISH AREA PERCENT (# AREA) LAND #2 0-0.9 VARNISH AREA PERCENT (# AREA) LAND #2 0-0.9 VARNISH AREA PERCENT (# AREA) GROOVE #1 CLEAN VARNISH AREA PERCENT (# AREA) GROOVE #1 CLEAN VARNISH AREA PERCENT (# AREA) LAND #1 CLEAN VARNISH AREA PERCENT (# AREA) GROOVE #2 CLEAN VARNISH AREA PERCENT (# AREA) LAND #3 CLEAN VARNISH AREA PERCENT (# AREA) GROOVE #3 CLEAN VARNISH AREA PERCENT (# AREA) GROOVE #3 CLEAN VARNISH AREA PERCENT (# AREA) LAND #3 CLEAN VARNISH AREA PERCENT (# AREA) LAND #4 CLEAN VARNISH AREA PERCENT (# AREA)		
Data Type Units/Format N DEMERITS N % AREA N DEMERITS N % AREA N DEMERITS N % AREA N DEMERITS	N		746
Dec. Size 2 0 2 2 2 2 2 2 3	o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Field Length 7 7 7 7 4 4 4	みてみてみてみなみみみなみ	***************************************	. L 4 L 4 L 4 L 7 L L L L L L L L L L L L
Field Name L3V15D L4V15A L4V15D OGV15A OGV15A UCV15A	G1V1A G1V1D G2V1A G2V1A L1V1A L1V1D L1V1A L2V1A G2VCINA L1VCINA L2VCINA L3VCINA	OCYCINA GLAVTOT GLOVTOT GLOVTOT GLOVTOT GRAVTOT LIAVT LIAVTOT LIAVT LIAVTOT LIAVTOT LIAVTOT LIAVTOT LIAVTOT LIAVTOT LIAVTOT LIAVTOT LI	LADATOT LADATOT LADATOT CADATOT OGAVTOT OCAVTOT UCAVTOT UCDVTOT GLUWD GLUWD GLUWD LLUWD LLUWD LLUWD LLUWD LAUWD
Test Area 1P 1P 1P 1P 1P 1P		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
⊡	च च च च च च च च च च च च च च	ਾ ਦਾ	ਾ ਚਾ
Sequence 3940 3950 3960 3970 3980 3990 4000	4010 4020 4020 4040 4050 4070 4090 4110 4110 4130 4130	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4420 4410 4330 4330 4330 4330 4330 4330 433

:	Description	~	ONDER CROWN ONWEIGHIED DEMERTIS (DEMERTIS) GROOVE #1 WRIGHTED DEMERTIS (DEMERTIS)	#2 WEIGHTED DEMERITS	WEIGHTED DEMERITS	#1 WEIGHTED DEMERITS	LAND #2 WEIGHTED DEMERITS (DEMERITS)	#3 WEIGHIED DEMEKLIS #4 INMETCHTED DEMEKLIS	OIL COOLING GALLERY WEIGHTED DEMERITS (DEMERITS)	F-4	UNWEIGHTED TOTAL DEMERITS (DEMERITS)		FON RATING WORKSHEET PLO	TOP GROOVE #1 HEAVY CARBON (* AREA)	GROOVE #1 LIGHT CARBON (GROOVE #1	TOP GROOVE #1 DEPOSIT 7.9 - 7 (% AREA)	GROOVE #1 DEPOSIT 6.9 - 6 (%	GROOVE #1 DEPOSIT 5.9 - 5 (%	GROOVE #1 DEPOSIT 4.9 - 4 (8	GROOVE #1 DEPOSIT 3.9 - 3 (%	TOP GROOVE #1 DEPOSIT 2.9 - 2 (% AREA)	GROOVE #1 DEPOSIT 1:9 - 1 (8	GROOVE #1 DEPOSIT CLEAN (%	OM GROOVE #1 HEAVY CARBON (#1 MEDIUM CARBON	#1	BOTIOM GROOVE #1 DEPOSIT 9 - 8 (% AREA)	GROOVE #1 DEPOSIT 7.9 - 7 (%	GROOVE #1 DEPOSIT 6.9 - 6 (%	GROOVE #1	DEFOSIT 4.9 1 4 (4	GROOVE #1 DEPOSIT 2.9 - 2 (%	GROOVE #1 DEPOSIT 1.9 - 1 (8	BOTTOM GROOVE #1 DEPOSIT 0.9 - 0 (% AREA)	BOTTOM GROOVE #1 DEPOSIT CLEAN (% AREA)	HEAVY CARBON (GROOVE #2 MEDIUM CARBON (%	GROOVE #2 LIGHT CARBON (% A	GROOVE #2 DEPOSIT 9 - 8 (*	GROOVE #2 DEPOSIT /.9 - / (*	GROOVE #2 DEPOSIT 6.9 - 6 (%	GROOVE #2 DEPOSIT 5.9 - 5 (%	TOP GROOVE #2 DEFOSIT 4.9 - 4 (* AREA)		(continued)
	Units/Format	DEMERITS	DEMERITS	DEMERITS	DEMERITS	DEMERITS	DEMERITS	DEMERTIS	DEMERITS	DEMERITS	DEMERITS	α l P	1	* AREA	& AREA	8 AREA	8 AREA	8 AREA	% AREA	8 AREA	& AREA	& AREA	A AREA	8 AREA	& AREA	8 AREA	8 AREA	8 AREA	8 AREA	8 AREA	* AKEA	S AREA	& AREA	8 AREA	& AREA	& AREA	8 AREA	& AREA	& AREA	* AKEA	* AKEA	* AKEA	& AREA	* AKEA * AREA		FIG. A16.1 Data Dictionary (continued)
Data	Type	z	z 2	z	Z	Z	z	2 2	2 2	z	Z	Z	υ	2 2	: 2	z	Z	z	Z	Z	z	z	2 2	z	Z	z	Z	Z	Z	z	2 2	2 2	2	z	Z	z	z	Z	z ;	Z ;	2 ;	z ;	z	zz	: (i. A16.1
Dec.	Size	N (પ લ	(4	(1)	C4	cı c	4 C	1 (1	લ	Н	0	0 (o c	0	0	0	0	0	0	0 (0 0	o c	0	0	0	0	0	0	0	> 0	>	0	0	0	0	0	0	0 (> (> 0	> (0 0) C	, i	ב ב
Field	Length	- t	, ,		7	7	۲ ر	- 1		7	7	7	70	ਰਾ ਵ	4	4	4	4	4	₹	4.	4.	# 4	7	4	4	4	4	4	4.	4 4	# ~	r 4	4	4	4	4	4	4.	4.	ਰਾ ⋖	4, 4	4.	# 4	•	
ਚ		OGUND	000¥D	G2WD	G3WD	L1WD	L2WD	I A BE	OGMD	UCWD	OWD.	TLFC	RATEWSIM	GITHCA	GITLCA	G1T9A	G1T8A	G1T7A	GlI6A	G1T5A	G1T4A	GIT3A	G1171A	GITCLINA	GIBHCA	GIBMCA	GIBLCA	G1B9A	G1B8A	G1B7A	GIB6A	GIB3A	G1B3A	G1B2A	G1B1A	GIBCLNA	G2THCA	GETMCA	GZTLCA	GZT9A	GZT8A	GZT/A	GZT6A	G2T4A	1	
Test	Area	₫ ;	1 F	1 H	11	1P	1P	4 F	1.P	1.P	1.P	1.P	1P	T.	1F	1P	1 P	115	1.5	1P	1 <u>P</u>	1 P	<u>η</u> μ	15	1.P	1P	1.P	11	11	다 .	1 t	1 F	15	11	11	1P	15	15	급 ;	그 :	4 5	4 5	IP t	Δ	;	
	Form	4.	4 4	4	4	4	4.	,	. 4	4	4	4	4a	n u	n un	Ŋ	ß	ß	വ	ഗ	ıc) i	wп	ט וכ	വ	. ro	Ŋ	ß	S	S	ហ	លម	ים כי	വ	5	വ	S	2	വ	ις	ຄເ	១ ៤	ກເ	ດພ	വറ	,	
	Sequence	4430	4440	4460	4470	4480	4490	4500	4520	4530	4540	4550	4560	45/0	4590	4600	4610	4620	4630	4640	4650	4660	4680	4690	4700	4710	4720	4730	4740	4750	4/60	4780	4790	4800	4810	4820	4830	4840	4850	4860	48/0	4880	4890		1	

	P 05 7 -	GROOVE #2 DEPOSIT 0.9 - 0 (8	TOP GROOVE #2 DEPOSIT CLEAN (% AREA)	GROOVE #2 HEAVY CARBON (4	BOTTOM GROOVE #2 MEDIUM CARBON (* AREA)	GROOVE #2 DEPOSIT 9 - 8	GROOVE #2 DEPOSIT 7.9 - 7 (8	GROOVE #2 DEPOSIT 6.9 - 6 (%	GROOVE #2 DEPOSIT 5.9 - 5 (%	GROOVE #2 DEPOSIT 4.9 - 4 (\$		DEPOSIT 2.9 - 2 (8	GROOVE #2 DEPOSIT 0.9 - 0 (8		HEAVY CARBON (GROOVE #3 MEDIUM CARBON	GROOVE #3 LIGHT CARBON (% A	GROOVE #3 DEPOSIT 9 - 8 (*	GROOVE #3 DEPOSIT /.9 - / (*	GROOVE #3 DEPOSIT 6.9 - 6 (GROOVE #3 DEPOSIT 3.9 - 3 (8	GROOVE #3 DEPOSIT 2.9 - 2 (8	GROOVE #3	GROOVE #3	40	GROOVE #3 HEAVY CARBON (GROOVE #3 MEDIUM CARBON (4		DEFOSII 9 - 0 (GROOVE #3 DEPOSIT 6.9 - 6	GROOVE #3 DEPOSIT 5.9 - 5 (8	DEPOSIT 4.9 - 4 (%	GROOVE #3 DEPOSIT 3.9 - 3 (%	GROOVE #3 DEPOSIT 2.9 - 2 (%	GROOVE #3 DEPOSIT 1.9 - 1	#3 DEPOSIT 0.9 - 0 (_	RING	KING #1 MEDIUM CARBON	KING #1 LIGHT CARBON (* A	RING #1 DEPOSIT 9	TOP KING #1 DEPOSIT 1.9 = / (* AKEA)	F NING #1 DEFOSIT 0:3 - 0 (8	nued)
e a G	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N % AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA N & ADEA	N S AREA	N & AREA	N & AREA	N & AREA	N & AREA	N % AREA	N & AREA	N & AREA	N & AKEA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AKEA	N & AKEA	N % AREA	N & AREA	N & AKEA	FIG. A16.1 Data Dictionary (continued)
Dec. Size	o 0	0	0	0	0 0	> C	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0 (0 0	> C	o	0	0	0	0	0	0 (>	-	0	0	0	0	0	0	0 '	> (o (o '	0 (> C	>	FIG. A16
Field Length	4.4	4 4	4	4	4.	# ₹	r 4 7	4	4	4	4	4, 4	* 4	4	4	4	4	4	♥ .	₹ .	₹ ₹	# ~	* 4	. 4	4	4	4	4	₹'		† 4	7	4	4	4	4	4	4	4.	4	4	₹''	d. 4	7 '	
Field Name	G2T3A	G2T2A	GZTCLNA	G2BHCA	G2BMCA	GOBLCA	GZBSA	G2B7A	G2B6A	G2B5A	G2B4A	G2B3A	G2B1A	GZBCLNA	GSTHCA	G3TMCA	G3TLCA	G3T9A	G3T8A	G3T7A	G3T6A	GOLDA	63T4A	GST2A	G3T1A	GSTCLNA	G3BHCA	G3BMCA	G3BLCA	G3B9A	G3B3A	G3B6A	G3B5A	G3B4A	G3B3A	G3B2A	G3B1A	GBCLNA	RITHCA	RITMCA	RITICA	R1T9A	RITSA	KIT/A	
Test	15 15	4 t	1 P	11	15	4 t	1P	11	11	1P	1.	15 15 15	4 t	15	11	1P	11	1B	1P	1B	1P	4 5	4 C	115	15	1F	1.P	1P	11	4 ;	4 6	1 t	15 15	1P	1P	1P	1B	1b	1P	1 <u>P</u>	15	1. 1.	IP	₫	
Form	ıcı	വ	Ŋ	S.	ഗ	വ	o ro	5	S	S	ഗ	ம்	חנו	വ	2	ī,	ഹ	2	മ	2	ស	n u	טינ) LC	, ro	S.	2	ß	S.	in o	വ	ט עכ	ഗ	2	S	വ	ις.	S	വ	ഗ	ည	ស	மட	ဂ	
Sequence	4920	4930	4950	4960	4970	4980	5000	5010	5020	5030	5040	5050	5050	5080	5090	5100	5110	5120	5130	5140	5150	2160	51/0	5190	5200	5210	5220	5230	5240	5250	5260	5280	5290	5300	5310	5320	5330	5340	5350	5360	5370	5380	5390	5400	

	ription	RING #1 DEPOSIT 5.9 - 5 (*	RING #1 DEPOSIT 4.9 - 4 (%	RING #1 DEPOSIT 3.9 - 3 (%	RING #1 DEPOSIT 2.9 - 2 (RING #1 DEPOSIT 1.9 - 1	#1 DEPOSIT	DEPOSIT CLEAN (%	RING #1 HEAVY CARBON (BOTTOM RING #1 MEDIUM CARBON (% AREA)	ARBON (% A	8) 8 - 6	7.9 - 7 (8	BOTTOM RING #1 DEPOSIT 6.9 - 6 (% AREA)	#1 DEPOSIT 5.9 - 5 (8	RING #1 DEPOSIT 4.9 - 4 (%	RING #1 DEPOSIT 3.9 - 3 (%	RING #1 DEPOSIT 2.9 - 2 (%	RING #1 DEPOSIT 1.9 - 1 (#1 DEPOSIT 0.9 - (# 9	RING #1 HEAVY CARBON (RING #1 MEDIUM CARBON (8	RING #1 LIGHT CARBON (% A	RING #1 DEPOSIT 9 - 8 (%	RING #1 DEPOSIT 7.9 - 7 (%	RING #1 DEPOSIT 6.9 - 6 (%	RING #1 DEPOSIT 5.9 - 5 (*	RING #1 DEPOSIT 4.9 - 4 (*	RING #1 DEPOSIT 3.9 - 3 (*	KING #1 DEPOSIT 2.9 - 2 (*	BACK KING #1 DEPOSIT 1.9 - 1 (* AKEA)	DING #1 DEFOSII O.9 - O	RING #2 HEAVY CARBON (8	RING #2	TOP RING #2 LIGHT CARBON (% AREA)	DEPOSIT 9 - 8 (% AF	RING #2 DEPOSIT 7.9 - 7 (%	RING #2 DEPOSIT 6.9 - 6 (8	RING #2 DEPOSIT 5.9 - 5 (%	#2 DEPOSIT 4.9 - 4 (%	RING #2 DEPOSIT 3.9 - 3 (%	RING #2 DEPOSIT 2.9 - 2 (%	RING #2 DEPOSIT 1.9 - 1 (8	#2 DEPOSIT 0.9 - 0 (DEPOSIT CLEAN (%	RING #2 HEAVY CARBON (RING #2 MEDIUM CARBON (8	BOTTOM RING #2 LIGHT CARBON (% AREA)	(par
	5 0	app	ф	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	dю	ф	dр	dip (olo .	op i	opo	N & AREA	N & AREA	N & AKEA	N & AKEA	N & AKEA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	dp i	N & AREA	FIG. A16.1 Data Dictionary (continued)
	ക	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '	0	0 (0 ()	- (o c		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IG. A16.1 D
Field	Length	4	4	∢ .	47'	4	4	4	4	4	4	작	4	4	4	4	7	4	₩	4	4	4	4	4	4	4	4	4	4	4.	4.	₹ •	# ₹	r 4	4	4	4	4	4	4	₽'	4	4	4	₽	4	4	4	4	正
т		RITGA	R1T5A	R1T4A	R1T3A	R1T2A	RITIA	RITCINA	RIBHCA	RIBMCA	RIBLCA	R1B9A	R1B8A	R1B7A	R1B6A	R1B5A	R1B4A	R1B3A	R1B2A	R1B1A	RIBCINA	RIBKHCA	RIBKMCA	RIBKLCA	R1BK9A	R1BK8A	R1BK7A	RIBK6A	RIBK5A	RIBK4A	KIBK3A	RIBKZA	RIBRIA	RETHCA	RZIMCA	RZTLCA	R2T9A	R2T8A	R2T7A	RZT6A	R2T5A	R2T4A	R2T3A	R2T2 A	RZT1A	RZTCLNA	R2BHCA	RZBMCA	RZBLCA	
Test	Area	15	1 P	1 <u>P</u>	1 P	11	1 P	1 P	15 15	11	1F	1 P	1 P	1P	1P	1P	1 P	1B	1P	1P	1P	1P	1P	15	15	1 P	1P	15	Н Н	Н Н	I.P	- -	4 F	<u>1</u>	<u>Α</u>	1P	1.P	1P	1P	15	1 P	1P	1.P	1P	1P	1P	1P	1Б	1P	
	Form	'n	ഹ	2	ß	ស	വ	ស	S	വ	S	5	Ŋ	5	S	S	ĸ	വ	വ	S.	ß	ည	2	വ	ഗ	ເດ	ഗ	വ	ın ı	ស	ΩL	חת	വ	טירט	· ιΩ	ß	S	S	2	ß	5	S	വ	വ	S.	ည	Ŋ	ഗ	വ	
	Sequence	5410	5420	5430	5440	5450	5460	5470	5480	5490	5500	5510	5520	5530	5540	5550	5560	5570	5580	5590	2600	5610	5620	5630	5640	5650	5660	2670	5680	5690	5700	5710	5720	5740	5750	5760	5770	5780	5790	5800	5810	5820	5830	5840	5850	5860	5870	5880	5890	

Description	BOTTOM RING #2 DEPOSIT 9 - 8 (% AREA)	7.9 - 7 (8	RING #2 DEPOSIT 6.9 - 6 (8	RING #2 DEPOSIT 5.9 - 5 (*	RING #2 DEPOSIT		RING #2 DEPOSIT 1.9 - 1 (8	RING #2 DEPOSIT 0.9 - 0 (8	IAN	RING #2 HEAVY CARBON (% 1	RING #2 MEDIUM CARBON (%	RING #2 LIGHT CARBON (% A	RING #2		RING #2 DEPOSIT 5.9 - 5 (8	RING #2	DEPOSIT 3.9 - 3 (%	RING #2 DEPOSIT $2.9 - 2$ (%	RING #2 DEPOSIT 1.9 - 1 (%	RING #2 DEPOSIT 0.9 - 0 (RING #2 DEPOSIT CLEA	RING #3	RING #3 MEDIUM CARBON	DEFOCIT 9 = 8 (4)	DING #3 DEFORTE 9 - C (s	RING #3 DEPOSIT 6.9 - 6 (8	RING #3 DEPOSIT 5.9 - 5 (8	RING #3 DEPOSIT 4.9 - 4 (8	RING #3 DEPOSIT 3.9 - 3 (8	RING #3 DEPOSIT 2.9 - 2 (%	RING #3 DEPOSIT		FOM RING #3 HEAVY CARBON (RING #3 MEDIUM CARBON	BOTTOM RING #3 LIGHT CARBON (% AREA)	#3 DEPOSIT 9 - 8 (% AF	RING #3 DEPOSIT 7.9 - 7 (%	RING #3 DEPOSIT 6.9 - 6 (%	RING #3 DEPOSIT 5.9 - 5 (%	RING #3 DEPOSIT 4.9 - 4 (*	RING #3 DEPOSIT 3.9 - 3 (%	RING #3 DEPOSIT 2.9 - 2 (%	RING #3 DEPOSIT	KING #3 DEPOSIT U.Y = U (* pinc #2 perocit Citeran /* Ap	BOTTOM KING #3 DEFOSIT CLEAN (8	ed)
Data Time Inita/Formst		ollo	N % AREA	N & AREA	N & AREA	N & AREA N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	αp	N & AREA	N & AREA	* P o	N * AKEA	p d	N & AREA N & AREA	o de	dю	N % AREA	N & AREA	N & AREA	N & AREA	N & AREA	ф	N & AREA	N & AREA	N % AREA	dю	N & AREA	N & AREA	dю	N & AREA	de d	olip o	N * AKEA	FIG. A16.1 Data Dictionary (continued)
Dec. D		0	0	0	0	o c	o c	0	0	0	0	0	0	5 (-) C	0	0	0	0	0	0 (o 0	o 0	5 (-	» o	0	0	0	0 (o c) C	0	0	0	0	0	0	0	0	0	0 (5 (5	FIG. A16.1
Field	4	· 4	4	4	4	4, <	r 7	* 4	4	4	4	4	₽'	4.	* <	r v	4	4	4	4	4	4	4.	4. 4	. 77 •	4. 4	r 7	4	4	4	4.	4. <	r 4	4	4	4	4	4	4	4	4	4	4	4.4	4	
Field	4	R2B8A	R2B7A	R2B6A	R2B5A	RZB4A	RADSA POBOA	R2B1A	RZBCLNA	RZBKHCA	RZBKMCA	R2BKLCA	R2BK9A	RZBKBA	K CBK / A	ROBESA	R2BK4A	R2BK3A	R2BK2A	R2BK1A	RZBKCLNA	RSTHCA	RSTMCA	RSTICA	R3T9A	RSTEA	RST6A	R3T5A	R3T4A	RSTSA	R3T2A	RSTIA	RARHCA	R3BMCA	R3BLCA	R3B9A	R3B8A	R3B7A	R3B6A	R3B5A	R3B4A	R3B3A	R3B2A	R3B1A	R3BCLNA	
Test	10	11	1.P	1 P	1P	1. 1.	1 1	1.P	1 <u>P</u>	1.	1P	1.P	1P	д. Г	4 t	4 C	1 4	11	1B	1P	11	1P	15	15	I.P	- T-E-	1 F	15	115	1P	1 <u>P</u>	4 5	10	1P	1₽	1P	11	1B	1P	11	1P	11	1P	1P	ΙÞ	
1	11 C	വ	ı.C	വ	ß	ي س	ט ע	o ro	. R	ß	വ	r.	വ	மை	ពផ	ים כ	വ	5	S	S	S.	S	ı,	ហ	Ω,	រាជ	o ro	ഹ	S	S	ស	וטו	יא כ	, ru	. rv	ა	5	ស	S	S	5	S	2	ហ	വ	
	seduence 5900	5910	5920	5930	5940	5950	2960	5980	5990	0009	6010	6020	6030	6040	0509	6060	6080	0609	6100	6110	6120	6130	6140	6150	6160	6170	6190	6200	6210	6220	6230	6240	6260	6270	6280	6290	6300	6310	6320	6330	6340	6350	6360	6370	6380	

79

		#3 HEAVY CARBON (RING #3 LIGHT CARBON (% A	RING #3 DEPOSIT 9 - 8 (%	RING #3 DEPOSIT 7.9 - 7 (%	RING #3 DEPOSIT 6.9 - 6 (%	RING #3 DEPOSIT 5.9 - 5 (*	RING #3 DEPOSIT 4.9 - 4 (*	RING #3 DEPOSIT 3.9 - 3 (*	RING #3 DEPOSIT 2.9 - 2 (%	RING #3 DEPOSIT 1.9 - 1	RING #3 DEPOSIT 0.9 - (턴	DEPOSIT & CONDITION RATINGS NPISTON	DEPOSIT & CONDITION	DEPOSIT &	ADDITIONAL DEPOSIT & CONDITION MALINGS	RATING	RATING	RATING INITIALS	GROOVE #1 HC-1.0 CARBON AREA PERC	GROOVE #1 HC-1.0 CARBON	GROOVE		LAND	LAND #1 HC-1.0 CARBON		LAND #2 HC-1.0 CARBON DEMERITS (DEMER	GROOVE	REFEREE GROOVE #3 HC-1.0 CARBON DEMEKIIS (DEMEKIIS)				GROOVE #1 MC-0.5 CARBON AREA PERCENT (MC-0.5 CARBON	GROOVE #3 MC-0.5 CARBON	GROOVE #3 MC-0.5 CARBON	GROOVE #1 LC25	GROOVE #1 LC25	GROOVE		LAND #1 LC25 CARBON	LAND #1 LC25 CARBON	LAND #2	LAND #2 LC	REFEREE GROOVE #3 IC-, 25 CARBON AREA PERCENT (* AREA) DEFEREE CROOME #3 IC- 25 CARBON DEWERTER (DEWERTER)		ary (continued)
Data	Type Units/Format	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	N & AREA	dю	N & AREA	v	υ	ບ ເ	ن		C YYYYMMDD		_		•	-		N DEMERITS		N DEMERITS	N & AREA	N DEMERITS	N & AKEA	N DEMENTES	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	-		-				-		N & AREA		, T
Dec. Da	Size Ty	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (>	0	0	0	0	64	0	N	0	(1	0	(1	0 (N (. .	4 C	, c	10	C)	0	લ	0 '	(4)	0	(4)	0	ĸI	0	(4	، ٥	4 C	ָ . เมื
Field	Length	4	4	4	4	4	4	4	4	4	4	4	4		70	70	70	0/	10	ω	m	4	7	4	7	4	7	4	7	47 (ar t	٠	* [4	7	4	7	4	7	4	7	4	7	4	7	4.1	~ 4	•
Field	Name	R3BKHCA	R3BKMCA	R3BKLCA	R3BK9A	R3BK8A	R3BK7A	R3BK6A	R3BK5A	R3BK4A	R3BK3A	R3BK2A	R3BK1A	R3BKCLNA	CROWNAD	SKIRTAD	LINERAD	KINGSAD	RRNO	RRDATE	RRINIT	RRG1HCA	RRG1HCD	RRG2HCA	RRG2HCD	RRITHCA	RRL1HCD	RRLZHCA	RRLZHCD	RRG3HCA	RRG3HCD	RKL3HCA	PPT AUCA	RPT.4HCD	RRGIMCA	RRG1MCD	RRG3MCA	RRG3MCD	RRGIICA	RRGILCD	RRGZICA	RRG2ICD	RRL1LCA	RRL1LCD	RRL2LCA	RRL2LCD	RRG3LCA	RRG3LCD RRT.3T.CA	
Test	Area	1P	1P	11	1P	1P	1P	1 P	15	1P	1B	1 P	1P	11	1 P	1P	1 <u>P</u>	1 F	1B	16	1.P	1P	1 P	1P	1 <u>P</u>	1 <u>P</u>	1 P	1F	1P	15	IΡ	1 t	4 5	1 1	15	1.P	11	11	15	1 P	1P	1F	15	1 P	1P	1 P	1P	4 t	;
	Form	ß	2	ស	S	വ	വ	S	വ	ഗ	'n	S	S)	2	S)	ß	r)	ŋ	5а	5a	5a	5а	5a	5a	5a	Sа	Sа	Sa	5a	5a	5a	д u	10 u	טינ קית	S S	5a	5а	5a	Sp	5a	Sа	5a	Sа	5a	5a	Бa	e g	n d	j
	Sequence Form	6390	6400	6410	6420	6430	6440	6450	6460	6470	6480	6490	6500	6510	6520	6530	6540	0559	6560	6570	6580	6590	0099	6610	6620	6630	6640	6650	0999	6670	6680	0660	0/00	6720	6730	6740	6750	6760	6770	6780	6190	6800	6810	6820	6830	6840	6850	6860	>

FIG. A16.1 Data Dictionary (continued)

	REFERRE LAND #3 LC25 CARBON DEMERITS (DEMERITS)	REFEREE RATING LAND #4 LC25 CARBON AREA % (% AREA)	REFEREE RATING LAND #4 LC25 CARBON DEMERITS (DEMERITS)		REFFERE RATING OIL COOLING GALLERY IC 25 CARBON (DEMERITS)	REFEREE RATING UNDER CROWN IC25 CARBON (% AREA)	REFEREE TOTAL GROOVE #1 CARBON AREA PERCENT (% AREA)		REFEREE TOTAL GROOVE #2 CARBON AREA PERCENT (% AREA)	TOTAL	TOTAL LAND #1	TOTAL	TOIN	REFEREE TOTAL GROOVE #3 CARBON DEMERTIS (DEMERTIS)	TOTAL		REFEREE TOTAL LAND #3 CARBON DEMERITS (DEMERITS)	REFEREE TOTAL LAND #3 CARBON AREA PERCENT (% AREA)		REFEREE RATING TOTAL OIL COOLING GALLERY CARBON % (% AREA)	RATING TOTAL OIL COOLING GALLERY CARBON DEM. (RATING TOTAL UNDER CROWN	REF. RATING TOTAL UNDER CROWN CARBON DEMERITS (DEMERITS)	NEFEREE GROOVE #1 8-9 VARNISH AREA PERCENT (* AREA) RREEDER GROOVE #1 8-9 VARNISH DEMERITS (DEMERITS)	GROOVE #2	GROOVE #2	8-9	8-9		LAND #2 8-	GROOVE #1	NEFERER GROOVE #1 /-/.9 VAKNISH DEMEKTIS (DEMEKTIS) DEEEDDE COONT #2 7-7 G VARNISH APEN DEDCEMT (\$ APEN)	GROOVE #2	LAND #1 7-	7-7.9	REFEREE LAND #2 7-7.9 VARNISH AREA PERCENT (% AREA)	LAND #2 7-	GROOVE #3 7.5 VARNISH		7.5 VARNISH	LAND #3 7.5 VARNISH	LAND	LAND #4 7.5 VARNISH DEMERITS (DEMERITS)	REFEREE LAND OIL COOLING GALLERY 7.5 VARNISH AREA & (% AREA) REFEREE LAND OIL COOLING GALLERY 7.5 VARNISH (DEMERITS)	ued)
Data	N DEMERITS		N DEMERITS	N & AREA	N DEMERITS	N % AREA N DEMERTTS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AKEA	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AKEA N DEMERTE	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERTIS	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	-	ם .	N S AKEA	(F
Dec.	21.20	0	C4	0	(4)	، د	10	۲۷	0	(4	0	(1)	- (N 0	(4	0	(1)	0	(1	0	ca ·	0 ((4 C) (1 0	C4	0	71	0	(4)	0 (4 C	o (\	0	(1	0	64	0	(4	0	63	0	(4)	> 64	I
Field	nengen 7	4	7	4	7	4 1	. 4	7	4	7	₹	_	3" (- 4	7	4	7	4	7	4	_	∀ (4. [-	- 4	7	4	7	4	۲.	4 (~ <		4	7	4	7	4	7	4	7	4	· ·	* ~	•
Field	RRL3LCD	RRL4LCA	RRL4LCD	RROGICA	RROGLCD	RRUCLCA	RG1ACTO1	RGIDCTOT	RG2ACTOT	RG2DCTOT	RLIACTOT	RL1DCTOT	RECTOI	RG3ACTOT	RG3DCTOT	RL3ACTOT	RL3DCTOT	RL4ACTOT	RL4DCTOT	ROGACTOT	ROGDCTOT	RUCACTOT	RUCDCTOT	RRG1V9A	RRG2V9A	RRG2V9D	RRL1V9A	RRL1V9D	RRL2V9A	RRL2V9D	RRG1V8A	PPG2V8A	RRG2V8D	RRL1V8A	RRL1V8D	RRL2V8A	RRL2V8D	RRG3V75A	RRG3V75D	RRL3V75A	RRL3V75D	RRL4V75A	RRL4V75D	RROGV/5D	:
Test	AL CA	11	1 P	1 <u>P</u>	115	1P	1B	1 P	1 P	1 P	115	1P	4 ;	1 E	15 15	11	1 P	1P	1P	1P	15	15	1 I I	4 t	1 1	11	11	11	1P	11 11	4 ;	4 5	1 =	1P	1P	1B	1 P	1B	1P	1 P	1 P	1 P	1. 1.	4 4	
	5a	5a	5a	5a	5a	S B	o ro	5.2	5a	5a	Sa	50 a	10 L	0 to	5a	5a	5a	5a	5a	5a	5 a	g B	r g	U T. Mag) (C	5a	5a	5a	5а	Sa 1	о С	n n	1 m	5.8	5 a	5a	5a	Sa	5a	5а	5a	5 a	S a	മറ	,
	oe89	0689	0069	6910	6920	6930	6950	0969	6970	6980	0669	7000	010/	7030	7040	7050	7060	7070	7080	1090	7100	7110	7120	7140	7150	7160	7170	7180	7190	7200	7210	7230	7240	7250	7260	7270	7280	7290	7300	7310	7320	7330	7340	7360	

FIG. A16.1 Data Dictionary (continued)

	Description	LAND UNDER CROWN	LAND UNDER CROWN 7.5 VARNISH	GROOVE #1 6-6.9 VARNISH	GROOVE #1 6-6.9 VARNISH	GROOVE #2	KEFEKEL GROOVE #4 6-6.9 VARNISH DEMEKLI'S (DEMEKLI'S) DEBEDDE TAND #1 6-6 9 WADNISH ADEA DEDCENH /* ADEA)	TAND #1 6-6 0	LAND #2 6-6.9 VARNISH	LAND #2 6-6.9 VARNISH	GROOVE #1 5-5.	GROOVE #1	5-5.	GROOVE #2 5-5.	LAND #1 5-5.9 VARNISH	LAND #1 5-5.9	LAND #2 5-5.9 VARNISH AREA PERC	LAND #2 5-5.9	GROOVE #1 4-4.9 VARNISH AREA PERC	GROOVE #1 4-4.9 VARNISH	GROOVE #2 4-4	GROOVE #2 4-4.	LAND #1	LAND #1 4-4.9 VARNISH DEMERITS (DEM	LAND #2 4-4.9 VARNISH	LAND #2 4-4.9 VARNISH	_	GROOVE #3 4.	LAND #3 4.5 VARNISH	LAND #3 4.5 VARNISH	LAND #4	LAND #4 4.5 VARNISH DEMERITS (DEMERITS)	REFEREE RATING OIL COOLING GALLERY 4.5 VARNISH (* AREA)	RATING UID COCLING SALLERI RATING UNDER CROWN 4.5 VARN	RATING UNDER CROWN 4.5 VARNISH	GROOVE #1 3-3.9 VARNISH AREA PE	#1 3-3.9 VARNISH	GROOVE #2 3-3.	REFEREE GROOVE #2 3-3.9 VARNISH DEMERITS (DEMERITS)	REFEREE LAND #1 3-3.9 VARNISH AREA PERCENT (% AREA)	REFEREE LAND #1 3-3.9 VARNISH DEMERITS (DEMERITS)	REFEREE LAND #2 3-3.9 VARNISH AREA PERCENT (% AREA)	LAND #2 3-3.9 VA	GROOVE #1 2-2.9 VARNISH	GROOVE #1 2-2.9 VARNISH DEMERITS (DEMERI	GROOVE #2 2-2.9 VARNISH	REFEREE GROOVE #2 2-2.9 VARNISH DEMERITS (DEMERITS) BEFEREE LAND #1 2-3 9 VARNISH AREA DEFORM (* AREA)	Continuod	
	Type Units/Format	-	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMEKTES	N DEWEDTER	N & AREA	N DEMERITS	N % AREA	N DEMERITS	N % AREA	N DEMERITS	N & AREA	ш			υp	Д	OΡ	_	V 1-	_	u,	_	~	N DEMERITS	N & AREA	N DEMERITS	N & AREA	N DEMERITS	N * AKEA	N % AREA	N DEMERITS	N & AREA	N DEMERITS	N % AREA	N DEMERITS	N & AREA	N DEMERITS	N % AREA	H	N & AREA	日		N DEMERITS N * AREA	N CANAGA DOLO DIOLO NO	TI A TO THE PERSON OF THE PERS
Dec.	Size	0	C) I	0 (:4 0	0 0	√I C	oγ	10	(d	0	(·1	0	СЛ	0	বে	0	C)	0	C 4	0	N	0	C4	0	લ	0	C4	0	C-I (0 (CI C) (1 C	(4)	0	¢4	0	N	0	C1	0	C-1	0	લ	0 (чС	>	
Field	Length		۲ .	4 1		41.1	_ <	* 1	4	7	4	7	₹	7	7	7	4	7	4	7	4	7	4	7	4	7			A 4	Q :	A 4	2	4 c	4 ·	7 di	ر 4	7 (4	7 7	1 4	7 7	4	7	1 4	7	4 .	· 7	,	
Field	Name	RRUCV75	RRUCV75	RRG1V7A	RRG1V/D	RRG2V/A	KKGZV/U	DDT.1177	RRL2V7A	RRL2V7D	RRG1V6A	RRG1V6D	RRG2V6A	RRG2V6D	RRL1V6A	RRL1V6D	RRL2V6A	RRL2V6D	RRG1V5A	RRG1V5D	RRG2V5A	RRG2V5D	RRL1V5A	RRL1V5D	RRL2V5A	RRL2V5D	RRG3V45	RRG3V45	RRL3V45	RRL3V45	RRL4V45	RRL4V45D	RKOGV45A	RRUCV45	RRUCV45	RRG1V4	RRG1V4	RRG2V4	RRG2V4L	RRI1V4A	RRL1V4	RRL2V4	RRL2V4	RRG1V3#	RRG1V3I	RRG2V37	RRGZV3L RRT 1V32	1	
Test	Area	1 P	1P	1P	<u>,</u>	IP	1 t	4 F	15	11	1P	1P	1 P	1P	11	15	15	1P	1 P	1 P	1 P	1 P	1 P	1 P	1 <u>P</u>	15	15	1P	1P	1P	1P	15	4 t	<u> 1</u>	1P	15	115	11	1P	1P	1P	1P	1P	15	15	더	1 L	;	
	Œ	5a	5a	g i	e r	g B	n n n	לו מ אור כ	S A	Sa	5a	5а	5а	5a	5.0	S.	വ	52	Sa	5a	5a	5a	Sа	5a	5a	rg Cu	5a	5a	Sa	д 1	ъ 2	5a	10 to	מ מ	5a	5а	5а	5а	Sа	Sа	5a	5a	Sа	5a		n n	ש ת יש מי	3	
	Sequence	7370	7380	7390	7400	7420	7430	0777	7450	7460	7470	7480	7490	7500	7510	7520	7530	7540	7550	7560	7570	7580	7590	7600	7610	7620	7630	7640	7650	7660	7670	7680	7200	7710	7720	7730	7740	7750	1760	7770	7780	7790	7800	7810	7820	7830	7850))	

FIG. A16.1 Data Dictionary (continued)

	Description	REFEREE LAND #1 2-2.9 VARNISH DEMERITS (DEMERITS)	REFEREE LAND #2 2-2.9 VARNISH AREA PERCENT (% AREA)	GROOVE #1 1-1.	GROOVE #1 1-1.9 VARNISH	REFEREE GROOVE #2 1-1.9 VARNISH AREA PERCENT (% AREA) REFEREE GROOVE #2 1-1.9 VARNISH DEMERITS (DEMERITS)		REFEREE LAND #1 1-1.9 VARNISH DEMERITS (DEMERITS)	LAND #2 1-1.9 VARNISH	GROOVE #3 1.5 VARNISH				REFEREE LAND #4 1.5 VARNISH DEMERITS (DEMERITS)	RATING OIL COOLING GALLERY 1.5 VARNISH	RATING OIL COOLING GALLERY 1.5	REFEREE RATING UNDER CROWN 1.5 VARNISH (* AREA) REFEREE RATING UNDER CROWN 1.5 VARNISH (DEMERITS)	GROOVE #1 0-0.9 VARNISH AREA PE	GROOVE	REFERE GROOVE #2 0-0.9 VARNISH AREA PERCENT (% AREA) REFERE GROOVE #2 0-0 9 VARNISH DEMERTS (DEMERTS)	LAND #1 0-	LAND #1		KEFEREE LAND #2 U-0.3 VAKNISH DEMEKIIS (DEMEKIIS) REFEREE GROOVE #1 CLEAN VARNISH DEMERITS (% AREA)	GROOVE #2 CLEAN VARNISH DEMERITS	LAND #1 CLEAN VARNISH DEMERITS (%	REFEREE GROOVE #3 CLEAN VARNISH DEMERITS (* AREA)	LAND #3 CLEAN VARNISH DEMERITS (%	REFEREE LAND #4 CLEAN VARNISH DEMERITS (% AREA)		TOTAL GROOVE	TOTAL GROOVE #1 VARNISH	TOTAL GROOVE #2	REFEREE TOTAL GROOVE #2 VARNISH DEMERITS (DEMERITS)	TOTAL GROOVE #3 VARNISH	TOTAL LAND #1	TOTAL	TOTAL LAND #2 VARNISH AREA PERC	REFEREE TOTAL LAND #2 VARNISH DEMERITS (DEMERITS) REFEREE TOTAL LAND #3 VARNISH AREA PERCENT (* AREA)	
•	Units/Format	DEMERITS	& AREA	8 AREA	DEMERITS	8 AREA DEMERITS	& AREA	DEMERITS	DEMERITS	8 AREA	DEMERITS	* AKEA	PEMEKITS 8 AREA	DEMERITS	& AREA	DEMERITS	S AKEA DEMERITS	& AREA	DEMERITS	8 AREA Demente	AREA	DEMERITS	B AREA	B AREA	8 AREA	& AREA	e AREA 8 AREA	8 AREA	& AREA	* AREA	8 AREA	DEMERITS	8 AREA	DEMERITS 8 APPA	DEMERITS	8 AREA	DEMERITS	& AREA	DEMERITS 8 AREA	FIG. A16.1 Data Dictionary (continued)
Data	Type	z												_	G,	— о	W L	dp	Ω	olo C) olo	_	OP 1	-1 UP									•	i d						
ď			Z	z z	Z	2 2	Z	2 2	2 2	z	Z	z	zz	z	z	z	# C	i de Z	Z	Z Z	ar : Z	Z	z	- G-	Z	Z	zz	Z	z	z 2	Z	z	z	⊠ a	4 Z	Z	Z	Z	zz	<u> </u>
Dec	Size		000	X X	2 N	0 0	0	N 2	2 2	0 0	N (2 2	7 O	2 N	z Z	N 3	* L	. Z	Z	Z 2	1 of 2 Z	Z	Z :	X X	N 0	0 0	z z	0	z ż	2 2	0	2 N	N O	(1) of	. Z	0	Z 2	0 0	Z Z	FIG
		73	4 t	2 0 4 N	7 2 N	4 0 N	4 0 N	2 C C C C C C C C C C C C C C C C C C C		. 4 . 0	7 2 N	7 T	7 7 7 N	7 2 N	4 0 N	N 20	2 C	. Z. O	Z	Z 2	· Z	Z	z	N N N	4 0 N	0 °	7 T	4 0 N	0 °	4 4 2 C	4 0 N	7 2 N	z	Z 2	. Z	4 0 N	7 2 N	0 0 0 N	. O	FIG
Field Field De	Length	73	RRLZV3A 4 0 N	RRG1V2A 4 0 N	RRG1V2D 7 2 N	RRG2V2A 4 0 N RRG2V2D 7 2 N	RRLIVZA 4 0 N	RRLIV2D 7 2 N	RRL2V2D 7 2 N	RRG3V15A 4 0 N	RRG3V15D 7 2 N	RRL3V15A 4 0 N	RKL4V15A 4 0 N	RRL4V15D 7 2 N	N 0	W (RECOVER 4 0 N T	. Z	7 2 N	Z 2	10	7 2 N	4 t	RRGIVCLA 4 0 N 9	RRG2VCLA 4 0 N	RELIVELA 4 0 N	RRG3VCLA 4 0 N	RRL3VCLA 4 0 N	RRL4VCLA 4 0 N	RRIGUCIA 4 0 N	RG1AVTOT 4 0 N	7	. N	Z 2	Z Z	4	7	47 (RLZDVTOT / 2 N RL3AVTOT 4 0 N	
Field	Name Length	7 2	4 1			1P RRG2V2A 4 0 N 1P RRG2V2D 7 2 N		1P RRLIV2D 7 2 N				IP RRLJVIDA 4 0 N			RROGV15A 4 0 N	RROGV15D 7 2 N	2 C	RRGIVIA 4 0 N	RRG1V1D 7 2 N	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	RRIIVIA 4 0 N	RRLIVID 7 2 N	RRLZV1A 4 0 N	N N			1P RRG3VCLA 4 0 N		1P RRL4VCLA 4 0 N	•		RG1DVTOT 7	RG2AVTOT 4 0 N	C1 C	RG3DVTOT 7 2 N	RL1AVTOT 4	RL1DVTOT 7	RL2AVTOT 4	1P RL3AVTOT / 2 N 1P RL3AVTOT 4 0 N	
Field Field	Name Length	1P RRL1V3D 7 2	RRL2V3A 4	115	1.		1P		4 6	1 11	119	4 F		11	1P RROGV15A 4 0 N	1P RROGVI5D 7 2 N	RRUCVISD 7 2 N	1P RRGIVIA 4 0 N	1P RRGIVID 7 2 N	RRGZVIA 4 0 N	1P RRIIVIA 4 0 N	1P RRLIVID 7 2 N	1P RRL2V1A 4 0 N	RRGIVCLA 4 0 N	1.0	41		11P		יים ר	11 11	1P RGIDVTOT 7	a 1P RG2AVTOT 4 0 N	RG2DVTOT 7 2 N	1P RG3DVTOT 7 2 N	a 1P RLIAVIOT 4	1P RLIDVIOT 7	a 1P RL2AVTOT 4		

83

Dogovariation	REFEREE TOTAL LAND #3 VARNISH DEMERITS (DEWERITS)		DEMERITS (DEMERITS)	RATING TOTAL OIL COOLING GALLERY	RATING TOTAL OIL COLLING	REF. RATING TOTAL UNDER CROWN VARNISH AREA PERCENT (* AREA) REF. RATING TOTAL UNDER CROWN VARNISH DEMERITS (DEMERITS)	REFEREE GROOVE #1 UNWEIGHTED DEMERITS (DEMERITS)	REFEREE GROOVE #2 UNWEIGHTED DEMERITS (DEMERITS)	REFEREE GROOVE #3 UNWEIGHTED DEMERITS (DEMERITS)	LAND #1 UNWEIGHTED DEMERITS	LAND #2 UNWEIGHTED DEMERITS	LAND #3 UNWEIGHTED DEMERITS	LAND #4 UNWEIGHTED	RATING OIL COOLING GALLERY UNWEIGHTED DI	RATING UNDER CROWN UNWEIGHTE	GROOVE #1 WEIGHTED DEMEKTIS	GROOVE #2 WEIGHTED DEMEKITS	GROOVE #3 WEIGHTED DEMERTIT	TAND #1 WEIGHTED DEMERITS	LAND #2 WEIGHTED DEMEKTES	LAND #3 WEIGHTED DEMERITS	REFERENCE LAND #4 WELGHIED DEMEKTIS (DEMEKTIS)	KALING	KEFEKEE KAIING UNDEK CKOWN WEIGHIED DEMEKIIS (DEMEKIES) REFEREER RATING INWELTCHTED TOTAI, DEMERITS (DEMERITS)	NEFERRED NATION OF T. WIAKED CAPRON (*)	VISC 6 100 oc AT XXX HOURS (CSt.)	14	4739 AT XXX	TAN D664 AT XXX HOURS	FE - WEAR METALS AT XXX HOURS [<] (ppm)	- WEAR METALS AT XXX HOURS [<]	- WEAR METALS AT XXX HOURS [<]	- WEAR METALS AT XXX HOURS [<]	WEAR METALS AT XXX HOURS [<]	(mdd)			OIL CONSUMPTION @ ENGINE HOURS AT XXX HOURS (g/h)	OIL CONSUMPTION R SQUARED @ ENGINE HOURS AT XXX HOURS	FUEL POSITION AT XXX HOURS (mm)		DATE	DOWNTIME TIME (HHH:MM)	DOWNTIME REASON	OTHER DOWNTIME COMMENTS XXX	NUMBER OF DOWNTIME OCCURENCES	DOWNTIME TIME TOTAL (HHH:MM)	onary (continued)
Data mimo Huita/Bormot		N & AREA			N DEMERITS	N % AREA N DEMERTES	N DEMERITS	N DEMERITS	N DEMERITS	N DEMERITS	N DEMERITS			N DEMERITS					'	N DEMEKTI'S				N DEMERTES					Z	A ppm	A ppm			A ppm	A ppm			N g/h	Z	N mm	C HHH:MM	C YYYYMWDD	C HHH:MM	υ	υ		C HHH:MM	FIG. A16.1 Data Dictionary (continued)
Dec.	315G	0	C/I	0 (:4 ¢	၁ က	ı	(4	C)	€	СЛ	(4	C 1	61	(4)	ч (N (N (rsi (ч ((4)	м с	ч c	ν -	+ C	o 6	ı c	। द ब	C4	0	0	0	0	0	0	.⊣	H	H	বে	-	0	0	0	0	0	0	0	
Field	11) 11)	4	7	47 ' !		4 7		7	7	7	7	7	7	7	7	~ 1	- 1	- 1	۱ -	~ r	۱	- 1	- 1	٠, ١	, [٠, ١		7	7	4	4	4	4	4	4	ഹ	9	വ	S	2	9	ω	9	9	70	m '	ø	
75	RL3DVTOT	RL4AVTOT	RL4DVTOT	ROGAVIOT	ROGDVTOT	RUCAVIOI	RRGIUWD	RRG2UWD	RRG3UWD	RRL1UWD	RRL2UWD	RRISUWD	RRL4UWD	RROGUND	RRUCUWD	KKGIWD	RRGZWD	RRG3WD	RRLIWD	KKLZWD	RRL3WD	KKL4WD	KKOGWD	RRUCMD	DETTEC	VIOUHXXX	V40 HXXX	TBN HXXX	TAN HXXX	FEWMHXXX	ALWMHXXX	SIWMHXXX	CUWMHXXX	CRWMHXXX	PBWHXXX	FDILHXXX	BLBYHXXX	OCONHXXX	OCRRHXXX	FPOSHXXX	DOWNHXXX	DDATHXXX	DTIMHXXX	DREAHXXX	OCOMHXXX	DWNOCR	TOTLDOWN	
Test	ALEA 1P	1F	1B	1P	I.P	4 t	15 15	11	119	1P	1P	1B	1P	15	15	4 ;	I.P	I.P	<u>н</u> ;	<u>구</u> :	15 15	4 ;	4 £	4 E	1 5	1 F	15	1.P	1 P	1P	1P	1 P	1 P	1P	ТЪ	15	119	1P	1 P	1P	15	1P	11	1.5	15	1.P	1P	
	. FOT.III	5a	5a	5a	ba	യ ന വ	S d	5a	5а	5а	5а	5a	5a	รูล	ις, ι	e C	g .	g,	ر ا م	g G	S B	ر رو	в .	n n	ט ע ס מ	9 4	9	9	Q	9	9	9	Q	9	9	9	9	૭	ဖ	9	7	7	7	7	7	7	7	
,	seduence 8350	8360	8370	8380	8390	8400	8420	8430	8440	8450	8460	8470	8480	8490	8500	OTCR	8520	8530	8540	8220	8560	8570	8580	8590	9610	0798	8630	8640	8650	8660	8670	8680	8690	8100	8710	8720	8730	8740	8750	8760	8770	8780	8790	8800	8810	8820	8830	

FIG. A16.1 Data Dictionary (continued)

	Description	L LINES C	TOP RING GAP PRE-TEST (mm)	TI NING GAF FAR-IEST PRE-TEST (III)	RING GAP POST-TEST	CATE #1 RING GZ	OIL RING GAP POST-TEST (mm)	RING SIDE CLEARANCE A [PRETEST RING SIDE CLEARANCE B [STUCK, <, >]	PRETEST RING SIDE CLEARANCE C [STUCK, <, >]	PRETEST RING SIDE CLEARANCE D [STUCK, <, >] (m	MINIMUM DING SIDE CLEARANCE AVG [SICCK, <, >] (HHI)	TOT-1	SIDE CLEARANCE TOP POST-TEST B [STUCK, <, >]	SIDE CLEARANCE TOP POST-TEST C [STUCK, <, >]	RING SIDE CLEARANCE TOP POST-TEST D [STUCK, <, >] (mm)	SIDE CLEARANCE TOP POST-TEST AVERAGE [RING SIDE CLEARANCE POSTIES	SIDE CLEARANCE TOP LSC A [STUCK, <, >]	SIDE CLEARANCE TOP LSC B [STUCK, <, >]	SIDE CLEARANCE TOP LSC C STUCK, <, >]	SIDE CLEARANCE TOP LSC D (STUCK, <, >) (mm)	KING SIDE CLEARANCE TOP LSC MINIMUM [STUCK, <, >] (MM) MINIMUM DINC SIDE CIERDRANCE - INT. DEFINEST (SMICE <) / Jum.)	THE PRESENT	SIDE CLEARANCE INT. PRETEST B	CLEARANCE INT. PRETEST C	INT. PRETEST D	ARANCE INT. PRETEST D	JUM RING SIDE CLEARANCE-INT1-POSTTEST [STUCK, <,	SIDE CLEARANCE INT. POST-TEST A [STUCK, <, >]	NING SIDE CLEARANCE INT. POST-TEST B [STUCK, <, >] (MM)	SIDE CLEARANCE INI. FOST-IESI ([SIOCA, /, /]	SIDE CLEARANCE INT. POST-TEST AVG [STUCK, <, >	RING SIDE CLEARANCE INT. LSC A [STUCK, <, >] (mm)	SIDE CLEARANCE INT. LSC B [SIDE CLEARANCE INT. LSC	SIDE CLEARANCE INT. LSC	SIDE CLEARANCE INT. LSC MINIMUM [STUCK, <, >	SIDE CLEARANCE OIL PRE-TEST A [STUCK, <, >]	SIDE CLEARANCE OIL PRE-TEST B [STUCK, <, >]	SIDE CLEARANCE OIL PRE-TEST C	SIDE CLEARANCE OIL PRE-TEST	E OIL PRE-TEST AVG [STUCK, <, >] (mm	MINIMUM RING SIDE CLEARANCE-OIL-PRETEST [STUCK, <, >] (mm)	SIDE CLEARANCE OIL FOST-IEST A		A16.1 Data Dictionary (continued)
	Type Units/Format	13	N N		um Z	N mm	N man	A mm	A mm	A mm	A mm	A min		THE THE	A mm	A mm	A mm	A mm	A mm	A mon	A rren	A mm	A mm	THE T		A mm	A mm	A mm	A mm	A *	A mm		A mm	A mm	A mm	A mm	A mm	A mm	A mm	A mm			W IIII	A mm	A mm		FIG. A16.1 Data DICT
Dec.	Size	0	mm	n m	, m	m	m	ო	m	ო	ლ (י רי	n ~	n m	m	ო	m	ო	ო (m (m (י רי	יז ני	n m	nm	m	m	m	m (יי רי	יי רי	ე ო	m	က	ო	m	m	ന	m (m (m c	יי) רי	יני	יי ריי	o m	,	
Field	Length	m ·	vo v	, ,	· w	9	Q	7	,	7	7	- 4			7	1 7	7 7	9	7	- 1	- 1	~ [٠ ،	- I		3 7	1 7	7	9 1		- r			7	7	7	7	7	7	- 1	· r	~ r		9 -	- [-		
Field	Name	TOTCOM	PINGGTE	RINGGOR	RINGGIO	RINGGI10	RINGGOO	SIDETPE1	SIDETPEZ	SIDETPE3	SIDETPE4	Ternerne	STREET	SIDETPO2	SIDETPO3	SIDETPO4	ASIDETPO	ISIDETPO	LSCT1	LSCT2	LSCT3	LSCT4	TETOFIDE	STORIDEL	SIDEIPEZ	SIDE1PE3	SIDE1PE4	ASIDE1PE	ISIDE1PO	SIDELPOL	SIDELPO2	SIDELECS	ASIDE1PO	LSC11	LSC12	LSC13	LSCI4	ILSCINT	SIDEOPE	SIDEOPEZ	SIDEOPES	SIDEOPE4	ASIDEOPE	SIDEOPE	SIDEOPO2		
Test	Area	15	IP T	1 F	1. 1.P	1P	1P	1 b	1P	1P	1. 1.	4 5	1 5	15	1 P	1 P	1P	11	1 <u>P</u>	4 :	4 ;	4 5	크 t	1 F	1 1	1.5	1P	15	1F	4 5	1 1	1 1	1B	1 P	1 P	15	15	I.P	1 <u>P</u>	H .	1 t	ן קין נ	4 ;	1 F	4 1	i	
	Form	7	oo oo	ο α	ω	80	8	80	8	ω	ω (ο α	α	σ	80	ω	ω	ω	ω (ထပ	ω (o c	οα	οα	οω	œ	œ	ω .	ω (0 0	οα	0 00	8	80	ω	ထ	ω	ω .	ω (00 (000	20 0	oc	α	ο α	,	
	Sequence	8840	8850	8870	8880	0688	8900	8910	8920	8930	8940	0000	0000	8980	8990	0006	9010	9020	9030	9040	9050	9060	9080	0606	9100	9110	9120	9130	9140	9150	9170	9180	9190	9200	9210	9220	9230	9240	9250	9260	9270	0000	0878	9300	9320	1 	

	DESCRIPTION DING SIDE CIRADANGE OIL DOCE-FERT C [SMICK < > >] (mm)	SIDE CLEARANCE	SIDE CLEARANCE OIL POST-TEST AVG [STUCK, <, >]	UM RING SIDE CLEARANCE-OIL-POSTTEST [ST	SIDE CLEARANCE OIL LSC A [STUCK, <, >]	RING SIDE CLEARANCE OIL LSC B [STUCK, <, >] (mm) RING SIDE CLEARANCE OIL LSC C [STUCK, <, >] (mm)	SIDE CLEARANCE OIL LSC D [STUCK, <, >]	SIDE CLEARANCE OIL LSC MINIMUM [STUC	BORE SURFACE FINISH	BORE SURFACE FINISH -LONGITUDINAL-	BORE SURFACE FINISH - AVERAGE - 130	LINER BORE SURFACE FINISH - TRANSVERSE - 50 MM (MICFOMETE)	DONE SOMERCE FINISH DONGILOSINAD	BORE SURFACE FINISH - TRANSVERSE - 25 1	BORE SURFACE FINISH -LONGITUDINAL-	LINER BORE SURFACE FINISH - AVERAGE - 25 MM (micrometre)			SORE POLISH		TEST LINER BORE	TEST LINER	TEST LINER	TEST LINER BORE	TEST LINER BORE	BEFORE TEST LINER BORE MEA 1/0 MM HT-LONGITUDINAL (UU)	TEST LINER BORE	TEST LINER BORE		LINER BORE	TEST LINER BORE	TEST LINER BORE MEA50 MM HT-TRANSVERSE (m	TEST LINER	BEFORE IEST LINER BOKE MEA:20 MM HI-LONGILOLINAL (MM) DEBODE TEST TIMPS DODE MEN35 MM HI-TENNITEDSE (TM)	TEST LINER BORE MEA25 MM HI-TRANSVERSE (TEST LINER BORE	LINER BORE	TEST LINER BORE MEA15 MM	BEFORE TEST LINER BORE MEATAPER -LONGITUDINAL (mm)		TEST LINER BORE WEAR	TEST LINER BORE WEAR	TEST LINER BORE WEAR STEPTRANSVERSE T (AFTER TEST LINER BORE WEAR STEPTRANSVERSE AT (mm)	ENGINE SPEED SENSING DEVICE	ionary (continued)
Data	Type Units/Format			A mm	A mm		A mm	A mm	N micrometre	N micrometre	N micrometre			N micrometre			N micrometre	of Z	of Z	N mm	N mm						N N	N III	N mm	N mm	N mm	א אומנו				um Z	N mm	N mm	N mm	N mm	N mm	N mm	N mm	N C	: : :	FIG. A16.1 Data Dictionary (continued)
Dec.	Size	n m	m	ო	m	m r	n m	m	(7)	(1	(1)	(4) C	4 (4 C	1 (4	(1	Ø	Н	н	m	ю	m	m	m i	m (m c	n m	m	ю	ო	ო	ന	7) (יי ני	าศ	n	е	m	m	ю	ო	ო	m	mc	>	
Field	rengtn	, ,	7	9	7	<u>ر</u> ر	, _	7	5	5	ស	ın u	O 4	ם עם	വ	ß	S	9	9	80	œ	9	ω	ω '	9 (ω (o w	ω	ω	9	ထ	ω '	، م	ю o	o vo	- α	80	ø	ω	80	9	9	9	9 [/1	
73	Name L	SIDEOPO4	ASIDEOPO	ISIDEOPO	LSC01	LSC02	LSCO4	ILSCO	BBLFINT1	BBLFINL1	BBLFINA1	BBLFINT2	BBLF INLA	BELFINAS	BBLFINL3	BBLFINA3	BBLFIN	BOREPT	BOREPAT	BBLONG1	BBTRAN1	00R1	BBLONG2	BBTRANZ	OOR2	BBLONG3	DOR3	BBLONG4	BBTRAN4	00R4	BBLONG 5	BBTRAN5	OORS	BBLONGS	OORE	BBLONG7	BBTRAN7	OOR7	TAPRIONG	TAPRTRAN	AWEARLE	AWEARLR	AWEARTT	AWEARTAT	RPMSENS	
Test	Area	15	1 <u>P</u>	1 P	1P	1 1 1	1P	1P	11	11	16	15		4 t	1 1	1P	1P	1 P	1 P	1P	1P	1P	1 P	15	15	1P	4 F	1.P	1.5	11	1P	15	A :	H 5	4 6	15	11	1 P	1P	11	1P	1 P	1B	# F	4	
ı	Form	0 00	ω	89	00	ω α	0 00	ω	6	თ	თ	o 0	א ע	nσ	, o	თ	D	თ	σ	თ	თ	σ	σ	σ.	o (o (ח ס	n 01	თ	თ	σ	თ :	э (י ע	nσ	0	ი	თ	თ	0	თ	0	o .	σ,	70	
	Sequence	9340	9350	9360	9370	9380	9400	9410	9420	9430	9440	9450	9460	94/0	9490	9500	9510	9520	9530	9540	9550	9560	9570	9580	9590	9600	9610	9630	9640	9650	0996	9670	0896	9690	9710	9720	9730	9740	9750	9760	9770	9780	9790	9800	9810	

FIG. A16.1 Data Dictionary (continued)

																																		•	~					
Description	ENGINE SPEED CALIBRATION FREQUENCY	SPEED	SPEED	SPEED	ENGINE SPEED LOG FREQUENCY	POWER	POWER	ENGINE POWER RECORD DEVICE	POWER	POWER	ENGINE POWER SYSTEM RESPONSE	RATE	FUEL RATE CALIBRATION FREQUENCY FUEL RATE RECORD DEVICE	RATE	RATE	ENGINE	FUEL RATE SYSTEM RESPONSE HIMIDITY SENSING DEVICE				HUMIDITY RECORD FREQUENCY		COOLANT OUT TEMPERATURE SENSING DEVICE	OUT TEMPERATURE	COOLANT OUT TEMPERATURE ENGINE SPEED RECORD DEVICE COOLANT OUT TEMPERATURE OBSERVATION FREQUENCY	OUT TEMPERATURE	COOLANT OUT TEMPERATURE LOG FREQUENCY	IN TEMPERATURE S	IN TEMPERATURE	IN TEMPERATURE	COOLANT IN TEMPERATURE OBSERVATION FREQUENCY	IN TEMPERATURE	COOLANT IN TEMPERATURE SYSTEM RESPONSE	TEMPERATURE	AVERAGE EXHAUST TEMPERATURE FOR LAST 10 TESTS (SC. OTT. TO MANIFOLD TEMPERATURE CALIERATION FREQUENCY		OIL TO MANIFOLD TEMPERATURE RECORD DEVICE	TO MANIFOLD TEMPERATURE	OIL TO MANIFOLD TEMPERATURE RECORD FREQUENCY OII, TO MANIFOLD TEMPERATURE LOG FREQUENCY	
Data Tvoe Units/Format		υ	ບ	D 8	ט ני	υ	U	o t) U	ຸບ	ບ	U t	ט ט	υ	ບ	U	υt	ט ט	υ	υ	ບະ	υ	υ	O t	ט נ	υ	ບເ	ט ע	υ	טּ	ט ט	υ	υ	ر د ت) Si	E N	i O	ָּט	υυ	0.00
Data		J	Ŭ	•	-	, ,			, ,		Ŭ	•	-		_	•	_		Ŭ	•			Ĭ			Ū			Ĭ				•	•				_		Č
Dec. Size	0	0	0	0 (0 0	0	0	-	0	0	٥	0 0	0	0	0	0	00	0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 ,	+ C	· -	0	0	- 0	
Field Length	13	16	12	27.	7 8	17	13	9 :	; C\	. A1						6 .1 .									_				_		S1 61	. 61	۵	~ .	ρm	ی و	16	12	77	
E E									-	12	œ	17	19	12	12	12	2 0	13	16	12	17	8	17	13	17	12	173	17	13	16	7 2	12	w	17	13	•				
Field	I.F	RPMRECD	RPMOBSF	RPMRECE	RPMSYSE	PWRSENS	PWRCALF	PWRRECD					FFLOCALF 13				FFLOSYSR 8				HUMRECE 12			COTCALF 13			COTLOGF 12				CONDESE 12			OBRGSENS 1				OBRGOBSE	OBRGIOGE	
Test Field Area Name	PREMICALE	•			•				PWRRECF	PWRLOGE	PWRSYSR	FFLOSENS	FFLORECD	FFLOOBSF	FFLORECF	FFLOLOGE	FFTOSYSR HIMSENS 1	HUMCALF	HUMRECD	HUMOBSE	HUMRECF	HUMSYSR	COLSENS	COTCALF	COTOBSE	COTRECF	COTLOGE	CONSENS	CONCALF	CONRECD	CONRECF	CONLOGE	CONSYSR	OBRGSENS	OBRGCALF	ATORHXXX	OBRGRECD		1P OBRGLOGE	
u m	1P RPMCALF	0 1P	1.5		1 F	0 1P	11.		1P PWRRECF	1P PWRLOGE	1P PWRSYSR	1P FFLOSENS	FFLORECD	1P FFLOOBSF	0 1P FFLORECF	1P FFLOLOGF	FFTOSYSR HIMSENS 1	1P HUMCALF	1P HUMRECD	1P HUMOBSE	HUMRECF	1P HUMSYSR	1P COTSENS	COTCALF	1P COTOBSE	1P COTRECF	1P COTLOGE	1P CONSENS	1P CONCALF	1P CONRECD	1P CONDESE	1P CONLOGE	1P CONSYSR	1P OBRGSENS	1P OBRGCALF	1P ATORHXX	1P OBRGRECD	1.0		

FIG. A16.1 Data Dictionary (continued)

	Description	USAGE START DATES (YYYYMMDD)	OIL TO MANIFOLD TEMPERATURE SYSTEM RESPONSE		OIL COOLER IN TEMPERATURE SENSING DEVICE	WEIGHTED TOTAL DEMERITS ZI	OIL COOLER IN TEMPERATURE CALIBRATION FREQUENCY WETCHTED TOTAL DEMERTTS SEVERITY ADDITISTMENT	OIL COOLER IN TEMPERATURE RECORD DEVICE	TOP GROOVE CARBON ZI		TOP GROOVE CARBON S.A.				TOP LAND CARBON S.A.		INDET AIR TEMPERATURE SENSING DEVICE	OIL CONSUMPTION S.A.	INLET AIR TEMPERATURE CALIBRATION FREQUENCY	EOT OIL CONSUMPTION ZI	INLET AIR TEMPERATURE RECORD DEVICE	EOT OIL CONSUMPTION S.A.		INLET AIR TEMPERATURE ENGINE SPEED RECORD FREQUENCY	INLET AIR TEMPERATURE LOG FREQUENCY		TEMPERATURE	TEMPERATURE	EXHAUST TEMPERATURE RECORD DEVICE	TEMPERATORE	TEMPERATURE	TEMPERATURE	TEMPERA	HEAD TEMPERATURE	TO MANIFOLD PRESSURE	OIL TO MANIFOLD PRESSURE SYSTEM RESPONSE	INLET AIR PRESSURE SENSING DEVICE	(continued)										
Data	Type Units/Format	C YYYYMMDD	ບ	C HHH:MM	υ	Z	UZ	: ບ	Z	υ	Z	ŭ	Z	υ	2.) 2	: U	×	U	Z	v	Z	ບ	υ	υ	U	ပ	U		, t	. .	າ ບ	υ	ပ	ပ	O I	U i	υ [,]	ი	บ	ບ	υ	ပ	υ	υ i	ပေး	ט	A16.1 Data Dictionary (continued)
	Size Ty	0	0	0	0	m ·	o -	10		0	7	0	Э	0	(1)	> ~	. 0		0	e	0	7	0	0	0	0	0 (0 0	.	.		. 0	0	0	0	0 '	0 (0 (0	0	0	0	0	0	0 1	0 0		FIG. A
		~	80	١٥.		7	m v		7	61	9	C:I	7	~ 1	9 0		. ~	. L	.	7	w	z,	rs.	N.	C)	6 0	7	m (9 5	<i>4</i> 6	ı (\	. &	7	13	16	12	17	77	ω (17	13	16	12	12	12	ω [
Field	Length				-		-	-		F 12		-		-			17		F 13		-				-																							
Field	Name	DISTRKK	OBRGSYSR	DTTMRXXX	OCOLSENS	WDZIRXX	MUSARKK	OCOLRECD	TGZIRXXX	OCOLOBSE	TGSARXXX	OCOLRECE	TLZIRXXX	OCOLLOGE	TLSARKK	OCCUBICA	AIRTSENS	OCSARXX	AIRTCALF	ETZIRXXX	AIRTRECD	ETSARXX	AIRTOBSF	AIRTRECF	AIRTLOGE	AIRTSYSR	EXTSENS	EXTCALE	EXTRECT	EATOBSE	EXTINGE	EXTSYSE	FUELSENS	FUELCALF	FUELRECD	FUELOBSE	FUELRECE	FUELLOGE	FUELSYSR	OBRPSENS	OBRPCALF	OBRPRECD	OBRPOBSF	OBRPRECF	OBRPLOGE	OBRPSYSR	AIRPSENS	
Test	Area	15	15	1 <u>P</u>	15	H.	1P	15	15 15	1P	1 P	1B	11	1 P	15	1 1	15	1B	1P	11	1P	11	1P	15	15	1 P	1 <u>P</u>	15 15	4 5	4 -	ή <u>C</u>	1 #	1P	15	115	<u>1</u>	15	15 15	1B	IP.	15	IP.	15 15	1P	1P	1P	Ä	
	Form	15	10	15	10	12	10	10	15	10	15	10	12	10	15) r	10	15	10	15	10	15	10	10	10	10	10	10	2 5	3 5	9 5	2 2	10	10	10	10	10	10	01	01	01	10	10	10	10	10	70	
	Sequence	10310	10320	10330	10340	10350	10360	10380	10390	10400	10410	10420	10430	10440	10450	10470	10480	10490	10500	10510	10520	10530	10540	10550	10560	10570	10580	10590	10600	10620	10630	10640	10650	10660	10670	10680	10690	10700	10710	10720	10730	10740	10750	10760	10770	10780	10/20	

	iption	AIR PRESSURE	AIR PRESSURE	PRESSURE	INLET AIR PRESSORE RECORD FREQUENCY	A TR	T PF	EXHAUST PRESSURE CALIBRATION FREQUENCY	EXHAUST PRESSURE RECORD DEVICE	EXHAUST PRESSURE OBSERVATION FREQUENCY	PRESSURE	EXHAUST PRESSURE LOG FREQUENCY	IST PRESSURE SYSTEM	FROM HEAD PRESSURE	FROM HEAD PRESSURE	TROM HEAD PRESSURE		FROM HEAD DRESSINE	FROM HEAD PRESSURE	KCASE SENSING DEVICE		CRANKCASE RECORD DEVICE	CRANKCASE OBSERVATION FREQUENCY	CRANKCASE RECORD FREQUENCY	CRANKCASE LOG FREQUENCY	CRANKCASE SYSTEM RESPONSE	SENSING						COOLANT FILM RESPONSE		MO.TH	FT.OW	FLOW	FLOW	COOLANT FLOW SYSTEM RESPONSE	0 - 48 OIL CONSUMPTION (g/h)	OIL CONSUMPTION PLOT IMAGE	PISTON RING AND LINER PHOTOGRAPHS PLOT IMAGE	FUEL BATCH ANALYSIS PLOT IMAGE	TMC CONTROL CHART ANALYSIS PLOT IMAGE	continued)
Data	Type Units/Format	O ·	ບເ	ن ر	ז נ) U	, O	ບ	υ	U	υ	บ	υ	บ	υt	، ر	ن ر	ט ני	יט	U	υ	υ	U	U	U	υ	υ	υ	υ	บ	υ	U (ט נ) ເ	, U	ייני	ı U	υ	υ	N g/h		υ	ບ	υ	FIG. A16.1 Data Dictionary (continued)
Dec.	Size	0	0 0	> 0	> <	0 0	0	0	0	0	0	0	0	0	0 0	0	o c	, c	0	0	0	0	0	0	0	0	0	0	0	0	0	> 0	o c) C	, c		0	0	0	Η.	0	0	0	0	FIG. A
Field	Length	133	9 7	4 F	4 C	1 00	17	13	16	12	12	12	ω	17	13	9 5	4 C	1 ~	ω	17	13	16	12	12	12	80	17	13	16	12	12	17	1,0	· ~	9	- 2	12	12	œ	R)	70	70	70	70	
Field	Name	AIRPCALF	AIRPRECD	AIRFORSE	AIRFIGE	ATRESYSE	EXPSENS	EXPCALF	EXPRECD	EXPOBSE	EXPRECF	EXPLOGE	EXPSYSR	FFILSENS	FFILCALF	TOUR TREE	FETT.RECE	FFTTATOGE	FFILSYSR	CCVSENS	CCVCALF	CCVRECD	CCVOBSF	CCVRECF	CCVLOGF	CCVSYSR	BLBYSENS	BLBYCALF	BLBYRECD	BLBYOBSF	BLBYRECF	BLBYLOGE	CFLWSENS	T.TACAT.	CFLWRECD	CFT.WORSF	CFLWRECF	CFLWLOGF	CFLWSYSR	BOTOC	OCPIM	PRLIM	FUELIM	CCHIM	
Test	Area	1.P	ΙΡ	4 t	11.	15	1 <u>P</u>	1P	1P	1P	1P	1b	1 <u>P</u>	15	115	4 F	1 L	- 4	11	1P	1P	1.P	1P	15	1 <u>P</u>	15	15	1P	1 P	1 <u>P</u>	1. 1.	4 t	4 C	1 -	15	10	1P	1P	11	1 <u>P</u>	11	1B	1 P	1 p	
	Form	10	0 5	2 5	1 5	10	10	10	10	10	10	10	10	10	10	2 5	2 5	10	10	10	10	10	10	10	10	10	10	10	10	10	10	010	10	10	10	10	10	10	10	13	13	14	16	17	
	Sequence	10800	10810	10020	10840	10850	10860	10870	10880	10890	10900	10910	10920	10930	10940	10950	10920	10980	10990	11000	11010	11020	11030	11040	11050	11060	11070	11080	11090	11100	11110	11120	11140	11150	11160	11170	11180	11190	11200	11210	11220	11230	11240	11250	

89

APPENDIXES

(Nonmandatory Information)

X1. VARIOUS EXAMPLES FOR REFERENCE PURPOSES

X1.1 See Figs. X1.1-X1.8.

∰ D 6681 – 01

¢	G	ROOV	1		ROOV	12	9	ROOVE	13	COOL	ING GA	LERY	UNDE	R CRO	WN
A	A%	FCT	DEM	A%	FCT	DEM	A%	FCT	DEM	A%	FCT	DEM	A%	FCT	DEN
R	5	1.00	5.00	3	1.00	500	3	1.00	5.00	1000000		De la Constitución de la Constit	100000	OR THE REAL	2 5 5
	5	0.50	250	DOM:	NUMBER OF STREET	Karan.	5	0.50	250				land.		
0	5	0.25	1.25	5	0.25	1.25	3	0.25	1.25	3	0.25	125	3	0.25	1.25
N	SUBT		875	SUB1	_	625	SUBT	OTAL	875	SUBT		1.8	SUBT		1.25
	000000	REAL PROPERTY.	1000000	1000	Name of Street		O STATE OF THE PARTY.	Name of Street	NAME OF TAXABLE	DESCRIPTION OF THE PARTY OF THE		100000	Name of Street		100000
v	9	85	276	3	85	0.75	1//	8.5	0.87	117	7.5	0.57	117	7.5	0.57
A	7	75	0.52	7	75	052	17	7.5	452	9	4.5	0.40	9	4.5	240
R	9	65	0.58	9	65	0.58	1	65	0.22	1 7	1.5	0.10	7	1.5	410
N	7	55	0.8	7	55	0.8	13	55	4.58						-
ï	9	15	0.40	9	15	040	1	4.5	40	1			1		
	7	35	0.24	7	15	0.24	3	15	4.22				1		
н	9	25	0.22	9	25	0.27	11	25	0.16				1		
	7	1.5	0.10	7	1.5	0.10	17	1.5	0.10						
	0	05	0.04	1	05	0.04	1	25	204						
	SUBT	20.0	124	SUBT		1N	SUBT		106	SUBT	OTAL	102	SUBT	DIATO	1.00
-	TOTAL		11.99	TOTAL		2.49	TOTAL		11.81	TOTAL	Section 1	227	TOTAL	-	227
	LOCF		2	LOC F		3	LOCF		20	LOCF		0.50	LOCF		1
		CI_	23.98	WTD	VI.	20	WTD	61	236.20	WTD	<u> </u>	1.14	WTD	Ç1	227
	WTD	_	25.36	WID	_	25.17	WID	_	200.20	MAID		A.re	MIC	_	221
С	_	LAND 1		_	LAND			LAND :	_	1	LAND 4		1		
	-		_	-			_		DEM	450	FCT	-	4		
^	A%	FCT	DEM	A%	FGT	DEM	A%		5.00	A%	_	500	1		
R	5	1.00	500	3	1.00	5.00	-	1.00	3.00	-	1.00	200			
	-		1.00	-		1.00	-		7.00			7.0			
0	5	0.25	1.25	3	0.25	1.25	Name and Address of the Owner, where	0.25	125	3	0.25	1.25	4		
N	SUBT	OTAL	625	SUBT	OTAL	625	SUBT	OTAL	6.25	SUBT	OTAL	6.25			
	0	0.0	4.8	1 6	44	0.85	11 //	100	0.81	11 77		2.22			
٧	9	85	2/6	9	8.5	0.75	//	8.5	0.82	1//	8.5	0.87			
۸	-	15	0.52	4	7.5	0.52	1	7.5		1	7.5	0.52	WOP		74.8
R	9	6.5	0.58	9	6.5	0.58		6.5	0.22	J.	55	0.22	TGC	_	75
N	/	55	-	/	55	0.8	13	5.5	_	13		0.58	TLC	_	25
!	9	15	0.40	9	45	240	9	45	240	9	4.5	0.40	4		
8	/	35	0.24	1	15	024	5	15	0.22	5	J5	0.22	4		
н	9	25	0.77	3	25	0.22	11	25	0.16	11	25	2.16	4		
	1	1.5	2.10	1	1.5	0.10	1	1.5	0.10	1	15	0.10	1		
	9	25	0.04	3	95	0.04	J	0.5	0.04	1	0.5	2.04	1		
	SUBT	_	124	SUBT		124	SUBT	-	106	SUBT		206	1		
	TOTAL		8.49	TOTAL		2.49	TOTAL		9,37	TOTAL		9,37	1		
	LOCF	CT	1	LOC F	CT	3	LOCF	CT	20	LOC F	CT	60	1		
	OTW	911	2.49	WTD	7.2	28.47	WTD		186.20	WTD		558.60	1		
											- 6		-		
		N NO.	1	RIF	VG STL	ICK		SCUFFS	ED ARE	A.%		TLFC			
	TOP R	ING								~					
	INT. R	NG													
	OIL RI	NG		-22											
	PISTO	N		55000			7			3.					

FIG. X1.1 Rating Worksheet Example

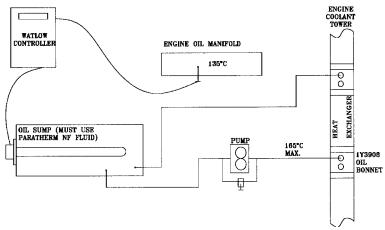
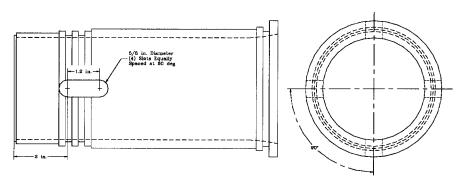



FIG. X1.2 Engine Oil Heating System

Note—Use a 1Y3555 liner from the 1K/1N test. The liner shall be free of I.D. distortion or surface distress. FIG. X1.3 Ring Side Clearance Measurement Fixture

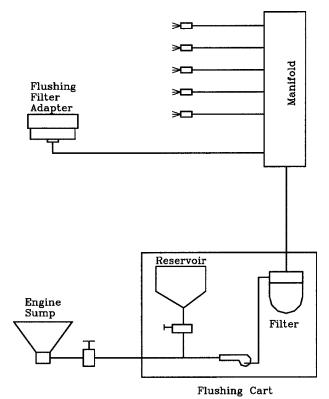


FIG. X1.4 Flushing Cart Flow Schematic

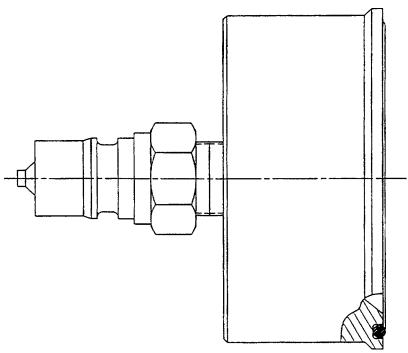
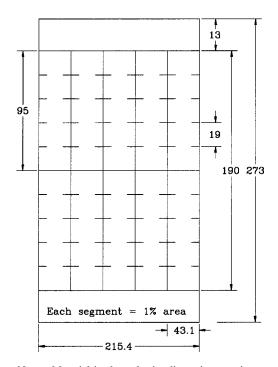



FIG. X1.5 Oil Filter Flushing Adapter Example

 $\label{eq:Note-Material} Note-Material is clear plastic; dimensions are in mm. \\ \textbf{FIG. X1.6 Bore Polish Grid}$

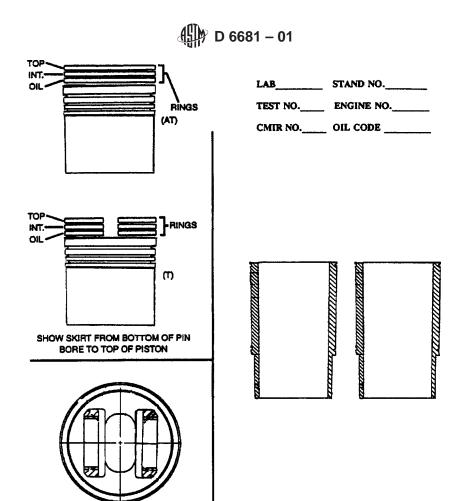


FIG. X1.7 Example of Piston, Rings and Liner Photograph Layout

PHOTO OF SECTION LINER

SHOW T & AT BORES

PHOTO OF PISTON UNDERCROWN

(Crown Only - No Skirt)

		8.			SUMMAR	Y SHEET					
			OIL CODE	NO				_			
4 1	DATE			ENGINE				T			
TEST NO.	COMP	OIL CODE NO.	TEST LAB	STAND NO.	RUN NO.	WDP	TGC	TLC	0 - 360	BSOC g/h 0 - 48	BSOC g/h 336-360
TEST	DATA						S. Frank		The same of the same of	part of the	
1ST 2 3 4											
2											
3				1							
4											
TES	TAVG										1
1ST								_	1		
3						_	_	_	_		-
3	Marian Control				100						_
OUTLIER	MIN. LEVEL					(1)	(2)	(4)			
2 TEST A	VG. WITH OL	JTLIER REMOVED					-	-			
		JTLIER REMOVED				_	-	-			
ACCEPTA	NCE LIMITS		and the same in						-		
1ST TEST						-	-	-	+		
2 TEST P						-	_	+	+		
3 TEST P	ASS					_					
NOTES:		ST AVG + T AVG +									
	(4) TLHC 3 TE										

Note—If testing candidate lubricants in accordance with Specification D 4485, the results of multiple testing should be reported on this form.

FIG. X1.8 Example of Multiple Test Summary Sheet

X2. SAFETY

X2.1 The operating of engine tests can expose personnel and facilities to a number of safety hazards. It is recommended that only personnel who are thoroughly trained and experienced in engine testing should undertake the design, installation, and operation of engine test stands. Each laboratory conducting engine tests should have their test installation inspected and approved by their Safety Department. Personnel working on the engines should be provided with the proper tools, be alert to common sense safety practices and avoid contact with external moving or hot parts. When engines are operating at high speeds, heavy duty guards are required and personnel should be cautioned against working alongside the engine and coupling shaft. Barrier protection should be provided for personnel. All fuel, oil lines, and electrical wiring should be properly routed, guarded, and kept in good order. Scraped knuckles, minor burns, and cuts are common if proper safety precautions are not taken. Safety masks or glasses should always be worn by personnel working on the engines and no loose or flowing clothing should be worn near running engines. The external parts of the engine and the floor area around the engines should be kept clean and free of oil and fuel spills. In addition, working areas should be free of all tripping hazards. In case of injury, no matter how slight, first aid attention should be applied at once and the incident reported. Leaking fuel represents a fire hazard and exhaust gas fumes are noxious. Do not allow containers of oil or fuel to accumulate in the testing area. The test installation should be equipped with a fuel shut-off valve which is designed to automatically cut off the fuel supply to the engine when the engine is not running. A remote station for cutting off fuel from the test stand is recommended. Suitable interlocks should be provided so that the engine is automatically shut down when any of the following events occur: the engine dynamometer loses field current, engine over-speeds, low oil pressure, high water temperature, exhaust system fails, room ventilation fails, or the fire protection system is activated. Consider an excessive vibration pickup interlock if equipment operates unattended. Fixed fire protection equipment should be provided and dry chemical fire extinguishers should be available at the test stands.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).