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Standard Practice for

Statistical Assessment and Improvement of the Expected
Agreement Between Two Test Methods that Purport to
Measure the Same Property of a Material *

This standard is issued under the fixed designation D 6708; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonef indicates an editorial change since the last revision or reapproval.

! Note—Corrected Eq 8 editorially in November 2003.

1. Scope where each result is obtained by a different operator using

1.1 This practice defines statistical methodology for assesglifferent apparatus and each applying one of the two methods
ing the expected agreement between two standard test metho@nd Y on identical material, where one of the methods has
that purport to measure the same property of a material, ar{aeen' appropriately bias-corrected in accordance with this
deciding if a simple linear bias correction can further improvePractice.
the expected agregment. It is intended for use with res}-"tS NoTe 3—Users are cautioned against applying the cross-method repro-
collected from an interlaboratory study meeting the requireducibility as calculated from this practice to materials that are significantly
ment of Practice D 6300 or equivalent (for example,different in composition from those actually studied, as the ability of this
ISO 4259). The interlaboratory study must be conducted on dtractice to detect and address sample-specific biases (see 6.8) is dependent
least ten materials that span the intersecting scopes of the t€¥} thf‘? ”t;‘_‘"‘te”a's selected for: the i"te”adboratory Sft“dy' VIVhe” Samp"zl'

. -SPeciIfic blases are present, the types and ranges of sampies may nee to
methOdS’. and _results must be obtained from at least s'ég expanded significantly from the minimum of ten as specified in this
laboratories using each method. practice in order to obtain a more comprehensive and reliable 95 %

Note 1—Examples of standard test methods are those developed nfidence limits for cross method reproducibility that adequately cover
voluntary consensus standards bodies such as ASTM, IP/BSI, DIN'® range of sample specific biases for different types of materials.
AFNOR, CGSB. 1.6 This practice is intended for test methods which mea-

1.2 The statistical methodology is based on the premise th&ure quantitative (numerical) properties of petroleum or petro-

a bias correction will not be needed. In the absence of strontgum products.
statistical evidence that a bias correction would result in betteé Referenced Documents
agreement between the two methods, a bias correction is not

made. If a bias correction is required, then tharsimony 2.1 ASTM Standards: o
principle is followed whereby a simple correction is to be D 5580 Test Method for Determination of Benzene, Tolu-
favored over a more complex one. ene, Ethylbenzene plm-Xylene, o-Xyleng, &d Heavier

) ) o Aromatics and Total Aromatics in Finished Gasoline by
Note 2—Failure to adhere to the parsimony principle generally results Gas Chromatograpﬁy
in models that -are over-ﬂtte.d and do nc.>t perforrr-1 well in pr.ac-tlce. D 5769 Test Method for Determination of Benzene, Tolu-
1.3 The bias corrections of this practice are limited to @  ene, and Total Aromatics in Finished Gasoline by Gas
constant correction, proportional correction or a linear (propor-  Chromatography/Mass Spectrométry
tional + constant) correction. _ . D 6299 Practice for Applying Statistical Quality Assurance
1.4 The bias-correction methods of this practice are method  Techniques to Evaluate Analytical Measurement System
symmetric, in the sense that equivalent corrections are obtained performanceé

regardless of which method is bias-corrected to match the D 6300 Practice for Determination of Precision and Bias

other. Data for Use in Test Methods for Petroleum Products and
1.5 A methodology is presented for establishing the 95% | ubricant@
confidence limit (designated by this practice as thess- 2.2 1SO Standard

method reproducibilityfor the difference between two results  |SO 4259 Petroleum Products—Determination and applica-
tion of precision data in relation to methods of test.

1 This practice is under the jurisdiction of ASTM Committee DO2 on Petroleum ———————

Products and Lubricants and is the direct responsibility of Subcommittee D02.94 on 2 Annual Book of ASTM Standardgol 05.03.

Quiality Assurance and Statistics. 3 Available from American National Standards Institute, 11 W. 42nd St., 13th
Current edition approved Aug. 10, 2001. Published October 2001. floor, New York, NY 10036.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
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3. Terminology W,

3.1 Definitions:

3.1.1 closeness sum of squares (CS8)-a statistic used to
quantify the degree of agreement between the results from twéSS
test methods after bias-correction using the methodology of
this practice.

3.1.2 cross-method reproducibility (R), n—a quantitative ab
expression of the random error associated with the differenc?
between two results obtained by different operators using?®
different apparatus and applying the two methodand Y,
respectively, each obtaining a single result on an identical tesg*Y
sample, when the methods have been assessed and an appro-
priate bias-correction has been applied in accordance with this,
practice; it is defined as the 95 % confidence limit for the
difference between two such single and independent results.

3.1.2.1 Discussior—A statement of cross-method reproduc- ¢
ibility must include a description of any bias correction used in | .,
accordance with this practice.

3.1.2.2 Discussior—Cross-method reproducibility is a
meaningful concept only if there are no statistically observabler, <,
sample-specific relative biases between the two methods, or if
such biases vary from one sample to another in such a way that

[

weight associated with the difference be-
tween mean results (or corrected mean
results) from thé™ round robin sample
weighted sum of squared differences be-
tween (possibly corrected) mean results
from the round robin R
parameters of a linear correctiovi:= a +

bX

ratios for assessing reductions in sums of
squares

estimate of cross-method reproducibility
Y-method value predicted from X-method
result

i'" round robin sample Y-method mean,
predicted from corresponding X-method
mean R
standardized difference betwe¥nand;.
harmonic mean numbers of laboratories
submitting results on round robin samples,
by X- and Y- methods, respectively
estimate of cross-method reproducibility,
computed from an X-method result only

they may be considered random effects. (see 6.7.)
3.1.3 total sum of squares (TSSj—a statistic used to
quantify the information content from the inter-laboratory jhier-jaboratory studies meeting the requirements of Practice

study in terms of total variation of sample means relative to thgy g300 or equivalent, using at least ten samples in common
standard error of each sample mean.

3.2 Symbols:

X, Y
Xio Yik
X Y

S
Lxi» Lvi

RX, RY

Srxir SRyi
Sixio Srvi

Sxir Syi

Y
X Yi

TS§, TSS
F

Vy, W

single X-method and Y-method results,
respectively

single results from the X-method and
Y-method round robins, respectively
means of results on th&" round robin
sample

the number of samples in the round robin
the numbers of laboratories that returned
results on thé™ round robin sample

the reproducibilities of the X- and Y- meth-
ods, respectively

the reproducibility standard deviations,
evaluated at the means of th® round
robin sample

the repeatability standard deviations,
evaluated at the means of th® round
robin sample

standard errors of the meaiffsround robin
sample

the weighted means of round robins
(across samples)

deviations of the means of th&' round
robin sample results frofX andY, respec-
tively. _ _

total sums of squares, arouXdandY

a ratio for comparing variances; not
unigue—more than one use

the degrees of freedom for reproducibility
variances from the round robins

4. Summary of Practice
4.1 Precisions of the two methods are quantified using

that span the intersecting scopes of the methods. The arithmetic
means of the results for each common sample obtained by each
method are calculated. Estimates of the standard errors of these
means are computed.

Note 4—For established standard test methods, new precision studies
generally will be required in order to meet the common sample require-
ment.

NoTe 5—Both test methods do not need to be run by the same
laboratory. If they are, care should be taken to ensure the independent test
result requirement of Practice D 6300 is met (for example, by double-
blind testing of samples in random order).

4.2 Weighted sums of squares are computed for the total
variation of the mean results across all common samples for
each method. These sums of squares are assessed against the
standard errors of the mean results for each method to ensure
that the samples are sufficiently varied before continuing with
the practice.

4.3 The closeness of agreement of the mean results by each
method is evaluated using appropriate weighted sums of
squared differences. Such sums of squares are computed from
the data first with no bias correction, then with a constant bias
correction, then, when appropriate, with a proportional correc-
tion, and finally with a linear (proportional + constant) correc-
tion.

4.4 The weighted sums of squared differences for the linear
correction is assessed against the total variation in the mean
results for both methods to ensure that there is sufficient
correlation between the two methods.

4.5 The most parsimonious bias correction is selected.

4.6 The weighted sum of squares of differences, after
applying the selected bias correction, is assessed to determine
whether additional unexplained sources of variation remain in
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the residual (that is, the individud] minus bias-correctel;) of agreement between two methods that purport to measure the
data. Any remaining, unexplained variation is attributed tosame property of a material.
sample-specific biases (also known as method-material inter- 5.2 The bias correction developed in this practice can be
actions, or matrix effects). In the absence of sample-specifigppned to a single resulixj obtained from one test method
biases, the cross-method reproducibility is estimated. (methodX) to obtain apredictedresult (Y) for the other test
4.7 If sample-specific biases are present, the residuals (thgiethod (methody).
is, the individualY; minus bias-corrected ¥ are tested for .
randomness. If they are found to be consistent with a random- Note 6—Users are cautioned to ensure tifas within the scope of
effects model, then their contribution to the cross-methodnéthodY before its use.
reproducibility is estimated, and accumulated into an all- 5.3 The cross-method reproducibility established by this
encompassing cross-method reproducibility estimate. practice can be used to construct an interval aronithat
4.8 Refer to Fig. 1 for a simplified flow diagram of the would contain the result of test meth¥dif it were conducted,
process described in this practice. with about 95 % confidence.

o 5.4 This practice can be used to guide commercial agree-

5. Significance and Use ments and product disposition decisions involving test methods

5.1 This practice can be used to determine if a constanthat have been evaluated relative to each other in accordance
proportional, or linear bias correction can improve the degresvith this practice.
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6. Procedure where:
Note 7—For an in-depth statistical discussion of the methodology used E(ﬁ) 2<l>

in this section, see Appendix X1. For a worked example, see Appendix o T\s o T\

X2. X= - 1 andY = - 1 (5)
6.1 Calculate sample means and standard errors from Prac- i <§.> ' (ia)

tice D 6300 results. are weighted averages of aJ's andY;'s respectively.

6.1.1 The process of applying Practice D 6300 to the data 6.2.2 CompareF = TSS/(S1) to the 9% percentile of

may involve elimination of some results as outliers, and it MaYricher'sk distribution with 6-1) andv, degrees of freedom for

also involve applying a transformation to the data. For th'sche numerator and denominator, respectively, wherés the

practice, compute the mean results from data that have n?fegrees of freedom for the reproducibility variance (Practice

Qoes not exceed the 95ercentile, then the X-method is not
agﬁfﬁciently precise to distinguish among tBsamples. Do not
proceed with this practice, as meaningful results cannot be
produced.

6.2.3 In a similar manner, compaFe= TSS/(S-1) to the
95" percentile of Fisher'§ distribution, using the degrees of
freedom of the reproducibility variance of the Y-methad,in
place ofvy. Similarly, do not proceed with this practice K
does not exceed the 9%ercentile.

D 6300 are used to estimate the standard errors of these me

6.1.2 Compute the means as follows:

6.1.2.1 LetX;, represent th&™ result on thei"™ common
material by thej™ lab in the round robin for metho.
Similarly for Y;,.. (The i"material is the same for both round
robins, but thg™ lab in one round robin is not necessarily the
same lab as thi" lab in the other round robin.) Let; be the
number of results on th& material from thg'" X-method lab,
after removing outliers that is, the number of resultsefi (i,j).
Let Ly; be the number of laboratories in the X-method round Note 9—If one or both of the conditions of 6.2.2 and 6.2.3 are satisfied
robin that have at least one result on tfematerial remaining only marginally, it is unlikely that this practice will produce meaningful

in the data set, after removal of outliers. L®tbe the total ~ eSults since in 6.4, the quantitf % + TSS) will be compared to a
- . closeness sum of squares computed in the next section, to determine
number of materials common to both round robins. whether the methods are sufficiently correlated. It will be difficult to meet

6.1.2.2 The mean X-method result for tHematerial is: that correlation requirement if the samples are too similar to one another.
1 Ek“xiik 6.3 Calculate the closeness sum of squ@SS)statistic
X = L_X;j: Nyi @ for each of the following classes of bias-correction methodol-

where, X; is the average of the cell averages on ifle gy ) )
material by method. 6.3.1 Class 6—No bias correction.

6.1.2.3 Similarly, the mean Y-method result for th8 6.3.1.1 Compute the weighta;j for each samplé:
material is: - 1 ©)
1 ; Yik DS+ S
Y= 3 (2) 6.3.1.2 Compute€SS
Yi ] Yij
6.1.3 The standard errors (standard deviations of the means CS§ = 2w (X ~ Y)? @)

of the results) are computed as follows:

6.1.3.1 If szy; Is the estimated reproducibility standard
deviation from the X-method round robin, argl; is the
estimated repeatibility standard deviation, then an estimate
the standard error fax; is given by:

6.3.2 Class 1a—Constant bias correction.
6.3.2.1 Using the weightsy) from 6.3.1.1, compute the
0cfonstant bias correctiora);

WY = X) 2wy B 2w

: — T Sw T Sw ow ©
Si = \/t[SZRXi_§Xi(1_tZF>:| 3 I
Xi X)X 6.3.2.2 Comput&€SS
Note 8—Since repeatability and reproducibility may vary wXheven CSS, = Swi (Y, — (X + a))? ©)

if the L; were the same for all materials and tig were the same for all
laboratories and all materials, thg{} might still differ from one material

to the next. 6.3.3 Class 1b—Proportional bias correction.

. o 6.3.3.1 The computations of this subsection (6.3.3) are
6.1.3.2 s, the estimated standard error fris given by an  appropriate only if both of the following conditions applt) (
analogous formula. the measured property assumes only non-negative values, and
6.2 Calculate the total variation sum of squares for eaciqz) a property value ofzero has a physical significance (for
method, and determine whether the samples can be distigxample, concentrations of specific constituents). In addition, it

guished from each other by both methods. is not mandatory but highly recommended that niY3%¢2
6.2.1 The total sums of squares (TSS) are given by: min(Y,).
X — X2 Y - Y\2 6.3.3.2 The computations involve iterative calculation of the
TSS= 2<_&| > andTs§ = i2<_sﬁ ) (4)  weights (v) and the proportional correctioib)(

6.3.3.3 Seb = 1.



A8y D 6708 — 01
“afl

6.3.3.4 Compute the weightss] for each samplé 6.4.2.1 IfF is less than the 95percentile value, then, this
1 practice concludes that the methods are too discordant to
W= 7@ (10)  permit use of the results from one method to predict those of
i + b S
_ the other.
6.3.3.5 Calculatéy: 6.4.2.2 IfF is greater than the tabled value, proceed to 6.5.
2WXY; 6.5 Conduct tests to select the most parsimonious bias

11 ;
(1) correction class needed.

. 6.5.1 The closeness sums of squares for differences from
. each class of bias correction are used to select the most
6.3.3.6 If p— by| >.001b, replaceb with by and go back to o simonious bias correction class that can improve the ex-
.6'3'3:4' OpherW|se, the |terat|(_3n can be stopped, as furth ected degree of agreement between ¥héthe predicted
iteration will not produce meaningful improvement. Replace y_\athod result using X-method result) and the actual

with by and go on to 6.3.3.7. Y-method result on the same material. The classes of bias

O S SWEY, — DX

6.3.3.7 Calculat€€Sg,; correction and the associaté®SSas calculated earlier are
CSS, = Swi (Y, — bX)? (12) repeated in the following table.
6.3.4 Class 2—Linear (proportional + constant) bias correc- /s correction Class €ss
tion Class 0-no correction CSS,
) Class la—constant bias correction CSS; .

6.3.4.1 ThIS InVO|VES |terat|ve Ca|CU|atIOI"I Of the WelghtS Class 1b_pr0p0rti0na| bias correction (When appropriate) CSS,,
(Wi)’ the We|ghted means o¢i’s anin's, and the propomonal Class 2-linear (proportional + constant bias correction) CSS,

term (). 6.5.2 To determine whethanybias correctionClasses 1a,

6.3.4.2 Seb = 1. 1b or 2 above) can significantly improve the expected agree-
6.3.4.3 Compute the weightssj for each samplé: ment between the two methods, calculate the following ratio:
__1 CS$ — CS9)I2
Mg e 3) P cs%gl(s— %) (20)
6.3.4.4 Calculate the weighted means of}{and {Y;} 6.5.2.1 Compard to the upper 95th percentile of tHe
respectively: distribution with 2 andS2 degrees of freedom for the
_ o Swx numerator and denominator, respectively.
X=Sw 14) 6.5.2.2 If the calculated is smaller, conclude that a bias
correction ofClass 1a, 1b, or Zloes not sufficiently improve
Y= 2wy, the expected agreement between the two methods, relative to
2w Class 0(no bias correction). Proceed to 6.6.
6.3.4.5 Calculate the deviations from the weighted means: 6.5.2.3 If the calculate# is larger, conclude that a correc-
% =X — X (15)  tion can improve the expected agreement between the two
y_v methods, and continue in 6.5.3.
= 6.5.3 If theF-value calculated in 6.5.2 is larger than thd"95
6.3.4.6 Calculatéy percentile ofF, compute the following-ratios:
WY, CS§-CS
R ST S o Y #8—25)i @)
6.3.4.7 If p — by| > .001b, replaceb with by and go back to ~ [CS§-CS§
6.3.4.3, computing new values for the weightg}{ X, Y, {x}, = \/ CSS/(S-2)

_{yi}, qnd bq. Otherwise, the itera_ttion can be stopped, as further where,CSS is the lesser oSS, or CSS,, provided the
iteration will not produce meaningful improvement. Replace | ar is appropriate and has been calculated.

with b and glo tlo 6348 da: 6.5.3.1 Comparé, to the upper 978 percentile of thet
6.3.4.8 Calculat€Ss anda: distribution withS-2 degrees of freedom.

CSS = 2w (y; — bx)? (17) 6.5.3.2 Ift,is larger, conclude that a bias correctiorGdass
2 (proportional + constant correction) can improve the ex-
a=Y-bX (18)  pected agreement over that of a single term (constant or

6.4 Test whether the methods are sufficiently correlated. proportional) F:orrectlon aloneass J. P.roceed to 6.6,

6.4.1 Calculate the-statistic: 6.5.3.3 Ift,is smallerthgn thEpercentllg, cgmparg to the

same upper 97'5 percentile of thet distribution with &-2)
_ (TS + TS§ — CS9)/s (19) degrees of freedom.
CS§/(5-2) 6.5.3.4 If t; is larger, conclude that a single term bias

6.4.2 CompareF to the 9%" percentile of Fisher'skF  correction ofClass lis preferred to a bias correction 6lass
distribution withSandS-2 degrees of freedom in the numerator 2. Use the constant correction unl€3SS,, is appropriate and
and denominator, respectively. is smaller tharCS§,. Proceed to 6.6.




A8y D 6708 — 01<t
“afl

6.5.3.5 Ift; is smaller, then neithe, nort, is statistically  this practice recommends use of the Anderson-Darling normal-
significant. A bias correction oClass 2is preferred over ity test, based on its simplicity and ease of use. It is not the
single-term (constant or proportional) correction@éss 1 intent of this practice to exclude other tools for this purpose.

6.6 Test for existence of sample-specific biases. 6.7.2.2 Let{Y;} be the Y-method values predicted from the

6.6.1 Compare th€SSof the bias-correction class selected Corresponding X-method mean Va|uexi}{ using the bias-

in 6.5 to the 98" percentile value of a chi-square distribution correction selected in 6.5. The (standardized) residugiisfe
with v degrees of freedom given by

where: & =\Vw(Y, - ¥) (23)
v = Sfor Class 0(-no bias) correction,

v = S- 1 for Class laor Class 1b(constant or propor-  Where: _ _
tional) correction {w} = the appropriate weights from 6.3.1-6.3.4.
v = S- 2 for Class 2(linear) correction 6.7.2.3 Calculate the Anderson Darling (AD) statistic on the

6.6.2 If theCSSis smaller than the chi-square percentile, it residuals §}. (Refer to Practice D 6299 for guidance on
is reasonable to conclude that there are no sample-specifi@lculation and interpretation of this statistic.)
biases, that is, that there are no other sources of variation 6.7.2.4 If the AD statistic is not significant at the 5%
besides measurement error. Calculate the cross method repgignificance level, conclude that the sample-specific relative

ducibility (Ryxy) as follows: bias may be treated as a variance component. Proceed to 6.7.3.
R0’ 6.7.2.5 If the AD statistic is significant, there is strong
Rov=\/—"%—" (22)  evidence that the sample-specific effects cannot be treated as
random effects. Application of this practice is considered
where: _ _ ) _ terminated at this point, as the statistical evidence suggests that
b = the coefficient of the appropriate bias correction. (For 5 single cross-method reproducibilitRy,) cannot be found
Class OandClass labias correctionsb=1.) that is applicable to all materials covered by the intersecting

6.6.3 If theCSSis larger than the chi-square percentile (seescope of both test methods. It is reasonable to conclude that, at

6.6.1), there is strong evidence that biases between the methodgst for some materials, the test method are not measuring the
have not been adequately corrected by the bias-corrections @hme property. Do NOT proceeed to 6.7.3.
6.3. In other words, the relative biases are not consistent across
the Scommon samples of the round robins. The user may wish Note 10—lt is possible that, by restricting the comparison to a
to investigate whether the biases can be attributed to othé@rrower class of materials, a cross-method reproducibility can be
observable properties of the samples. Or he or she may wish tained (for that narrower _c_lass_) that does not have sample-specific
. - . lases, or, has sample-specific biases that can be treated as a random

restrict aFtentlon to a smaller class of ma,te,r_'als for th,e purposgﬁect. However, individual outlier materials should not be excluded from
of establishing a cross-method reproducibility. Such investigags study, after-the-fact, based on the statistics only, without other
tions are beyond the scope of this practice, as the issug§idence that they clearly belong to a separate and identifiable class.
typically are not statistical in nature. This practice does I
rezomn{end investigating whether it is reasona%le to treat th 6.7.3 Calculate the cross-method reproducibiliBy) as
sample-specific biases as random effects, as described in 6. .HOWS

6.7 Treatment of Sample-Specific Relative Bias as a Vari- b’R[ 1/ CSS R[ 1/CSS
ance Component Rav = \/T[ +L_X<ﬂ_1>]+7[l+ﬁ(ﬂ_lﬂ

6.7.1 If the CSSexceeds the 9% percentile value of the (24)
appropriate chi-square distribution (see 6.6.1), there is strong W
evidence that sources other than measurement error are con-

here:

tributing towards the variation of the expected agreement LX=L

between the two methods. In this practice, these sources are 21/Lx

attributed to sample-specific effects (also known as matrix S

effects or method-material interactions). In some cases these Ly= S
- |
1

sample-specific effects can be treatedr@sdom effects, and
hence can be incorporated as an additional source of variation

into a cross method reproducibility as described in this sectiorfndP andCSSare appropriate to the selected bias-correctis;0 if the

o . ias-correction i€lass Q kis 1 if the bias correction i€lass laor Class
Note that, even when it is appropriate to treat these samplél)b; Kis 2 if the bias-correction i€lass 2

specific effects as random, the additional variation may cause
the cross-method reproducibility to be far larger than the root Nore 11—Eq 24 provides an estimate of the magnitude below which
mean square of the reproducibilities of the methods (Eq 22).about 95 % of the differences are expected to fall, when one party uses the
6.7.2 Examine residuals to assess reasonablenesgadm  bias-corrected X-method while another party uses the Y-method, on
effectassumption. materials similar to the round robin samples. Application of the methods

. materials which are substantially different from these round robin
6.7.2.1 Assess the reasonableness of the assumption that {ﬁgterials may affect both the average bias and the variance of the random

samp!e-s_pecific eﬁe_c'[s. can be treateq as faﬂd(?m effect Q¥mponent.Laboratories which engage in routine substitution of one
examination of the distribution of the residuals. While there arénethod for another are advised to periodically monitor the deviations

numerous statistical tools available to perform this assessmenigtween methods, as a regular part of their quality assurance program
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6.8 Construction of a 95 % confidence interval for a singlematerial, with approximately 95 % confidence. H&g « is
result from methodr using a single bias-corrected result from computed from Eq 22 or Eq 24, as appropriate, WRh
methodX, andRyy. evaluated at = Y.

6.8.1 LetY be a single bias-corrected X-method result. An
interval bounded by + Ry ¢ can be expected to contain a
single corresponding Y-method result, obtained on the identical

APPENDIXES
(Nonmandatory Information)

X1. STATISTICAL BASIS

X1.1 Adequacy of Round Robin Sample Set quantify the closeness of agreement. In classical (weighted)

X1.1.1 In order to obtain a usable comparison between woegression, the weighted residual sum of squares,
(Y, = )

methods, it is critical that the samples are sufficiently varied

that they can be distinguished from one another (or at least so Z < (X1.3)
that some can be distinguished from some others) using the .
methods in question. The most straight-forward test involves is used as a measure of the closeness of agreement. If

the total (weighted) sum of squares, which, for Kimeasure- competing calibration functions are under consideration, re-
ment is ' ' gression methods — classical least squares — suggest we should

prefer the one with smallest sum of squares (X1.1). But this
TS§ = E( )2 (X1.1) overlooks the fact that theX{} are not the true values of the
T\ S ' property as measured by the alternative method, but only
where: estimates of those values, and they also involve random error.
Let {h;} represent the true, unknown values of the property as
E(ﬁ) measured by the reference method. Thg yill be estimated
"\ (x1.2)  from the data. BothY; andf (X)) estimateh;, which is not
L known. Y; has variance s°, andf (X,) has variance approxi-
s matelyf ’2(X))s,;%, wheref ’(X;) is the derivative of at X;. So

. . an alternative measure of closeness is
the mean of the meaxresults weighted by the reciprocal of

the squares of the standard errosg;} minS: ((Yi - hi)i(f(xi)—hif)
X1.1.2 If the S samples were all the same material, if the i\ S Fr20X)s
{ X} were distributed normally, and if the standard errors were X1.2.2 This sum can be minimized term by term. The value
known exactly, theT S§ would have a chi-square distribution of h, that minimizes thet term — and the value that is our best
with S1 degrees of freedom. In practice, thg} are not  estimate of the true value — is
known exactly, but our situation approximates one in which "
TSS/(S-1) would have ar distribution, withS-1 degrees of B = f (Xi)siiYi; %) (X1.5)
freedom in the numerator and v degrees of freedom in the i+ 2008,
denominator, whereis the degrees of freedom associated with  and the minimized sum of squares is
the reproducibility estimate. )
. _ < (i = (X))
X1.1.3 If the materials were not all the same, then we would CSS= Zm
expectTSS/(S-1) to be larger than aR-distributed variable. : A
For round robins, hopefully samples will have been selected X1.2.3 Compare (Eq X1.4) to (Eq X1.1), and note that the
with a range of property values, S6S/(S-1) will be very  only difference is that, in place of the variance Yfin the
much larger than the 5percentile ofF. If we come even denominator of each term, (Eq X1.4) has the variance of
close to failing this test, or the analogous test using theY-f (X).
Y-method data, then the best course of action would be to start
over with a more variable set of samples. X1.3 Properties of the Closeness Metric

X — X

X =

(X1.4)

(X1.6)

o X1.3.1 Distributional Properties
X1.2 Quantifying the Closeness of Agreement Between X1.3.1.1 If the {X;} and {Y;} are independent normal, if the
Two Test Methods standard errors are known exactlyf i§ linear (so that { (X)}
X1.2.1 Suppose we use a calibration functidn(X), to  are normal), and if B{j] = E[f (X;)] for all i, where EY]
estimate (ompredic) the property as measured by a referencerepresents the mean or expected value of distributiof tifen
Y-method. For the round robin samples, the mean result by th€SShas a chi-square distribution. The degrees of freedom
reference methodyY, can be compared tb(X) and used to associated witlCSSis S the number of materials (samples)
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common to the round robins. This may be seen by the fact tha[Y;] nor E[X], but instead approximates an average of the
(Eq X1.2) has 3 terms, butS parameters K} are fitted by  two, an average that is weighted towards the more precisg of
least-squares. andX;.

X1.3.1.2 When EY)], # E[f (X)], it may be because the = X1.3.1.4 When the standard errors are not known, but
calibration functionf, is not known exactly. If belongs to a approximately proportional to the same standard deviation
specific class of functions — linear functions, for example —€stimate, then ak distribution may be a reasonable approxi-
then the unknown parametersfdfor exampleaandbif f(X) ~ mation to the distribution ofCS$S or CS(S - k), as
= a + b X) may be estimated by minimizing Eq X1.4 with appropriate. _
respect to these parameters. In this ca88S would be X1.3.2 Symmetry in X and:Y

distributed as chi-square with— k degrees of freedom. X1.3.2.1 Note that, if is linear, then (Eq X1.4) is indepen-

X1.3.1.3 But ifCSSis evaluated using an incorrect calibra- _dent of which method is considered the reference method. If

tion equation, or by minimizing over a class of equations thaglStead of p?redlitm_g( V\f'},h f (X), we wish to_pregllcb( with
does not contain the true calibration equation, or if there ar (E%’ thean(X})=b=¢/f (¥, ‘anYi_ i (X]L)_b (;: (Yi)_xi)'d
sample-specific biases that cannot be accounted foaryy ;01 4 _cancehs rorgt & top and bottom of each term and Eq
calibration function, therCSScan be expected to blarger )klg;gc_r?pge : . hared by classical
than a chi-square variable. The last of these three situations is” ™~ IS symmetry property is not shared by classica

worth special consideration. In the event that two or morg c9ression = the slope obtained from regressihgn X is

different materials may have the same true valuey]Es always smaller than the reciprocal of the slope from regressing

measured by one method, but different true valueX],Eds xon Y. The met_hod developed in thi_s annex Is a w_eighted
measured by the other method, then no calibration equation cé’r?r.s'g? of V‘;}ha; I (:I;nown aj’ _regres&g;(&th err?_rs mrf bath
completely account for the differences between the two meth\—’r‘;Jlrla es, vtv Ic ||St ';Cﬁse In "t]ﬁtﬂy i r nc:.rtI.— mez ’
ods. Such sample-specific biases can be the dominant contrib{e s;l/mm:z r)t/'lllst ost. butlior smooththe two equalities above
tor to CSS In fact, it almost certainly will be the dominant are aimost stilt true.

factor when ¥} and {Y;} are very precise, that is, when the

materials are measured by sufficiently large numbers of labs. In Mandel, John, Evaluation and Control of Measurements, Marcel Dekker, 1991,

such cases, note that bnof Eq X1.3 will approximate neither sec. 5.5.

X2. AWORKED EXAMPLE

X2.1 Example Data Test Method D 5769, gas chromatography/mass spectrometry
X2.1.1 The data in Tables X2.1 and X2.2 are from a round GC/MS). No data have been removed as outliers, but some

robin for aromatics in gasoline conducted by seven labstepeat results are missing for Test Method D 5580. For

Fifteen S = 15) fuels were tested by two methods. Table X2.1purposes of this example designate Test Methods D 5580 and

are the results from Test Method D 5580, a gas chromatogrd? 5769 as the X and Y methods, respectively.

phy (GC) method, while Table X2.2 contains the results from

TABLE X2.1 Aromatics by Test Method D 5580

Fuel

Laboratory 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 23.76  26.34 25.14 22.76 29.10 14.83 19.77 42.61 21.77 19.85 37.40 31.53 16.48 19.26 13.26
24.22 29.16 19.81 12.99
2 24.46  25.88 25.72 22.59 29.08 15.68 19.92 41.89 21.68 19.97 37.38 31.35 16.55 19.48 13.25
2459 2594 25.76 22.57 29.07 15.64 19.82 42.10 22.00 20.02 37.09 31.29 16.58 19.63 13.53
3 2450  25.36 26.28 22.87 29.28 15.71 20.12 42.90 2193 20.02 38.05 31.63 16.72 19.72  13.50
2454  25.17 26.26 22.65 29.33 15.76 20.01 42.90 21.91 20.14 38.07 31.80 16.60 19.82 13.54
4 2474  25.23 25.72 22.82 29.31 15.51 20.35 42.52 22.24 2032 37.03 31.77 16.50 20.03 13.63
2490 25.19 25.65 22.68 29.21 15.48 19.99 42.38 22.14 20.01 37.44 31.80 16.45 19.84 13.69
5 24.64  26.01 25.92 22.17 30.50 14.78 19.37 43.71 22.85 20.43 37.80 31.09 16.27 20.85 13.85
2470  25.87 25.87 22.20 30.69 14.88 19.66 44.00 23.50 20.30 37.84 31.31 16.55 21.01 13.85
6 2493  26.28 26.07 22.59 30.08 15.91 20.30 43.08 22.24 20.26 38.28 32.60 16.70 19.94 13.67
25.13  26.72 26.08 22.90 30.10 16.16 20.49 43.27 22.56 20.58 38.54 32.72 16.97 19.94 13.89
7 2437  25.40 25.66 21.93 29.11 15.30 19.33 42.08 21.88 19.79 36.28 30.60 15.87 19.30 1291
2436  25.36 25.72 21.97 29.18 15.10 19.32 41.77 2198 19.71 37.19 30.65 1591 19.23 1291
Mean 2456  25.79 25.78 22.53 29.51 15.40 19.87 42.70 22.17 20.09 37.56 31.55 16.47 19.81 13.46
Standard 0.177  0.181 0.181 0.170 0.193 0.140 0.159 0.234 0.168 0.160 0.219 0.201 0.145 0.159 0.131

Error
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TABLE X2.2 Aromatics by Test Method D 5769

Fuel

Laboratory 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 21.33  21.37 22.21 20.90 26.19 10.88 15.88 38.58 18.66 16.81 33.14 27.87 1474 1772 11.78
22.01 2112 21.99 20.98 25.88 10.93 16.07 38.39 1841 17.21 33.76 28.39 1477 17.68 12.12
2 21.70 21.32 22.20 20.79 26.85 11.60 16.26 40.33 19.29 1741 3432 29.28 1499 18.10 12.31
21.79 21.15 22.60 20.69 26.57 11.84 16.25 38.86 18.79 17.28 33.99 28.48 1486 18.13 12.24
3 24.09 23.36 24.71 22.40 27.99 12.45 17.31 41.40 20.65 19.83 35.18 29.96 16.24 19.81 1294
2432 2357 24.93 22.26 28.08 12.31 17.26 41.36 20.88 18.94 36.35 29.82 16.43 19.42 1281
4 2343 2259 24.15 21.55 27.58 12.23 17.09 41.04 20.14 18.53 35.80 30.28 15.39 18.23 1252
23.08 2254 23.99 21.61 27.50 12.36 17.15 41.11 20.37 18.46 35.98 30.12 1543 18.23 12.59
5 23.63  22.65 24.54 21.26 28.10 12.52 17.49 41.79 20.47 1873 35.67 30.01 15.74 18.99 12.31
2433  22.69 24.88 22.36 28.24 12.48 17.26 40.71 20.29 18.31 35.84 30.03 16.03 18.73 12.30
6 22.38 2043 22.70 20.13 26.34 11.27 15.72 38.89 18.74 17.13 34.29 27.73 1497 1856 12.17
2253  20.40 22.86 20.39 26.44 11.24 15.54 39.13 18.71 17.26 34.74 27.85 15.01 1859 12.05
7 2284 2179 22.90 20.85 27.10 11.33 16.36 40.88 19.50 17.76 34.93 28.80 15.05 17.82 12.01
22,72 2176 23.32 20.25 26.47 11.33 16.79 40.27 19.42 1750 34.71 29.11 1487 1756  11.99
Mean 2287 2191 23.43 21.17 27.10 11.77 16.60 40.20 19.59 17.94 3491 29.12 1532 1840 12.30
Standard 0.345 0.330 0.353 0.319 0.408 0.177 0.250 0.606 0.295 0.270 0.526 0439 0.231 0.277 0.185

Error

Note X2.1—Note: All equations referenced are from this standard X2.2.4 The means and standard errors for each fuel by both
except as noted. methods are found at the bottoms of their respective tables
X2.1.2 The repeatabilities and reproducibilities were esti{Tables X2.1 and X2.2).
mated from the round robins in accordance with Practice
D 6300. These are shown in Table X2.3. The degrees oK2.3 Calculate the Total Variation Sum of Squares

freedom are also from the precision analysis. The standard x2 3.1 Table X2.4 demonstrates the application of Eq 4 and
deviations associated with repeatability and reproducibility are; tg obtain the total sum of squares for the Y-method means.
obtained by dividing the precision estimates tys \/2 ,  The weighted mearY, is found to be 3333.81/186.8 = 17.85.
wheret 4,5 is the 97.8' percentile of the-distribution with the TSS= 6564.8. We compare 6564.8/14 = 469 to the"95
applicable number of degrees of freedom. percentile of theF distribution with 14 and 9 degrees of
X2.2 Calculation of the Mean Results and Standard freedom fqr the numerator and denominator, res_pect]vely. The
F percentile is 3.03. Hence, we conclud&s§ is highly

Errors
o .. tatistically significant. Similarly, a high degree of significance
X2.2.1 Both round robins included seven participants, andg 550 fogndgforTS& y g g g

all participants measured every sampleLge L= 7 for alli.
As an example, for the second sample from methoXxXis

) X2.4 Calculate the CI S fS
calculated using (Eq 1) as follows: alculate the Closeness Sums of SquareS$3

X2.4.1 Class 6—No correction. The first three columns of

, = %(261'34+ 25'88; 25'94+ 25'36’; 25'17+ ot 25'4+225'3G> Table X_2.5 display the compqtations from Eq 6 and Eq 7. As
(x2.1) shown in the next-to-last line in the tabl@S$ turns out to be
812.46.
= %(26.34#25.91+25.265F25.21+26.94rl-26.5+25.38=25.79 X2.4.2 Class 1a—Constant correction. Table X2.5 contains

these computations, also. Note thvats smaller thar¥; for all
X2.2.2 Note that this is not the same as the average of thgamp|es, S0 it is not surprising tk@gaa is quite a bit smaller
thirteen X-method results on this sample. The remaidirgnd  thanCS$. a=Y - X = 18.36 - 20.62 = -2.26.
Y; are computed in a similar fashion. X2.4.3 Class 1b—Proportional correction.
X2.2.3 The standard error of each mean is calculated using x2 4.3.1 Aromatics concentration having a true zero, and as
Eq 3. Again for the second sample X-method resultsnthare max(Y;) = 40.2 > 23.8 = 2 min(Y)), it is appropriate to also
all equal to 2, except, = 1, so consider a proportional correction. Table X2.6 shows the
1.1 4 1 3 computations for the first two iterations. Starting whitk 1, the
L_x;]:n_x., =zands; = \/7[-09642 - 0-029‘§<7>] \/25.79=0.181.  first jteration proceeds using'’s from Table X2.5. Computing
(X2.2) by

TABLE X2.3 Precision Estimates and Associated Standard Deviations A

Precision Estimates Degrees of Freedom t(.975) Standard Deviations
r,=0.0831 \/X 94 1.986 $,x=0.0290 \/X
R,=0.2792 \/X 28 2.048 Srx=0.0964 \/X

r,=0.0292 Y 105 1.983 5,=0.0104 Y
R,=0.1292 Y 9 2.262 Spx=0.0404 Y

A This inter-laboratory study did not meet the minimum degrees of freedom requirement (30) as recommended in Practice D 6300. The low degrees of freedom for Ry
and R, suggest the need for further inter-laboratory standardization, and the latter could be a contributing factor towards the sample-specific biases observed.
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TABLE X2.4 Total Variation Sum of Squares for Y-Method

i Y Syi Usy? Y; Isy? (Y- 37)2/5»42
1 22.87 0.345 8.42 192.57 212.48
2 21.91 0.330 9.17 201.01 151.48
3 23.43 0.353 8.02 187.99 249.90
4 21.17 0.319 9.82 208.01 108.70
5 27.10 0.408 6.00 162.54 513.12
6 11.77 0.177 31.80 374.21 1174.31
7 16.60 0.250 15.98 265.27 24.75
8 40.20 0.606 2.73 109.57 1361.51
9 19.59 0.295 11.47 224.77 35.04
10 17.94 0.270 13.68 245.49 0.12
11 34.91 0.526 3.61 126.17 1052.00
12 29.12 0.439 5.19 151.22 660.32
13 15.32 0.231 18.76 287.42 119.47
14 18.40 0.277 13.01 239.38 3.95
15 12.30 0.185 29.13 358.18 897.59
Sum 186.80 3333.81 6564.75
Wt Avg 17.85
TABLE X2.5 CSS, and CSS,,
i Y Xi w; w(Y; - X)? WX; w;Y; w(Y; = XY + X)?
1 -1.69 6.67 19.1 163.8 152.5 2.16
2 -3.88 7.05 106.2 181.7 154.4 18.52
3 -2.36 6.35 35.3 163.7 148.7 0.06
4 -1.36 7.66 14.2 172.6 162.2 6.21
5 -2.42 4.90 28.7 144.6 132.7 0.12
6 -3.63 19.56 257.4 301.2 230.3 36.57
7 -3.27 11.37 121.7 225.9 188.7 11.63
8 -2.51 2.37 14.9 101.3 95.4 0.14
9 -2.58 8.66 57.6 192.0 169.7 0.88
10 -2.15 10.15 46.8 203.8 182.0 0.13
11 -2.65 3.08 21.7 115.7 107.5 0.47
12 -2.42 4.29 25.2 135.5 1251 0.12
13 -1.15 13.45 17.8 221.6 206.1 16.54
14 -1.41 9.79 19.4 193.9 180.1 7.08
15 -1.17 19.45 26.5 261.9 239.2 23.20
Sum 134.80 CSS5,=812.46 2779.2 24745 CSS,, = 123.86
Wt Avg 20.62 18.36
TABLE X2.6 Iterating Class 1b
First Iteration Second lteration Final Step
i w; WX;Y; VVIXIZ WIZSXIZ(Yl_ le)2 w; WiX;Y; WIXIZ WIZSXIZ( Yi- bX/)2 w; (Vi = b)<|)2
1 6.67 3746.7 4023.7 3.962 6.94 3900.2 4188.5 0.861 4.83
2 7.05 3981.3 4686.7 24.633 7.37 4164.3 4902.1 3.077 11.19
3 6.35 3834.2 4220.1 7.374 6.61 3992.2 4394.0 0.065 0.56
4 7.66 3654.0 3888.7 3.120 7.99 3813.2 4058.0 1.442 7.31
5 4.90 3917.4 4267.2 5.259 5.07 4058.4 4420.8 0.263 1.91
6 19.56 3545.2 4637.9 99.028 21.10 3823.8 5002.3 38.358 88.48
7 11.37 3751.0 4490.2 35.110 12.03 3967.8 4749.7 6.120 18.21
8 2.37 4073.2 4327.1 1.927 2.43 4175.5 4435.8 0.988 8.63
9 8.66 3761.9 4257.1 14.122 9.08 3945.1 4464.4 0.319 0.82
10 10.15 3656.4 4094.1 12.101 10.67 3844.6 4304.9 0.062 0.07
11 3.08 4038.5 4345.3 3.199 3.17 4154.8 4470.3 0.574 4.63
12 4.29 3945.4 4273.9 4.367 4.44 4079.1 4418.6 0.411 2.97
13 13.45 3395.2 3650.3 5.043 14.21 3587.4 3856.9 1.022 4.18
14 9.79 3567.4 3840.7 4.816 10.27 3743.0 4029.7 0.850 4.03
15 19.45 3220.2 3526.1 8.817 20.76 3436.4 3762.9 0.222 0.97
Sum 56088.3 62529.0 232.88 58685.8 65459.0 54.63 CSS,;, = 158.79
b > WX, 56088.3 0.9003 X2.4.3.2 Asb - byg| = 0.0997 > .00, we must iterate as
oy WX — > wis (Y, — bX)? 62529 232.88 shown.
(X2.3) X2.4.3.3 From the Second lIteration

10
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> wWXY, 58685.8 X2.6 Conduct Tests to Select the Most Parsimonious Bias

b = S W€ — > W, (Y, — bx)?  65459.0-54.63" 0.8973 Correction Class Needed.
(X2.4) X2.6.1 From Eq 20 compute:
X2.4.3.4 Again, h - by|] = 0.0030 > .001b, so a third CSS — CSS)2  (812.46— 121.03/2
iteration (not shown) is required. From the third iteratibp= F= ( Cs%gl(s—% ¢ '121.03/15 z_ 37.13 (X2.8)

0.8972,1 — by| = 0.0001 < .00D, and iteration may stop. The _ - _
final step, computation d€SS,= 158.79, is shown in the last ~ X2.6.2 The 98 percentile of theF distribution, with 2 and

column of Table X2.6. 13 degrees of freedom, is 3.81. As the computeid larger
X2.4.4 Class 2—Linear correction. than 3.81, we conclude that a bias correction (of class yet to be
X2.4.4.1 Tables X2.7 and X2.8 demonstrate two iterationgletermined) will significantly improve the expected agreement

of the algorithm for fitting the linear model. Starting with=  between the two methods.

1, the first iteration proceeds as @lass 1 shown in Tables X2.6.3 As CSS, is smaller thanCSS,, the t-ratios of

X2.5-X2.7. Computindo,: equation Eq 21 are:
B > WXy, _ 5069.01 CS$ - CS%. 812.46— 123.86
P S W S WS, (y, — bx? 5228263808 97000 t1\/ CSS5-2 \/ Torogms 860 (X29)
(X2.5)
and
X2.4.4.2 Asb — byl = 0.02335 > .00b, we must iterate as css.—css 53865103
shown in Table X2.8. tz\/csé‘/(s_ 2~ 51033 — 055  (X2.10)

X2.4.4.3 From the Second lIteration:
5121 63 X2.6.4 The 97.% percentile of Student’sdistribution, with

bo = 5585 35-38.22~ 0-97669 (X2.6) 13 degrees of freedom, is 2.16. Asis smaller than 2.16, we
comparet, to the same percentile, as discussed in 6.513.3.
exceeds 2.16, so we conclude that a constant bias correction is
preferred to a linear (proportional + constant) bias correction.
The preferred bias correction is to subtract (sircdas a
negative sign) 2.26 volume % aromatics from any Test Method
D 5580 result, in order to predict a Test Method D 5769 result
on the same material. Note that the predicted Test Method

X2.4.4.4 Nowl - bg| =0.00004 < .00b, and iteration may
stop. The final step, computation ©5S= 121.03, is shown in
the last column of Table X2.8. Using equation (Eq 18)
18.34 - 0.9767x 20.60 = -1.78.

X2.5 Test Whether the Methods are Sufficiently

Correlated o ;
orrelate D 5769 result should be within the scope of D 5769 in order for
X2.5.1 From Eq 19 compute: it to be meaningful.
_ (TS§ + TS§ - CS9)/S 5
- CSS/(S-2) (X2.7) " x2.7 Test for Existence of Sample-Specific Biases
_ (26182-3+f25f3g/1312103/15: 233.6 X2.7.1 TheCSSof the selected bias correction is 123.86,

with S-1 = 14 degrees of freedom. The"®percentile value of
X2.5.2 The 98 percentile of thé= distribution, with 15 and  the chi-square distribution is 23.68. As tRSSis larger, we

13 degrees of freedom, is 2.53. As the computeis (very  conclude that there are likely sample-specific biases between

much) larger than 2.53, the methods are sufficiently correlatedhe methods.

TABLE X2.7 First Iteration of Class 2 Model Fitting

i w; WX; w;Y; Xi Yi WXYi wx;? W7sx (V= bx)?
1 6.67 163.8 152.5 3.94 4.51 118.68 103.70 0.45
2 7.05 181.7 154.4 5.17 3.55 129.50 188.61 4.30
3 6.35 163.7 148.7 5.17 5.07 166.28 169.47 0.01
4 7.66 172.6 162.2 1.91 2.82 41.29 28.08 1.37
5 4.90 144.6 132.7 8.90 8.74 380.80 387.73 0.02
6 19.56 301.2 230.3 -5.22 -6.59 672.94 533.28 14.07
7 11.37 225.9 188.7 -0.74 -1.76 14.84 6.29 3.36
8 2.37 101.3 95.4 22.08 21.84 1144.46 1157.30 0.02
9 8.66 192.0 169.7 1.56 1.24 16.66 20.96 0.22
10 10.15 203.8 182.0 -0.53 -0.42 2.24 2.85 0.03
11 3.08 115.7 107.5 16.94 16.55 863.63 884.04 0.07
12 4.29 135.5 125.1 10.93 10.77 505.33 513.04 0.02
13 13.45 221.6 206.1 -4.14 -3.03 169.13 230.94 4.68
14 9.79 193.9 180.1 -0.81 0.04 -0.32 6.43 1.75
15 19.45 261.9 239.2 -7.15 -6.06 843.55 995.54 7.71
Sum 134.80 2779.21 2474.55 5069.01 5228.26 38.08
Avg 20.62 18.36

11
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TABLE X2.8 Second Iteration of Class 2 Model Fitting

! w; WX w;Y; X; Yi Wxyi wx? WSy Vi~ bx)? w; (vi— bx)?
1 6.73 165.41 154.03 3.96 4.53 120.82 105.61 0.62 2.96
2 7.12 183.68 156.04 5.19 3.57 131.99 191.91 3.76 16.02
3 6.41 165.26 150.15 5.18 5.09 169.03 172.25 0.00 0.00
4 7.74 174.35 163.83 3.120 1.93 42.35 28.88 1.54 6.93
5 4.94 145.82 133.86 8.91 8.76 385.56 392.54 0.00 1.01
6 19.92 306.67 234.42 -5.20 -6.57 681.05 539.39 17.28 44.10
7 11.52 228.98 191.29 -0.73 -1.74 14.55 6.08 3.56 12.18
8 2.39 101.94 95.96 22.10 21.86 1153.15 1166.05 0.02 0.17
9 8.76 194.19 171.60 1.57 1.25 17.28 21.67 0.17 0.70
10 10.27 206.27 184.22 -0.51 -0.40 211 2.70 0.03 0.10
11 3.10 116.49 108.27 16.96 16.57 871.36 891.90 0.00 0.00
12 4.33 136.56 126.07 10.95 10.78 511.02 518.79 0.01 0.04
13 13.63 224.51 208.82 -4.13 -3.02 169.67 232.07 4.01 14.00
14 9.90 196.15 182.19 -0.79 0.06 -0.46 6.23 1.72 6.87
15 19.76 265.98 242.90 -7.14 -6.04 852.16 1006.23 5.72 16.95
Sum 136.51 2812.26 2503.64 5121.63 5282.30 38.44 CSS, =121.03
Avg 20.60 18.34
X2.8 Examine Residuals to Assess Reasonableness of o o 0.75 225
; AT =p(1+——+—)=0.382 (X2.12)
Random Effect Assumption n n
X2.8.1 The (standardized) residuats,= \/W( Y, — Y)) , X2.8.2.2 AsA¥(0.382) is less than the .05 level critical

are shown in Table X2.9. For example, the residual for the firsyalue (0.752) for the Anderson Darling statistic, the distribu-

sample (firstin Tables X2.1-X2.8) i§/6.67 (22.87 - (24.56 — tion of the residuals cannot be distinguished from the normal
2.26)) = 1.47, which is found in the eleventh row. (The tabledistribution.

has been sorted in order of increasig {w;} are taken from X2.8.3 Cross-Method Reproducibility
Table X2.5, which is appropriate for the selected bias correc- y» g 3 1 Estimate the cross-method reproducibilRy,) as
tion. .

follows:

X2.8.2 Anderson-Darling Statistic
X2.8.2.1 From Eq X1.4 of Practice D 6299, the residuals, R — \/Ri[ l< CSss >] 5\2([1 1( Css
XY ™

{€}, are again normalized. To avoid a conflict in notation, what 1 e Sl ) R e
are calledw; in that practice are called= (¢;— €)/s here and (X2.13)
in Table X2.9, wheree = -.06 is the mean of the;}, and 0.2792 X[, 1/123.86 0.1292 Y2|' 1/123.86
§.=2.97 is the standard deviation. Thg}¥are from tables of = > Ll +7< 4 1)]* > L1+7( 14 —1>]
the standard normal distribution. From Eq. A1.6 and A1.7 of 5
Practice D 6299, =V 0.086X +.01851¢
L, S - D) + 101 — poia )] X2.8.3.2 Because of the sample-specific' bigse; (which
A= n —n=0361 could be due to the need for further standardization in one of

(x2.11)  the methods as noted earlier), this is almost 50 % larger than
the root mean squares of the individual reproducibilities.

TABLE X2.9 Residuals

Original
Sequence Sorted it Term in
Rank No. Residual V; p; Eq X2.1
1 6 -6.05 -2.01 0.022 -0.45
2 2 -4.30 -1.43 0.077 -1.01
3 7 -3.41 -1.13 0.130 -1.25
4 9 -0.94 -0.30 0.383 -1.21
5 1 -0.69 -0.21 0.416 -1.24
6 8 -0.38 -0.11 0.457 -1.17
7 5 -0.35 -0.10 0.460 -1.23
8 12 -0.34 -0.10 0.462 -1.39
9 3 -0.25 -0.06 0.475 -1054
10 10 0.36 0.14 0.555 -1.52
11 1 1.47 0.51 0.696 -1.26
12 4 2.49 0.86 0.804 -1.08
13 14 2.66 0.91 0.820 -0.56
14 13 4.07 1.39 0.917 -0.30
15 15 4.82 1.64 0.949 -0.14
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ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org).
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