
Designation: D 6708 – 01 e1 An American National Standard

Standard Practice for
Statistical Assessment and Improvement of the Expected
Agreement Between Two Test Methods that Purport to
Measure the Same Property of a Material 1

This standard is issued under the fixed designation D 6708; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

e1 NOTE—Corrected Eq 8 editorially in November 2003.

1. Scope

1.1 This practice defines statistical methodology for assess-
ing the expected agreement between two standard test methods
that purport to measure the same property of a material, and
deciding if a simple linear bias correction can further improve
the expected agreement. It is intended for use with results
collected from an interlaboratory study meeting the require-
ment of Practice D 6300 or equivalent (for example,
ISO 4259). The interlaboratory study must be conducted on at
least ten materials that span the intersecting scopes of the test
methods, and results must be obtained from at least six
laboratories using each method.

NOTE 1—Examples of standard test methods are those developed by
voluntary consensus standards bodies such as ASTM, IP/BSI, DIN,
AFNOR, CGSB.

1.2 The statistical methodology is based on the premise that
a bias correction will not be needed. In the absence of strong
statistical evidence that a bias correction would result in better
agreement between the two methods, a bias correction is not
made. If a bias correction is required, then theparsimony
principle is followed whereby a simple correction is to be
favored over a more complex one.

NOTE 2—Failure to adhere to the parsimony principle generally results
in models that are over-fitted and do not perform well in practice.

1.3 The bias corrections of this practice are limited to a
constant correction, proportional correction or a linear (propor-
tional + constant) correction.

1.4 The bias-correction methods of this practice are method
symmetric, in the sense that equivalent corrections are obtained
regardless of which method is bias-corrected to match the
other.

1.5 A methodology is presented for establishing the 95 %
confidence limit (designated by this practice as thecross-
method reproducibility) for the difference between two results

where each result is obtained by a different operator using
different apparatus and each applying one of the two methods
X andY on identical material, where one of the methods has
been appropriately bias-corrected in accordance with this
practice.

NOTE 3—Users are cautioned against applying the cross-method repro-
ducibility as calculated from this practice to materials that are significantly
different in composition from those actually studied, as the ability of this
practice to detect and address sample-specific biases (see 6.8) is dependent
on the materials selected for the interlaboratory study. When sample-
specific biases are present, the types and ranges of samples may need to
be expanded significantly from the minimum of ten as specified in this
practice in order to obtain a more comprehensive and reliable 95 %
confidence limits for cross method reproducibility that adequately cover
the range of sample specific biases for different types of materials.

1.6 This practice is intended for test methods which mea-
sure quantitative (numerical) properties of petroleum or petro-
leum products.

2. Referenced Documents

2.1 ASTM Standards:
D 5580 Test Method for Determination of Benzene, Tolu-

ene, Ethylbenzene plm-Xylene, o-Xylene, C9 and Heavier
Aromatics and Total Aromatics in Finished Gasoline by
Gas Chromatography2

D 5769 Test Method for Determination of Benzene, Tolu-
ene, and Total Aromatics in Finished Gasoline by Gas
Chromatography/Mass Spectrometry2

D 6299 Practice for Applying Statistical Quality Assurance
Techniques to Evaluate Analytical Measurement System
Performance2

D 6300 Practice for Determination of Precision and Bias
Data for Use in Test Methods for Petroleum Products and
Lubricants2

2.2 ISO Standard3

ISO 4259 Petroleum Products—Determination and applica-
tion of precision data in relation to methods of test.

1 This practice is under the jurisdiction of ASTM Committee D02 on Petroleum
Products and Lubricants and is the direct responsibility of Subcommittee D02.94 on
Quality Assurance and Statistics.

Current edition approved Aug. 10, 2001. Published October 2001.

2 Annual Book of ASTM Standards, Vol 05.03.
3 Available from American National Standards Institute, 11 W. 42nd St., 13th

floor, New York, NY 10036.
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3. Terminology

3.1 Definitions:
3.1.1 closeness sum of squares (CSS), n—a statistic used to

quantify the degree of agreement between the results from two
test methods after bias-correction using the methodology of
this practice.

3.1.2 cross-method reproducibility (RXY), n—a quantitative
expression of the random error associated with the difference
between two results obtained by different operators using
different apparatus and applying the two methodsX and Y,
respectively, each obtaining a single result on an identical test
sample, when the methods have been assessed and an appro-
priate bias-correction has been applied in accordance with this
practice; it is defined as the 95 % confidence limit for the
difference between two such single and independent results.

3.1.2.1 Discussion—A statement of cross-method reproduc-
ibility must include a description of any bias correction used in
accordance with this practice.

3.1.2.2 Discussion—Cross-method reproducibility is a
meaningful concept only if there are no statistically observable
sample-specific relative biases between the two methods, or if
such biases vary from one sample to another in such a way that
they may be considered random effects. (see 6.7.)

3.1.3 total sum of squares (TSS), n—a statistic used to
quantify the information content from the inter-laboratory
study in terms of total variation of sample means relative to the
standard error of each sample mean.

3.2 Symbols:

X,Y = single X-method and Y-method results,
respectively

Xijk, Yijk = single results from the X-method and
Y-method round robins, respectively

Xi, Yi = means of results on theith round robin
sample

S = the number of samples in the round robin
LXi, LYi = the numbers of laboratories that returned

results on theith round robin sample
RX, RY = the reproducibilities of the X- and Y- meth-

ods, respectively
sRXi, sRYi = the reproducibility standard deviations,

evaluated at the means of theith round
robin sample

srXi, srYi = the repeatability standard deviations,
evaluated at the means of theith round
robin sample

sXi, sYi = standard errors of the meansith round robin
sample

X̄, Ȳ = the weighted means of round robins
(across samples)

xi, yi = deviations of the means of theith round
robin sample results fromX̄ andȲ, respec-
tively.

TSSX, TSSY = total sums of squares, aroundX̄ and Ȳ
F = a ratio for comparing variances; not

unique—more than one use
vX, vY = the degrees of freedom for reproducibility

variances from the round robins

wi = weight associated with the difference be-
tween mean results (or corrected mean
results) from theith round robin sample

CSS = weighted sum of squared differences be-
tween (possibly corrected) mean results
from the round robin

a,b = parameters of a linear correction:Ŷ = a +
bX

t1, t2 = ratios for assessing reductions in sums of
squares

RXY = estimate of cross-method reproducibility
Ŷ = Y-method value predicted from X-method

result
Ŷi = ith round robin sample Y-method mean,

predicted from corresponding X-method
mean

ei = standardized difference betweenYi and Ŷi.
LX, LY = harmonic mean numbers of laboratories

submitting results on round robin samples,
by X- and Y- methods, respectively

RX Ŷ = estimate of cross-method reproducibility,
computed from an X-method result only

4. Summary of Practice

4.1 Precisions of the two methods are quantified using
inter-laboratory studies meeting the requirements of Practice
D 6300 or equivalent, using at least ten samples in common
that span the intersecting scopes of the methods. The arithmetic
means of the results for each common sample obtained by each
method are calculated. Estimates of the standard errors of these
means are computed.

NOTE 4—For established standard test methods, new precision studies
generally will be required in order to meet the common sample require-
ment.

NOTE 5—Both test methods do not need to be run by the same
laboratory. If they are, care should be taken to ensure the independent test
result requirement of Practice D 6300 is met (for example, by double-
blind testing of samples in random order).

4.2 Weighted sums of squares are computed for the total
variation of the mean results across all common samples for
each method. These sums of squares are assessed against the
standard errors of the mean results for each method to ensure
that the samples are sufficiently varied before continuing with
the practice.

4.3 The closeness of agreement of the mean results by each
method is evaluated using appropriate weighted sums of
squared differences. Such sums of squares are computed from
the data first with no bias correction, then with a constant bias
correction, then, when appropriate, with a proportional correc-
tion, and finally with a linear (proportional + constant) correc-
tion.

4.4 The weighted sums of squared differences for the linear
correction is assessed against the total variation in the mean
results for both methods to ensure that there is sufficient
correlation between the two methods.

4.5 The most parsimonious bias correction is selected.
4.6 The weighted sum of squares of differences, after

applying the selected bias correction, is assessed to determine
whether additional unexplained sources of variation remain in
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the residual (that is, the individualYi minus bias-correctedXi)
data. Any remaining, unexplained variation is attributed to
sample-specific biases (also known as method-material inter-
actions, or matrix effects). In the absence of sample-specific
biases, the cross-method reproducibility is estimated.

4.7 If sample-specific biases are present, the residuals (that
is, the individualYi minus bias-corrected Xi) are tested for
randomness. If they are found to be consistent with a random-
effects model, then their contribution to the cross-method
reproducibility is estimated, and accumulated into an all-
encompassing cross-method reproducibility estimate.

4.8 Refer to Fig. 1 for a simplified flow diagram of the
process described in this practice.

5. Significance and Use

5.1 This practice can be used to determine if a constant,
proportional, or linear bias correction can improve the degree

of agreement between two methods that purport to measure the
same property of a material.

5.2 The bias correction developed in this practice can be
applied to a single result (X) obtained from one test method
(methodX) to obtain apredictedresult ( Ŷ) for the other test
method (methodY).

NOTE 6—Users are cautioned to ensure thatŶ is within the scope of
methodY before its use.

5.3 The cross-method reproducibility established by this
practice can be used to construct an interval aroundŶ that
would contain the result of test methodY, if it were conducted,
with about 95 % confidence.

5.4 This practice can be used to guide commercial agree-
ments and product disposition decisions involving test methods
that have been evaluated relative to each other in accordance
with this practice.

FIG. 1 Simplified Flow Diagram for this Practice
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6. Procedure

NOTE 7—For an in-depth statistical discussion of the methodology used
in this section, see Appendix X1. For a worked example, see Appendix
X2.

6.1 Calculate sample means and standard errors from Prac-
tice D 6300 results.

6.1.1 The process of applying Practice D 6300 to the data
may involve elimination of some results as outliers, and it may
also involve applying a transformation to the data. For this
practice, compute the mean results from data that have not
been transformed, but with outliers removed in accordance
with Practice D 6300. The precision estimates from Practice
D 6300 are used to estimate the standard errors of these means.

6.1.2 Compute the means as follows:
6.1.2.1 LetXijk represent thekth result on theith common

material by thejth lab in the round robin for methodX.
Similarly for Yijk. (The ithmaterial is the same for both round
robins, but thejth lab in one round robin is not necessarily the
same lab as thejth lab in the other round robin.) LetnXij be the
number of results on theith material from thejth X-method lab,
after removing outliers that is, the number of results incell (i,j).
Let LXi be the number of laboratories in the X-method round
robin that have at least one result on theith material remaining
in the data set, after removal of outliers. LetS be the total
number of materials common to both round robins.

6.1.2.2 The mean X-method result for theith material is:

Xi 5
1
Lxi

(
j

(
k

Xijk

nXij
(1)

where, Xi is the average of the cell averages on theith

material by methodX.
6.1.2.3 Similarly, the mean Y-method result for theith

material is:

Yi 5
1

LYi
(
j

(
k

Yijk

nYij
(2)

6.1.3 The standard errors (standard deviations of the means
of the results) are computed as follows:

6.1.3.1 If sRXi is the estimated reproducibility standard
deviation from the X-method round robin, andsrXi is the
estimated repeatibility standard deviation, then an estimate of
the standard error forXi is given by:

sXi 5Œ 1
LXi
FsRXi

2 2 srXi
2 S1 2

1
LXi

(
j

1
nXij

DG (3)

NOTE 8—Since repeatability and reproducibility may vary withX, even
if the LXi were the same for all materials and thenXij were the same for all
laboratories and all materials, the {sXi} might still differ from one material
to the next.

6.1.3.2 sYi, the estimated standard error forYi, is given by an
analogous formula.

6.2 Calculate the total variation sum of squares for each
method, and determine whether the samples can be distin-
guished from each other by both methods.

6.2.1 The total sums of squares (TSS) are given by:

TSSx 5 (
i
SXi 2 X

sXi
D2

andTSSy 5 (
i
SYi 2 Y

sYi
D2

(4)

where:

X 5

(
i
SXi

sXi
2 D

(
i
S 1

sXi
2 D andY5

(
i
SYi

sYi
2 D

(
i
S 1

sYi
2 D (5)

are weighted averages of allXi’s andYi’s respectively.

6.2.2 CompareF = TSSX/(S-1) to the 95th percentile of
Fisher’sF distribution with (S-1) andvx degrees of freedom for
the numerator and denominator, respectively, wherevX is the
degrees of freedom for the reproducibility variance (Practice
D 6300, paragraph 8.3.3.3) for the X-method round robin. IfF
does not exceed the 95th percentile, then the X-method is not
sufficiently precise to distinguish among theSsamples. Do not
proceed with this practice, as meaningful results cannot be
produced.

6.2.3 In a similar manner, compareF = TSSY/(S-1) to the
95th percentile of Fisher’sF distribution, using the degrees of
freedom of the reproducibility variance of the Y-method,vY, in
place ofvX. Similarly, do not proceed with this practice ifF
does not exceed the 95th percentile.

NOTE 9—If one or both of the conditions of 6.2.2 and 6.2.3 are satisfied
only marginally, it is unlikely that this practice will produce meaningful
results since in 6.4, the quantity (TSSX + TSSY) will be compared to a
closeness sum of squares computed in the next section, to determine
whether the methods are sufficiently correlated. It will be difficult to meet
that correlation requirement if the samples are too similar to one another.

6.3 Calculate the closeness sum of squares(CSS)statistic
for each of the following classes of bias-correction methodol-
ogy.

6.3.1 Class 0—No bias correction.
6.3.1.1 Compute the weights (wi) for each samplei:

wi5
1

SYi
2 1 SXi

2 (6)

6.3.1.2 ComputesCSS:

CSS0 5 (
i

wi ~Xi 2 Yi!
2 (7)

6.3.2 Class 1a—Constant bias correction.
6.3.2.1 Using the weights (wi) from 6.3.1.1, compute the

constant bias correction (a):

a 5 (
i

wi~Yi 2 Xi!

(
i

wi
5

(wiYi

(wi
2

(wiXi

(wi
(8)

6.3.2.2 ComputeCSS:

CSS1a 5 (
i

wi ~Yi 2 ~Xi 1 a!!2 (9)

6.3.3 Class 1b—Proportional bias correction.
6.3.3.1 The computations of this subsection (6.3.3) are

appropriate only if both of the following conditions apply: (1)
the measured property assumes only non-negative values, and
(2) a property value ofzero has a physical significance (for
example, concentrations of specific constituents). In addition, it
is not mandatory but highly recommended that max(Yi)$2
min(Yi).

6.3.3.2 The computations involve iterative calculation of the
weights (wi) and the proportional correction (b).

6.3.3.3 Setb = 1.
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6.3.3.4 Compute the weights (wi) for each samplei:

wi 5
1

SYi
2 1 b2 SXi

2 (10)

6.3.3.5 Calculateb0:

b05
(wiXiYi

(wiXi
2 – (wi

2sXi
2 ~Yi 2 bXi!

2 (11)

.

6.3.3.6 If |b − b0| > .001b, replaceb with b0 and go back to
6.3.3.4. Otherwise, the iteration can be stopped, as further
iteration will not produce meaningful improvement. Replaceb
with b0 and go on to 6.3.3.7.

6.3.3.7 CalculateCSS1b:

CSS1b 5 (wi ~Yi 2 bXi!
2 (12)

6.3.4 Class 2—Linear (proportional + constant) bias correc-
tion.

6.3.4.1 This involves iterative calculation of the weights
(wi), the weighted means ofXi’s andYi’s, and the proportional
term (b).

6.3.4.2 Setb = 1.
6.3.4.3 Compute the weights (wi) for each samplei:

wi 5
1

sYi
2 1 b2sXi

2 (13)

6.3.4.4 Calculate the weighted means of {Xi} and {Yi}
respectively:

X 5
(wiXi

(wi
(14)

Y5
(wiYi

(wi

6.3.4.5 Calculate the deviations from the weighted means:

xi 5 Xi 2 X (15)

yi 5 Yi 2 Y

6.3.4.6 Calculateb0:

b05
(wixiyi

(wixi
2 2 (wi

2sXi
2 ~yi 2 bxi!

2 (16)

6.3.4.7 If |b − b0| > .001b, replaceb with b0 and go back to
6.3.4.3, computing new values for the weights {wi}, X̄ , Ȳ, {xi},
{ yi}, and b0. Otherwise, the iteration can be stopped, as further
iteration will not produce meaningful improvement. Replaceb
with b0 and go to 6.3.4.8.

6.3.4.8 CalculateCSS2 anda:

CSS2 5 (wi ~yi 2 bxi!
2 (17)

a 5 Y2 b X (18)

6.4 Test whether the methods are sufficiently correlated.
6.4.1 Calculate theF-statistic:

F 5
~TSSX 1 TSSY 2 CSS2!/S

CSS2/~S2 2!
(19)

6.4.2 CompareF to the 95th percentile of Fisher’sF
distribution withSandS-2 degrees of freedom in the numerator
and denominator, respectively.

6.4.2.1 IfF is less than the 95th percentile value, then, this
practice concludes that the methods are too discordant to
permit use of the results from one method to predict those of
the other.

6.4.2.2 IfF is greater than the tabled value, proceed to 6.5.
6.5 Conduct tests to select the most parsimonious bias

correction class needed.
6.5.1 The closeness sums of squares for differences from

each class of bias correction are used to select the most
parsimonious bias correction class that can improve the ex-
pected degree of agreement between theŶ (the predicted
Y-method result using X-method result) and the actual
Y-method result on the same material. The classes of bias
correction and the associatedCSSas calculated earlier are
repeated in the following table.
Bias Correction Class CSS

Class 0–no correction CSS0

Class 1a–constant bias correction CSS1a

Class 1b–proportional bias correction (when appropriate) CSS1b

Class 2–linear (proportional + constant bias correction) CSS2

6.5.2 To determine whetheranybias correction (Classes 1a,
1b or 2 above) can significantly improve the expected agree-
ment between the two methods, calculate the following ratio:

F 5
~CSS0 2 CSS2!/2

CSS2/~S2 2!
(20)

6.5.2.1 CompareF to the upper 95th percentile of theF
distribution with 2 and S-2 degrees of freedom for the
numerator and denominator, respectively.

6.5.2.2 If the calculatedF is smaller, conclude that a bias
correction ofClass 1a, 1b, or 2does not sufficiently improve
the expected agreement between the two methods, relative to
Class 0(no bias correction). Proceed to 6.6.

6.5.2.3 If the calculatedF is larger, conclude that a correc-
tion can improve the expected agreement between the two
methods, and continue in 6.5.3.

6.5.3 If theF-value calculated in 6.5.2 is larger than the 95th

percentile ofF, compute the followingt-ratios:

t1 5ŒCSS0 2 CSS1
CSS2/~S2 2!

(21)

t2 5ŒCSS1 2 CSS2
CSS2/~S2 2!

where,CSS1 is the lesser ofCSS1a or CSS1b, provided the
latter is appropriate and has been calculated.

6.5.3.1 Comparet2 to the upper 97.5th percentile of thet
distribution withS-2 degrees of freedom.

6.5.3.2 Ift2 is larger, conclude that a bias correction ofClass
2 (proportional + constant correction) can improve the ex-
pected agreement over that of a single term (constant or
proportional) correction alone (Class 1). Proceed to 6.6.

6.5.3.3 Ift2 is smaller than thet-percentile, comparet1 to the
same upper 97.5th percentile of thet distribution with (S-2)
degrees of freedom.

6.5.3.4 If t1 is larger, conclude that a single term bias
correction ofClass 1is preferred to a bias correction ofClass
2. Use the constant correction unlessCSS1b is appropriate and
is smaller thanCSS1a. Proceed to 6.6.
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6.5.3.5 If t1 is smaller, then neithert1 nor t2 is statistically
significant. A bias correction ofClass 2 is preferred over
single-term (constant or proportional) correction ofClass 1.

6.6 Test for existence of sample-specific biases.
6.6.1 Compare theCSSof the bias-correction class selected

in 6.5 to the 95th percentile value of a chi-square distribution
with v degrees of freedom

where:
v = S for Class 0(-no bias) correction,
v = S − 1 for Class 1aor Class 1b(constant or propor-

tional) correction
v = S − 2 for Class 2(linear) correction

6.6.2 If theCSSis smaller than the chi-square percentile, it
is reasonable to conclude that there are no sample-specific
biases, that is, that there are no other sources of variation
besides measurement error. Calculate the cross method repro-
ducibility (RXY) as follows:

RXY 5ŒRY
2 1 b2RX

2

2 (22)

where:
b = the coefficient of the appropriate bias correction. (For

Class 0andClass 1abias corrections,b=1.)
6.6.3 If theCSSis larger than the chi-square percentile (see

6.6.1), there is strong evidence that biases between the methods
have not been adequately corrected by the bias-corrections of
6.3. In other words, the relative biases are not consistent across
theScommon samples of the round robins. The user may wish
to investigate whether the biases can be attributed to other
observable properties of the samples. Or he or she may wish to
restrict attention to a smaller class of materials for the purpose
of establishing a cross-method reproducibility. Such investiga-
tions are beyond the scope of this practice, as the issues
typically are not statistical in nature. This practice does
recommend investigating whether it is reasonable to treat the
sample-specific biases as random effects, as described in 6.7.

6.7 Treatment of Sample-Specific Relative Bias as a Vari-
ance Component:

6.7.1 If the CSSexceeds the 95th percentile value of the
appropriate chi-square distribution (see 6.6.1), there is strong
evidence that sources other than measurement error are con-
tributing towards the variation of the expected agreement
between the two methods. In this practice, these sources are
attributed to sample-specific effects (also known as matrix
effects or method-material interactions). In some cases these
sample-specific effects can be treated asrandomeffects, and
hence can be incorporated as an additional source of variation
into a cross method reproducibility as described in this section.
Note that, even when it is appropriate to treat these sample-
specific effects as random, the additional variation may cause
the cross-method reproducibility to be far larger than the root
mean square of the reproducibilities of the methods (Eq 22).

6.7.2 Examine residuals to assess reasonableness ofrandom
effectassumption.

6.7.2.1 Assess the reasonableness of the assumption that the
sample-specific effects can be treated as random effect by
examination of the distribution of the residuals. While there are
numerous statistical tools available to perform this assessment,

this practice recommends use of the Anderson-Darling normal-
ity test, based on its simplicity and ease of use. It is not the
intent of this practice to exclude other tools for this purpose.

6.7.2.2 Let {Ŷi} be the Y-method values predicted from the
corresponding X-method mean values {Xi}, using the bias-
correction selected in 6.5. The (standardized) residuals {ei} are
given by

ei 5 =wi~Yi 2 Ŷi! (23)

where:
{ wi} = the appropriate weights from 6.3.1-6.3.4.

6.7.2.3 Calculate the Anderson Darling (AD) statistic on the
residuals {ei}. (Refer to Practice D 6299 for guidance on
calculation and interpretation of this statistic.)

6.7.2.4 If the AD statistic is not significant at the 5 %
significance level, conclude that the sample-specific relative
bias may be treated as a variance component. Proceed to 6.7.3.

6.7.2.5 If the AD statistic is significant, there is strong
evidence that the sample-specific effects cannot be treated as
random effects. Application of this practice is considered
terminated at this point, as the statistical evidence suggests that
a single cross-method reproducibility (RXY) cannot be found
that is applicable to all materials covered by the intersecting
scope of both test methods. It is reasonable to conclude that, at
least for some materials, the test method are not measuring the
same property. Do NOT proceeed to 6.7.3.

NOTE 10—It is possible that, by restricting the comparison to a
narrower class of materials, a cross-method reproducibility can be
obtained (for that narrower class) that does not have sample-specific
biases, or, has sample-specific biases that can be treated as a random
effect. However, individual outlier materials should not be excluded from
this study, after-the-fact, based on the statistics only, without other
evidence that they clearly belong to a separate and identifiable class.

6.7.3 Calculate the cross-method reproducibility (RXY) as
follows:

RXY 5Œb2RX
2

2 F11
1
LX
S CSS

S2 k21DG1
RY

2

2F11
1
LY
S CSS

S2 k21DG
(24)

where:

LX5
S

(
i

1 / LXi

LY5
S

(
i

1 / LYi

andb andCSSare appropriate to the selected bias-correction;k is 0 if the
bias-correction isClass 0; k is 1 if the bias correction isClass 1aor Class
1b; k is 2 if the bias-correction isClass 2.

NOTE 11—Eq 24 provides an estimate of the magnitude below which
about 95 % of the differences are expected to fall, when one party uses the
bias-corrected X-method while another party uses the Y-method, on
materials similar to the round robin samples. Application of the methods
to materials which are substantially different from these round robin
materials may affect both the average bias and the variance of the random
component.Laboratories which engage in routine substitution of one
method for another are advised to periodically monitor the deviations
between methods, as a regular part of their quality assurance program.
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6.8 Construction of a 95 % confidence interval for a single
result from methodY using a single bias-corrected result from
methodX, andRXY.

6.8.1 LetŶ be a single bias-corrected X-method result. An
interval bounded byŶ 6 RX Ŷ can be expected to contain a
single corresponding Y-method result, obtained on the identical

material, with approximately 95 % confidence. HereRX Ŷ is
computed from Eq 22 or Eq 24, as appropriate, withRY

evaluated atY = Ŷ.

APPENDIXES

(Nonmandatory Information)

X1. STATISTICAL BASIS

X1.1 Adequacy of Round Robin Sample Set

X1.1.1 In order to obtain a usable comparison between two
methods, it is critical that the samples are sufficiently varied
that they can be distinguished from one another (or at least so
that some can be distinguished from some others) using the
methods in question. The most straight-forward test involves
the total (weighted) sum of squares, which, for theX measure-
ment is

TSSX 5 (
i
SXi 2 X̄

sXi
D2

(X1.1)

where:

X̄ 5

(
i
SXi

sXi
2 D

S 1

(
i

sXi
2 D (X1.2)

the mean of the meanX-results weighted by the reciprocal of
the squares of the standard errors {sXi}.

X1.1.2 If the S samples were all the same material, if the
{ Xi} were distributed normally, and if the standard errors were
known exactly, thenTSSX would have a chi-square distribution
with S-1 degrees of freedom. In practice, the {sXi} are not
known exactly, but our situation approximates one in which
TSSX/(S−1) would have anF distribution, withS-1 degrees of
freedom in the numerator and v degrees of freedom in the
denominator, wherev is the degrees of freedom associated with
the reproducibility estimate.

X1.1.3 If the materials were not all the same, then we would
expectTSSX/(S−1) to be larger than anF-distributed variable.
For round robins, hopefully samples will have been selected
with a range of property values, soTSSX/(S−1) will be very
much larger than the 95th percentile ofF. If we come even
close to failing this test, or the analogous test using the
Y-method data, then the best course of action would be to start
over with a more variable set of samples.

X1.2 Quantifying the Closeness of Agreement Between
Two Test Methods

X1.2.1 Suppose we use a calibration function,f (X), to
estimate (orpredict) the property as measured by a reference
Y-method. For the round robin samples, the mean result by the
reference method,Y, can be compared tof (X) and used to

quantify the closeness of agreement. In classical (weighted)
regression, the weighted residual sum of squares,

(
i

~Yi 2 f~Xi!!
2

sYi
2 (X1.3)

is used as a measure of the closeness of agreement. If
competing calibration functions are under consideration, re-
gression methods – classical least squares – suggest we should
prefer the one with smallest sum of squares (X1.1). But this
overlooks the fact that the {Xi} are not the true values of the
property as measured by the alternative method, but only
estimates of those values, and they also involve random error.
Let {hi} represent the true, unknown values of the property as
measured by the reference method. The {hi} will be estimated
from the data. BothYi and f (Xi) estimatehi, which is not
known. Yi has variance sYi

2, and f (Xi) has variance approxi-
matelyf ’ 2(Xi)sXi

2, wheref ’(Xi) is the derivative off at Xi. So
an alternative measure of closeness is

min(
$hi% i
S~Yi 2 hi!

2

SYi
2 1

~f~Xi!2hi!
2

f ’ 2~Xi!sXi
2 D (X1.4)

X1.2.2 This sum can be minimized term by term. The value
of hi that minimizes the ith term – and the value that is our best
estimate of the true value – is

ĥi 5
f ’ 2 ~Xi!sXi

2 Yi 1 sYi
2 f~Xi!

sYi
2 1 f ’ 2 ~Xi!sXi

2 (X1.5)

and the minimized sum of squares is

CSS5 (
i

~Yi 2 f~Xi!!
2

sYi
2 1 f ’ 2~Xi!sXi

2 (X1.6)

X1.2.3 Compare (Eq X1.4) to (Eq X1.1), and note that the
only difference is that, in place of the variance ofYi in the
denominator of each term, (Eq X1.4) has the variance of
Yi-f (Xi).

X1.3 Properties of the Closeness Metric

X1.3.1 Distributional Properties:
X1.3.1.1 If the {Xi} and {Yi} are independent normal, if the

standard errors are known exactly, iff is linear (so that {f (Xi)}
are normal), and if E[Yi] = E[f (Xi)] for all i, where E[Y]
represents the mean or expected value of distribution ofY, then
CSShas a chi-square distribution. The degrees of freedom
associated withCSSis S, the number of materials (samples)
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common to the round robins. This may be seen by the fact that
(Eq X1.2) has 2S terms, butS parameters {hi} are fitted by
least-squares.

X1.3.1.2 When E[Yi], fi E[f (Xi)], it may be because the
calibration function,f, is not known exactly. Iff belongs to a
specific class of functions – linear functions, for example –
then the unknown parameters off (for example,a andb if f (X)
= a + b X) may be estimated by minimizing Eq X1.4 with
respect to these parameters. In this case,CSS would be
distributed as chi-square withS – k degrees of freedom.

X1.3.1.3 But ifCSSis evaluated using an incorrect calibra-
tion equation, or by minimizing over a class of equations that
does not contain the true calibration equation, or if there are
sample-specific biases that cannot be accounted for byany
calibration function, thenCSScan be expected to belarger
than a chi-square variable. The last of these three situations is
worth special consideration. In the event that two or more
different materials may have the same true value, E[Y], as
measured by one method, but different true values, E[X], as
measured by the other method, then no calibration equation can
completely account for the differences between the two meth-
ods. Such sample-specific biases can be the dominant contribu-
tor to CSS. In fact, it almost certainly will be the dominant
factor when {Xi} and {Yi} are very precise, that is, when the
materials are measured by sufficiently large numbers of labs. In
such cases, note that anhi of Eq X1.3 will approximate neither

E[Yi] nor E[Xi], but instead approximates an average of the
two, an average that is weighted towards the more precise ofYi

andXi.
X1.3.1.4 When the standard errors are not known, but

approximately proportional to the same standard deviation
estimate, then anF distribution may be a reasonable approxi-
mation to the distribution ofCSS/S, or CSS/(S − k), as
appropriate.

X1.3.2 Symmetry in X and Y:
X1.3.2.1 Note that, iff is linear, then (Eq X1.4) is indepen-

dent of which method is considered the reference method. If
instead of predictingY with f (X), we wish to predictX with
f-1(Y), then f’(Xi)[b[1/f−1’(Yi), andYi− f (Xi)=b (f−1(Yi)−Xi),
so b2 cancels from the top and bottom of each term and Eq
X1.4 is unchanged.

X1.3.2.2 This symmetry property is not shared by classical
regression – the slope obtained from regressingY on X is
always smaller than the reciprocal of the slope from regressing
X on Y. The method developed in this annex is a weighted
version of what is known as regression with errors in both
variables, which is discussed in many texts.4 For non-linearf,
the symmetry is lost. But for smoothf, the two equalities above
are almost still true.

X2. A WORKED EXAMPLE

X2.1 Example Data

X2.1.1 The data in Tables X2.1 and X2.2 are from a round
robin for aromatics in gasoline conducted by seven labs.
Fifteen (S= 15) fuels were tested by two methods. Table X2.1
are the results from Test Method D 5580, a gas chromatogra-
phy (GC) method, while Table X2.2 contains the results from

Test Method D 5769, gas chromatography/mass spectrometry
(GC/MS). No data have been removed as outliers, but some
repeat results are missing for Test Method D 5580. For
purposes of this example designate Test Methods D 5580 and
D 5769 as the X and Y methods, respectively.

4 Mandel, John, Evaluation and Control of Measurements, Marcel Dekker, 1991,
Sec. 5.5.

TABLE X2.1 Aromatics by Test Method D 5580

Fuel

Laboratory 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 23.76 26.34 25.14 22.76 29.10 14.83 19.77 42.61 21.77 19.85 37.40 31.53 16.48 19.26 13.26
24.22 29.16 19.81 12.99

2 24.46 25.88 25.72 22.59 29.08 15.68 19.92 41.89 21.68 19.97 37.38 31.35 16.55 19.48 13.25
24.59 25.94 25.76 22.57 29.07 15.64 19.82 42.10 22.00 20.02 37.09 31.29 16.58 19.63 13.53

3 24.50 25.36 26.28 22.87 29.28 15.71 20.12 42.90 21.93 20.02 38.05 31.63 16.72 19.72 13.50
24.54 25.17 26.26 22.65 29.33 15.76 20.01 42.90 21.91 20.14 38.07 31.80 16.60 19.82 13.54

4 24.74 25.23 25.72 22.82 29.31 15.51 20.35 42.52 22.24 20.32 37.03 31.77 16.50 20.03 13.63
24.90 25.19 25.65 22.68 29.21 15.48 19.99 42.38 22.14 20.01 37.44 31.80 16.45 19.84 13.69

5 24.64 26.01 25.92 22.17 30.50 14.78 19.37 43.71 22.85 20.43 37.80 31.09 16.27 20.85 13.85
24.70 25.87 25.87 22.20 30.69 14.88 19.66 44.00 23.50 20.30 37.84 31.31 16.55 21.01 13.85

6 24.93 26.28 26.07 22.59 30.08 15.91 20.30 43.08 22.24 20.26 38.28 32.60 16.70 19.94 13.67
25.13 26.72 26.08 22.90 30.10 16.16 20.49 43.27 22.56 20.58 38.54 32.72 16.97 19.94 13.89

7 24.37 25.40 25.66 21.93 29.11 15.30 19.33 42.08 21.88 19.79 36.28 30.60 15.87 19.30 12.91
24.36 25.36 25.72 21.97 29.18 15.10 19.32 41.77 21.98 19.71 37.19 30.65 15.91 19.23 12.91

Mean 24.56 25.79 25.78 22.53 29.51 15.40 19.87 42.70 22.17 20.09 37.56 31.55 16.47 19.81 13.46
Standard

Error
0.177 0.181 0.181 0.170 0.193 0.140 0.159 0.234 0.168 0.160 0.219 0.201 0.145 0.159 0.131
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NOTE X2.1—Note: All equations referenced are from this standard
except as noted.

X2.1.2 The repeatabilities and reproducibilities were esti-
mated from the round robins in accordance with Practice
D 6300. These are shown in Table X2.3. The degrees of
freedom are also from the precision analysis. The standard
deviations associated with repeatability and reproducibility are
obtained by dividing the precision estimates byt.975 =2 ,
wheret.975 is the 97.5th percentile of thet-distribution with the
applicable number of degrees of freedom.

X2.2 Calculation of the Mean Results and Standard
Errors

X2.2.1 Both round robins included seven participants, and
all participants measured every sample, soLXi= LYi= 7 for all i.
As an example, for the second sample from method X,X2 is
calculated using (Eq 1) as follows:

X2 5
1
7S26.34

1 1
25.881 25.94

2 1
25.361 25.17

2 1 ... 1
25.41 25.36

2 D
(X2.1)

5
1
7~26.34125.91125.265125.21126.94126.5125.38!525.79

X2.2.2 Note that this is not the same as the average of the
thirteen X-method results on this sample. The remainingXi and
Yi are computed in a similar fashion.

X2.2.3 The standard error of each mean is calculated using
Eq 3. Again for the second sample X-method results, theni2 are
all equal to 2, exceptn1,2= 1, so

1
LXi

(
j

1
nXij

5
4
7 and sXi 5Œ1

7F.09642 2 0.02962S3
7DG=25.795 0.181.

(X2.2)

X2.2.4 The means and standard errors for each fuel by both
methods are found at the bottoms of their respective tables
(Tables X2.1 and X2.2).

X2.3 Calculate the Total Variation Sum of Squares

X2.3.1 Table X2.4 demonstrates the application of Eq 4 and
5 to obtain the total sum of squares for the Y-method means.
The weighted mean,Ȳ, is found to be 3333.81/186.8 = 17.85.
TSSY= 6564.8. We compare 6564.8/14 = 469 to the 95th

percentile of theF distribution with 14 and 9 degrees of
freedom for the numerator and denominator, respectively. The
F percentile is 3.03. Hence, we concludeTSSY is highly
statistically significant. Similarly, a high degree of significance
is also found forTSSX.

X2.4 Calculate the Closeness Sums of Squares (CSS)

X2.4.1 Class 0—No correction. The first three columns of
Table X2.5 display the computations from Eq 6 and Eq 7. As
shown in the next-to-last line in the table,CSS0 turns out to be
812.46.

X2.4.2 Class 1a—Constant correction. Table X2.5 contains
these computations, also. Note thatȲi is smaller thanX̄i for all
samples, so it is not surprising thatCSS1a is quite a bit smaller
thanCSS0. a = Ȳ − X̄ = 18.36 − 20.62 = -2.26.

X2.4.3 Class 1b—Proportional correction.
X2.4.3.1 Aromatics concentration having a true zero, and as

max(Yi) = 40.2 > 23.54 = 2 min(Yi), it is appropriate to also
consider a proportional correction. Table X2.6 shows the
computations for the first two iterations. Starting withb = 1, the
first iteration proceeds usingwi’s from Table X2.5. Computing
b0:

TABLE X2.2 Aromatics by Test Method D 5769

Fuel

Laboratory 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 21.33 21.37 22.21 20.90 26.19 10.88 15.88 38.58 18.66 16.81 33.14 27.87 14.74 17.72 11.78
22.01 21.12 21.99 20.98 25.88 10.93 16.07 38.39 18.41 17.21 33.76 28.39 14.77 17.68 12.12

2 21.70 21.32 22.20 20.79 26.85 11.60 16.26 40.33 19.29 17.41 34.32 29.28 14.99 18.10 12.31
21.79 21.15 22.60 20.69 26.57 11.84 16.25 38.86 18.79 17.28 33.99 28.48 14.86 18.13 12.24

3 24.09 23.36 24.71 22.40 27.99 12.45 17.31 41.40 20.65 19.83 35.18 29.96 16.24 19.81 12.94
24.32 23.57 24.93 22.26 28.08 12.31 17.26 41.36 20.88 18.94 36.35 29.82 16.43 19.42 12.81

4 23.43 22.59 24.15 21.55 27.58 12.23 17.09 41.04 20.14 18.53 35.80 30.28 15.39 18.23 12.52
23.08 22.54 23.99 21.61 27.50 12.36 17.15 41.11 20.37 18.46 35.98 30.12 15.43 18.23 12.59

5 23.63 22.65 24.54 21.26 28.10 12.52 17.49 41.79 20.47 18.73 35.67 30.01 15.74 18.99 12.31
24.33 22.69 24.88 22.36 28.24 12.48 17.26 40.71 20.29 18.31 35.84 30.03 16.03 18.73 12.30

6 22.38 20.43 22.70 20.13 26.34 11.27 15.72 38.89 18.74 17.13 34.29 27.73 14.97 18.56 12.17
22.53 20.40 22.86 20.39 26.44 11.24 15.54 39.13 18.71 17.26 34.74 27.85 15.01 18.59 12.05

7 22.84 21.79 22.90 20.85 27.10 11.33 16.36 40.88 19.50 17.76 34.93 28.80 15.05 17.82 12.01
22.72 21.76 23.32 20.25 26.47 11.33 16.79 40.27 19.42 17.50 34.71 29.11 14.87 17.56 11.99

Mean 22.87 21.91 23.43 21.17 27.10 11.77 16.60 40.20 19.59 17.94 34.91 29.12 15.32 18.40 12.30
Standard

Error
0.345 0.330 0.353 0.319 0.408 0.177 0.250 0.606 0.295 0.270 0.526 0.439 0.231 0.277 0.185

TABLE X2.3 Precision Estimates and Associated Standard Deviations A

Precision Estimates Degrees of Freedom t (.975) Standard Deviations

rX=0.0831 =X 94 1.986 srX=0.0290 =X
RX=0.2792 =X 28 2.048 sRX=0.0964 =X

rY=0.0292 Y 105 1.983 srY=0.0104 Y
RY=0.1292 Y 9 2.262 sRX=0.0404 Y

A This inter-laboratory study did not meet the minimum degrees of freedom requirement (30) as recommended in Practice D 6300. The low degrees of freedom for RX

and RY suggest the need for further inter-laboratory standardization, and the latter could be a contributing factor towards the sample-specific biases observed.
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b0 5
( wiXiYi

( wiXi
2 2 ( wi

2sXi
2 ~Yi 2 bXi!

2 5
56088.3

625292 232.885 0.9003

(X2.3)

X2.4.3.2 As |b − b0| = 0.0997 > .001b, we must iterate as
shown.

X2.4.3.3 From the Second Iteration:

TABLE X2.4 Total Variation Sum of Squares for Y-Method

i Yi sYi 1/sYi
2 Yi /sYi

2 (Yi– Ȳ)2/sYi
2

1 22.87 0.345 8.42 192.57 212.48
2 21.91 0.330 9.17 201.01 151.48
3 23.43 0.353 8.02 187.99 249.90
4 21.17 0.319 9.82 208.01 108.70
5 27.10 0.408 6.00 162.54 513.12
6 11.77 0.177 31.80 374.21 1174.31
7 16.60 0.250 15.98 265.27 24.75
8 40.20 0.606 2.73 109.57 1361.51
9 19.59 0.295 11.47 224.77 35.04
10 17.94 0.270 13.68 245.49 0.12
11 34.91 0.526 3.61 126.17 1052.00
12 29.12 0.439 5.19 151.22 660.32
13 15.32 0.231 18.76 287.42 119.47
14 18.40 0.277 13.01 239.38 3.95
15 12.30 0.185 29.13 358.18 897.59

Sum 186.80 3333.81 6564.75

Wt Avg 17.85

TABLE X2.5 CSS0 and CSS1a

i Yi−Xi wi wi(Yi − Xi)
2 wiXi wiYi wi(Yi − Xi−Ȳ + X̄)2

1 −1.69 6.67 19.1 163.8 152.5 2.16
2 −3.88 7.05 106.2 181.7 154.4 18.52
3 −2.36 6.35 35.3 163.7 148.7 0.06
4 −1.36 7.66 14.2 172.6 162.2 6.21
5 −2.42 4.90 28.7 144.6 132.7 0.12
6 −3.63 19.56 257.4 301.2 230.3 36.57
7 −3.27 11.37 121.7 225.9 188.7 11.63
8 −2.51 2.37 14.9 101.3 95.4 0.14
9 −2.58 8.66 57.6 192.0 169.7 0.88
10 −2.15 10.15 46.8 203.8 182.0 0.13
11 −2.65 3.08 21.7 115.7 107.5 0.47
12 −2.42 4.29 25.2 135.5 125.1 0.12
13 −1.15 13.45 17.8 221.6 206.1 16.54
14 −1.41 9.79 19.4 193.9 180.1 7.08
15 −1.17 19.45 26.5 261.9 239.2 23.20

Sum 134.80 CSS0=812.46 2779.2 2474.5 CSS1a = 123.86

Wt Avg 20.62 18.36

TABLE X2.6 Iterating Class 1b

First Iteration Second Iteration Final Step
i wi wiXiYi wiXi

2 wi
2sXi

2(Yi− bXi)
2 wi wiXiYi wiXi

2 wi
2sXi

2(Yi− bXi)
2 wi (Yi − bXi)

2

1 6.67 3746.7 4023.7 3.962 6.94 3900.2 4188.5 0.861 4.83
2 7.05 3981.3 4686.7 24.633 7.37 4164.3 4902.1 3.077 11.19
3 6.35 3834.2 4220.1 7.374 6.61 3992.2 4394.0 0.065 0.56
4 7.66 3654.0 3888.7 3.120 7.99 3813.2 4058.0 1.442 7.31
5 4.90 3917.4 4267.2 5.259 5.07 4058.4 4420.8 0.263 1.91
6 19.56 3545.2 4637.9 99.028 21.10 3823.8 5002.3 38.358 88.48
7 11.37 3751.0 4490.2 35.110 12.03 3967.8 4749.7 6.120 18.21
8 2.37 4073.2 4327.1 1.927 2.43 4175.5 4435.8 0.988 8.63
9 8.66 3761.9 4257.1 14.122 9.08 3945.1 4464.4 0.319 0.82
10 10.15 3656.4 4094.1 12.101 10.67 3844.6 4304.9 0.062 0.07
11 3.08 4038.5 4345.3 3.199 3.17 4154.8 4470.3 0.574 4.63
12 4.29 3945.4 4273.9 4.367 4.44 4079.1 4418.6 0.411 2.97
13 13.45 3395.2 3650.3 5.043 14.21 3587.4 3856.9 1.022 4.18
14 9.79 3567.4 3840.7 4.816 10.27 3743.0 4029.7 0.850 4.03
15 19.45 3220.2 3526.1 8.817 20.76 3436.4 3762.9 0.222 0.97

Sum 56088.3 62529.0 232.88 58685.8 65459.0 54.63 CSS1b = 158.79
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b0 5
( wiXiYi

( wiXi
2 2 ( wi

2sXi
2 ~Yi 2 bXi!

2 5
58685.8

65459.0254.635 0.8973

(X2.4)

X2.4.3.4 Again, |b − b0| = 0.0030 > .001b, so a third
iteration (not shown) is required. From the third iteration,b0 =
0.8972, |b − b0| = 0.0001 < .001b, and iteration may stop. The
final step, computation ofCSS1b= 158.79, is shown in the last
column of Table X2.6.

X2.4.4 Class 2—Linear correction.
X2.4.4.1 Tables X2.7 and X2.8 demonstrate two iterations

of the algorithm for fitting the linear model. Starting withb =
1, the first iteration proceeds as inClass 1, shown in Tables
X2.5-X2.7. Computingb0:

b0 5
( wixiyi

( wixi
2 2 ( wi

2 sXi
2 ~yi 2 bxi!

2 5
5069.01

5228.26238.085 0.97665

(X2.5)

X2.4.4.2 As |b − b0| = 0.02335 > .001b, we must iterate as
shown in Table X2.8.

X2.4.4.3 From the Second Iteration:

b0 5
5121.63

5282.30238.445 0.97669 (X2.6)

X2.4.4.4 Now |b − b0| = 0.00004 < .001b, and iteration may
stop. The final step, computation ofCSS2= 121.03, is shown in
the last column of Table X2.8. Using equation (Eq 18),a =
18.34 − 0.97673 20.60 = −1.78.

X2.5 Test Whether the Methods are Sufficiently
Correlated

X2.5.1 From Eq 19 compute:

F 5
~TSSX 1 TSSY 2 CSS2!/S

CSS2/~S2 2!
(X2.7)

5
~26182.31 6564.72 121.03!/15

121.03/13 5 233.6

X2.5.2 The 95th percentile of theF distribution, with 15 and
13 degrees of freedom, is 2.53. As the computedF is (very
much) larger than 2.53, the methods are sufficiently correlated.

X2.6 Conduct Tests to Select the Most Parsimonious Bias
Correction Class Needed.

X2.6.1 From Eq 20 compute:

F 5
~CSS0 2 CSS2!/2

CSS2/~S2 2!
5

~812.462 121.03!/2
121.03/13 5 37.13 (X2.8)

X2.6.2 The 95th percentile of theF distribution, with 2 and
13 degrees of freedom, is 3.81. As the computedF is larger
than 3.81, we conclude that a bias correction (of class yet to be
determined) will significantly improve the expected agreement
between the two methods.

X2.6.3 As CSS1a is smaller thanCSS1b, the t-ratios of
equation Eq 21 are:

t1ŒCSS0 2 CSS1a

CSS2/~S2 2!
5Œ812.462 123.86

121.03/13 5 8.60 (X2.9)

and

t2ŒCSS1a 2 CSS2
CSS2/~S2 2!

5Œ123.862 121.03
121.03/13 5 0.55. (X2.10)

X2.6.4 The 97.5th percentile of Student’st distribution, with
13 degrees of freedom, is 2.16. Ast2 is smaller than 2.16, we
comparet1 to the same percentile, as discussed in 6.5.3.3.t1
exceeds 2.16, so we conclude that a constant bias correction is
preferred to a linear (proportional + constant) bias correction.
The preferred bias correction is to subtract (sincea has a
negative sign) 2.26 volume % aromatics from any Test Method
D 5580 result, in order to predict a Test Method D 5769 result
on the same material. Note that the predicted Test Method
D 5769 result should be within the scope of D 5769 in order for
it to be meaningful.

X2.7 Test for Existence of Sample-Specific Biases

X2.7.1 TheCSSof the selected bias correction is 123.86,
with S-1 = 14 degrees of freedom. The 95th percentile value of
the chi-square distribution is 23.68. As theCSSis larger, we
conclude that there are likely sample-specific biases between
the methods.

TABLE X2.7 First Iteration of Class 2 Model Fitting

i wi wiXi wiYi xi yi wixiyi wixi
2 wi

2sXi
2(yi− bxi)

2

1 6.67 163.8 152.5 3.94 4.51 118.68 103.70 0.45
2 7.05 181.7 154.4 5.17 3.55 129.50 188.61 4.30
3 6.35 163.7 148.7 5.17 5.07 166.28 169.47 0.01
4 7.66 172.6 162.2 1.91 2.82 41.29 28.08 1.37
5 4.90 144.6 132.7 8.90 8.74 380.80 387.73 0.02
6 19.56 301.2 230.3 −5.22 −6.59 672.94 533.28 14.07
7 11.37 225.9 188.7 −0.74 −1.76 14.84 6.29 3.36
8 2.37 101.3 95.4 22.08 21.84 1144.46 1157.30 0.02
9 8.66 192.0 169.7 1.56 1.24 16.66 20.96 0.22
10 10.15 203.8 182.0 −0.53 −0.42 2.24 2.85 0.03
11 3.08 115.7 107.5 16.94 16.55 863.63 884.04 0.07
12 4.29 135.5 125.1 10.93 10.77 505.33 513.04 0.02
13 13.45 221.6 206.1 −4.14 −3.03 169.13 230.94 4.68
14 9.79 193.9 180.1 −0.81 0.04 −0.32 6.43 1.75
15 19.45 261.9 239.2 −7.15 −6.06 843.55 995.54 7.71

Sum
Avg

134.80 2779.21
20.62

2474.55
18.36

5069.01 5228.26 38.08
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X2.8 Examine Residuals to Assess Reasonableness of
Random Effect Assumption

X2.8.1 The (standardized) residuals,ei = =wi~ Yi 2 Ŷi! ,
are shown in Table X2.9. For example, the residual for the first
sample (first in Tables X2.1-X2.8) is=6.67 (22.87 − (24.56 −
2.26)) = 1.47, which is found in the eleventh row. (The table
has been sorted in order of increasingei.) {wi} are taken from
Table X2.5, which is appropriate for the selected bias correc-
tion.

X2.8.2 Anderson-Darling Statistic:
X2.8.2.1 From Eq X1.4 of Practice D 6299, the residuals,

{ ei}, are again normalized. To avoid a conflict in notation, what
are calledwi in that practice are calledvi= (ei− ē )/se here and
in Table X2.9, whereē = -.06 is the mean of the {ei}, and
se=2.97 is the standard deviation. The {pi} are from tables of
the standard normal distribution. From Eq. A1.6 and A1.7 of
Practice D 6299,

A2 5
(~2i 2 1!@1n~pi! 1 1n~1 2 pn112i!#

n 2 n 5 0.361

(X2.11)

A2* 5 A2S1 1
0.75

n 1
2.25

n2 D 5 0.382 (X2.12)

X2.8.2.2 As A2*(0.382) is less than the .05 level critical
value (0.752) for the Anderson Darling statistic, the distribu-
tion of the residuals cannot be distinguished from the normal
distribution.

X2.8.3 Cross-Method Reproducibility:
X2.8.3.1 Estimate the cross-method reproducibility (RXY) as

follows:

RXY 5ŒRX
2

2 F1 1
1
LX
S CSS

S2 k 2 1DG 1
RY

2

2F1 1
1
LY
S CSS

S2 k 2 1DG
(X2.13)

5Œ0.27922 X
2 F1 1

1
7S123.86

14 2 1DG1
0.12922 Y2

2 F11
1
7S123.86

14 21DG
5 =0.0865X 1 .01851Y2

X2.8.3.2 Because of the sample-specific biases (which
could be due to the need for further standardization in one of
the methods as noted earlier), this is almost 50 % larger than
the root mean squares of the individual reproducibilities.

TABLE X2.8 Second Iteration of Class 2 Model Fitting

i wi wiXi wiYi xi yi wixiyi wixi
2 wi

2sXI
2(yi− bxi)

2 wi (yi− bxi)
2

1 6.73 165.41 154.03 3.96 4.53 120.82 105.61 0.62 2.96
2 7.12 183.68 156.04 5.19 3.57 131.99 191.91 3.76 16.02
3 6.41 165.26 150.15 5.18 5.09 169.03 172.25 0.00 0.00
4 7.74 174.35 163.83 3.120 1.93 42.35 28.88 1.54 6.93
5 4.94 145.82 133.86 8.91 8.76 385.56 392.54 0.00 1.01
6 19.92 306.67 234.42 −5.20 −6.57 681.05 539.39 17.28 44.10
7 11.52 228.98 191.29 −0.73 −1.74 14.55 6.08 3.56 12.18
8 2.39 101.94 95.96 22.10 21.86 1153.15 1166.05 0.02 0.17
9 8.76 194.19 171.60 1.57 1.25 17.28 21.67 0.17 0.70
10 10.27 206.27 184.22 −0.51 −0.40 2.11 2.70 0.03 0.10
11 3.10 116.49 108.27 16.96 16.57 871.36 891.90 0.00 0.00
12 4.33 136.56 126.07 10.95 10.78 511.02 518.79 0.01 0.04
13 13.63 224.51 208.82 −4.13 −3.02 169.67 232.07 4.01 14.00
14 9.90 196.15 182.19 −0.79 0.06 −0.46 6.23 1.72 6.87
15 19.76 265.98 242.90 −7.14 −6.04 852.16 1006.23 5.72 16.95

Sum
Avg

136.51 2812.26
20.60

2503.64
18.34

5121.63 5282.30 38.44 CSS2 = 121.03

TABLE X2.9 Residuals

Rank

Original
Sequence

No.
Sorted

Residual vi pi

i th Term in
Eq X2.1

1 6 −6.05 −2.01 0.022 −0.45
2 2 −4.30 −1.43 0.077 −1.01
3 7 −3.41 −1.13 0.130 −1.25
4 9 −0.94 −0.30 0.383 −1.21
5 11 −0.69 −0.21 0.416 −1.24
6 8 −0.38 −0.11 0.457 −1.17
7 5 −0.35 −0.10 0.460 −1.23
8 12 −0.34 −0.10 0.462 −1.39
9 3 −0.25 −0.06 0.475 −1054
10 10 0.36 0.14 0.555 −1.52
11 1 1.47 0.51 0.696 −1.26
12 4 2.49 0.86 0.804 −1.08
13 14 2.66 0.91 0.820 −0.56
14 13 4.07 1.39 0.917 −0.30
15 15 4.82 1.64 0.949 −0.14
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