

# Standard Test Methods for Evaluation of Engine Oils in A High-Speed, Single-Cylinder Diesel Engine —1K Procedure (0.4 % Fuel Sulfur) and 1N Procedure (0.04 % Fuel Sulfur)<sup>1</sup>

This standard is issued under the fixed designation D 6750; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\epsilon$ ) indicates an editorial change since the last revision or reapproval.

#### INTRODUCTION

The test methods described in this standard can be used by any properly equipped laboratory without outside assistance. However, the ASTM Test Monitoring Center (TCM)<sup>2</sup> provides reference oils and an assessment of the test results obtained on those oils by the laboratory (see Annex A16). By this means, the laboratory will know whether its use of the test methods gives results statistically similar to those obtained by other laboratories. Furthermore, various agencies require that a laboratory utilizes the TMC services in seeking qualification of oils against specifications. For example, the U.S. Army has such a requirement in some of its engine oil specifications.

Accordingly, these test methods are written for those laboratories that use the TMC services. Laboratories that choose not to use these services may ignore those portions of the test methods that refer to the TMC.

These test methods may be modified by Information Letters issued periodically by the TMC after the publication of this edition of the standard to become part of it. These letters are obtainable from the TMC. In addition, the TMC may issue supplementary memoranda related to the test methods, also obtainable from the TMC.

#### 1. Scope

1.1 These test methods cover the performance of engine oils intended for use in certain diesel engines. They are performed in a standardized high-speed, single-cylinder diesel engine by either the 1K (0.4% fuel sulfur) or 1N (0.04% fuel sulfur) procedure. The only difference in the two test methods is the fuel used. Piston and ring groove deposit-forming tendency and oil consumption are measured. Also, the piston, the rings, and the liner are examined for distress and the rings for mobility. These test methods are required to evaluate oils intended to satisfy API service categories CF-4 and CH-4 for 1K, and CG-4 for 1N of Specification D 4485.

1.2 These test methods, although based on the original Caterpillar 1K/1N procedures,<sup>3</sup> also embody TMC information letters issued before these test methods were first published. These test methods are subject to frequent change. Until the next revision of these test methods, TMC will update changes

in these test methods by the issuance of information letters which shall be obtained from TMC (see Annex A16).

1.3 The values stated in inch-pound units or SI units are to be regarded separately as standard. When inch-pound units are standard, the SI units are shown in parenthesis. The values stated in each system are not necessarily exact equivalents. Because of this, combining values from the two systems may be incompatible. Therefore, use either system independently of the other.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given within the text. Being engine tests, these test methods do have definite hazards which shall be met by safe practices (see Annex A17 on Safety).

1.5 The following is the Table of Contents:

|                         | Section |
|-------------------------|---------|
| Introduction            |         |
| Scope                   | 1       |
| Referenced documents    | 2       |
| Terminology             | 3       |
| Summary of Test Methods | 4       |
| Significance and Use    | 5       |
| Apparatus               | 6       |

<sup>&</sup>lt;sup>1</sup> These test methods are under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.B0.02 on Automotive Lubricants.

Current edition approved Jan. 10, 2002. Published July 2002.

<sup>&</sup>lt;sup>2</sup> ASTM Test Monitoring Center, 6555 Penn Ave., Pittsburgh, PA 15206-4489.

<sup>&</sup>lt;sup>3</sup> These 1K/1N test procedures were developed by Caterpillar Inc., P.O. Box 610, Mossville, IL 61552-0610.

# ∰ D 6750 – 02

| General Laboratory Requirements                                                               | 6.1                    | Atmospheric Pressure <sup>4</sup>     |
|-----------------------------------------------------------------------------------------------|------------------------|---------------------------------------|
| Test Engine                                                                                   | 6.2                    | D 93 Test Methods for Fla             |
| Test Engine Accessories and Parts                                                             | 6.3                    | Closed Cup Tester <sup>4</sup>        |
| Reagents and Materials                                                                        | 7                      | *                                     |
| Test Oil Sample Requirements                                                                  | 8                      | D 97 Test Method for Pour             |
| Preparation of Apparatus Engine Inspection                                                    | 9<br>9.1               | D 130 Test Method for Dete            |
| Engine Inspection Engine Pre-Test Lubrication System Flush                                    | 9.2                    | Petroleum Products by the             |
| Engine Pre-Test Measurements and Inspections                                                  | 9.3                    | D 235 Specification for Mir           |
| Engine Assembly                                                                               | 9.4                    | (Hydrocarbon Drycleaning              |
| Pressure Testing of Fuel System Assembly                                                      | 9.5                    | D 287 Test Method for API             |
| Calibration of Engine Test Stand                                                              | 10                     |                                       |
| General Requirements and Frequency of Calibration                                             | 10.1                   | Petroleum Products (Hydro             |
| Runs Specified Test Parameters                                                                | 10.2<br>10.3           | D 445 Test Method for Kine            |
| Calibration Test Acceptance Criteria                                                          | 10.4                   | and Opaque Liquids (the C             |
| Action on Rejection of Calibration Test                                                       | 10.5                   | ity) <sup>4</sup>                     |
| Test Numbering                                                                                | 10.6                   | D 482 Test Method for Ash             |
| Reference Oils                                                                                | 10.7                   | D 524 Test Method for Ra              |
| Severity Adjustments                                                                          | 10.8                   |                                       |
| Engine Operating Procedure                                                                    | 11                     | Petroleum Products <sup>4</sup>       |
| Engine Run-In<br>Cool-Down Procedure                                                          | 11.1<br>11.2           | D 613 Test Method for Ceta            |
| Warm-Up Procedure                                                                             | 11.3                   | D 664 Test Method for Acid            |
| Operating Conditions and Oil Additions                                                        | 11.4                   | by Potentiometric Titration           |
| Measurement of Oil Consumption                                                                | 11.5                   | D 976 Test Methods for Cal            |
| Sampling Used Oil                                                                             | 11.6                   | late Fuels <sup>4</sup>               |
| Shutdowns, Lost Time and Off Tolerance Conditions                                             | 11.7                   |                                       |
| Recording of Exhaust Temperature                                                              | 11.8                   | D 1298 Practice for Densit            |
| Air-Fuel Ratio Measurement Recording of Engine Conditions                                     | 11.9<br>11.10          | Gravity), or API Gravity of           |
| Humidity Requirements/Calibration/Measurement                                                 | 11.11                  | Petroleum Products by Hy              |
| Inspections, Photographs and Measurements                                                     | 12                     | D 1319 Test Method for I              |
| Reference to Reporting Form                                                                   | 12.1                   | Petroleum Products by Flu             |
| Pre-Test Measurements of Engine Parts                                                         | 12.2                   | D 1796 Test Method for Wat            |
| Post-Test Information                                                                         | 12.3                   |                                       |
| Oil Inspections                                                                               | 12.4                   | the Centrifuge Method (La             |
| Oil Consumption Unscheduled Shutdowns and Off-Limit Operation                                 | 12.5<br>12.6           | D 2425 Test Method for H              |
| Report                                                                                        | 13                     | Distillates by Mass Spectro           |
| General Directions                                                                            | 13.1                   | D 2500 Test Method for Cl             |
| Specific Directions                                                                           | 13.2                   | ucts <sup>4</sup>                     |
| Electronic Transmission of Test Results (Optional)                                            | 13.3                   | D 2622 Test Method for Su             |
| Reporting Calibration Test Results                                                            | 13.4                   |                                       |
| Precision and Bias<br>Keywords                                                                | 14<br>15               | Wavelength Dispersive X               |
| ANNEXES                                                                                       | 13                     | etry <sup>7</sup>                     |
| Specifications for Test Engine and Engine Build                                               | Annex A1               | D 2709 Test Method for Wa             |
| Intake Air System Details                                                                     | Annex A2               | Fuels by Centrifuge <sup>7</sup>      |
| Exhaust System Details                                                                        | Annex A3               | D 3117 Test Method for War            |
| Cooling System Details                                                                        | Annex A4               | Fuels <sup>7</sup>                    |
| Oil System Modifications and Instrument Locations                                             | Annex A5               |                                       |
| Other Pressure and Temperature Measurement Locations Oil Consumption Linear Regression Method | Annex A6               | D 3524 Test Method for Die            |
| Test Fuel Specifications                                                                      | Annex A7<br>Annex A8   | Engine Oils by Gas Chron              |
| Lubrication System, Flush Apparatus and Procedure                                             | Annex A9               | D 4485 Specification for Pe           |
| Engine Operating Conditions                                                                   | Annex A10              | D 4737 Test Method for Ca             |
| Procedure for Rating Piston and Liner                                                         | Annex A11              | Variable Equation <sup>7</sup>        |
| Calculation of Percent Offset and Percent Deviation                                           | Annex A12              | D 4739 Test Method for B              |
| 1K/1N Test Reporting — Report Forms                                                           | Annex A13              |                                       |
| Data Dictionary Parts List by Part Number (P/N) and Warranty                                  | Annex A14              | Potentiometric Titration <sup>7</sup> |
| Role of Test Monitoring Center                                                                | Annex A15<br>Annex A16 | D 5185 Test Method for D              |
| Safety Precautions                                                                            | Annex A17              | ments, Wear Metals and Co             |
| APPENDIXES                                                                                    |                        | Oils and Determination of             |
| Humidity Data                                                                                 | Appendix X1            | one and Determination of              |
| Statistical Equations for Mean and Standard Deviation                                         | Appendix X2            |                                       |
| Examples of Forms for Reporting                                                               | Appendix X3            |                                       |
| Optional Recording of Oil Pass Limits                                                         | Appendix X4            | 4 Annual Rook of ASTM Standards V     |
|                                                                                               |                        |                                       |

## 2. Referenced Documents

2.1 ASTM Standards:

D 86 Test Method for Distillation of Petroleum Products at

D 93 Test Methods for Flash Point by Pensky-Martens Closed Cup Tester<sup>4</sup>

D 97 Test Method for Pour Point of Petroleum Products<sup>4</sup>

D 130 Test Method for Detection of Copper Corrosion from Petroleum Products by the Copper Strip Tarnish Test<sup>4</sup>

D 235 Specification for Mineral Spirits (Petroleum Spirits) (Hydrocarbon Drycleaning Solvent)<sup>5</sup>

D 287 Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method)<sup>4</sup>

D 445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity)<sup>4</sup>

D 482 Test Method for Ash from Petroleum Products<sup>4</sup>

D 524 Test Method for Ramsbottom Carbon Residue of Petroleum Products<sup>4</sup>

D 613 Test Method for Cetane Number of Diesel Fuel Oil<sup>6</sup>

D 664 Test Method for Acid Number of Petroleum Products by Potentiometric Titration<sup>4</sup>

D 976 Test Methods for Calculated Cetane Index of Distillate Fuels<sup>4</sup>

D 1298 Practice for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method<sup>4</sup>

D 1319 Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption<sup>4</sup>

D 1796 Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure)<sup>4</sup>

D 2425 Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry<sup>4</sup>

D 2500 Test Method for Cloud Point of Petroleum Prod-

D 2622 Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-Ray Fluorescence Spectrometry<sup>7</sup>

D 2709 Test Method for Water and Sediment in Distillate Fuels by Centrifuge<sup>7</sup>

D 3117 Test Method for Wax Appearance Point of Distillate Fuels<sup>7</sup>

D 3524 Test Method for Diesel Fuel Diluent in Used Diesel Engine Oils by Gas Chromatography<sup>7</sup>

D 4485 Specification for Performance of Engine Oils<sup>7</sup>

D 4737 Test Method for Calculated Cetane Index by Four Variable Equation<sup>7</sup>

D 4739 Test Method for Base Number Determination by Potentiometric Titration<sup>7</sup>

D 5185 Test Method for Determination of Additive Elements, Wear Metals and Contaminants in Used Lubricating Oils and Determination of Selected Elements in Base Oils

<sup>&</sup>lt;sup>4</sup> Annual Book of ASTM Standards, Vol 05.01.

<sup>&</sup>lt;sup>5</sup> Annual Book of ASTM Standards, Vol 06.04.

<sup>&</sup>lt;sup>6</sup> Annual Book of ASTM Standards, Vol 05.05.

<sup>&</sup>lt;sup>7</sup> Annual Book of ASTM Standards, Vol 05.02.

- by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)<sup>8</sup>
- D 5186 Test Method for Determination of Aromatic Content and Polynuclear Aromatic Content of Diesel Fuels and Aviation Turbine Fuels by Supercritical Fluid Chromatography<sup>8</sup>
- D 5302 Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation and Wear in a Spark-Ignition Internal Combustion Engine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions<sup>8</sup>
- D 5844 Test Method for Evaluation of Automotive Engine Oils for Inhibition of Rusting (Sequence IID)<sup>8</sup>
- D 5862 Test Method for Evaluation of Engine Oils in Two-Stroke Cycle Turbo-Supercharged 6V92TA Diesel Engine<sup>8</sup>
- D 6202 Test Method for Automotive Engine Oils on the Fuel Economy of Passenger Cars and Light-Duty Trucks in the Sequence VIA Spark Ignition Engine<sup>9</sup>
- D 6594 Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at 135°C<sup>9</sup>
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications<sup>10</sup>
- IEEE/ASTM SI 10 Standard for Use of the International System of Units (SI): The Modern Metric System<sup>11</sup>
- 2.2 SAE Standard:
- SAE J183 Engine Oil Performance and Engine Service Classification<sup>12</sup>
- 2.3 API Standard:
- API 1509 Engine Service Classification and Guide to Crankcase Oil Selection<sup>13</sup>

#### 3. Terminology

- 3.1 Definitions:
- 3.1.1 *blind reference oil*, *n*—a reference oil, the indentity of which is unknown by the test facility.
- 3.1.1.1 *Discussion*—This is a coded reference oil that is submitted by a source independent from the test facility.
  - D 5844
- 3.1.2 *calibration test*, *n*—an engine test conducted on a reference oil under carefully prescribed conditions, the results of which are used to determine the suitability of the engine stand/laboratory for such tests on non-reference oils.
- 3.1.2.1 *Discussion*—A calibration test also includes tests conducted on parts to ensure their suitability for use in reference and non-reference tests.
- 3.1.3 *calibrated test stand*, *n*—a test stand on which the testing of reference material(s), conducted as specified in the standard, provided acceptable test results.
- <sup>8</sup> Annual Book of ASTM Standards, Vol 05.03.
- <sup>9</sup> Annual Book of ASTM Standards, Vol 05.04.
- <sup>10</sup> Annual Book of ASTM Standards, Vol 14.02.
- <sup>11</sup> Annual Book of ASTM Standards, Vol 14.04.
- $^{12}$  Available from the Society of Automotive Engineers Inc., 400 Commonwealth Dr., Warrendale, PA 15096. Order *SAE Handbook*, Vol 3; the standard is not available separately.
- <sup>13</sup> Available from the American Petroleum Institute, 1220 L St., NW, Washington, DC 20005.

- 3.1.3.1 *Discussion*—In several automotive lubricant standard test methods, the TMC provides testing guidance and determines acceptability.

  Sub. B Glossary<sup>2</sup>
- 3.1.4 *candidate oil*, *n*—an oil that is intended to have the performance characteristics necessary to satisfy a specification and is to be tested against that specification. **D 5844**
- 3.1.5 *debris*, *n*—*in internal combustion engines*, solid contaminant materials unintentionally introduced into the engine or resulting from wear. **D 5862**
- 3.1.6 *double-blind test*, *n*—a standard test performed on a double-blind reference oil.
- 3.1.7 *double-blind reference oil*, *n*—a reference oil, the identity of which is unknown by either the submitting source or the test facility and is not known to be a reference oil by the test facility.
- 3.1.7.1 *Discussion*—This is a coded reference oil that is supplied by an independent source to a second party, who applies their own coded designation to the oil (and if necessary, repackages it to preserve its anonymity), and submits it to a third party for testing.

  Sub. B Glossary
- 3.1.8 *engine oil*, *n*—a liquid that reduces friction or wear, or both, between the moving parts within an engine; removes heat, particularly from the underside of the pistons; and serves as a combustion gas sealant for the piston rings.
- 3.1.8.1 *Discussion*—It may contain additives to enhance properties. Inhibition of engine rusting, deposit formation, valve train wear, oil oxidation, and foaming are examples.

D 5862

- 3.1.9 *erosion*, *n*—wearing away gradually, especially by rubbing or corroding.
- 3.1.10 heavy duty engine, n—in internal combustion engines, one that is designed to allow operation continuously at or close to its peak output.

  D 4485
- 3.1.11 *lubricating oil*, *n*—a liquid lubricant, usually comprising several ingredients, including a major portion of base oil and minor portions of various additives. **Sub. B Glossary**
- 3.1.12 *non-reference oil*, *n*—any oil other than a reference oil; such as a research formulation, commercial oil, or candidate oil. **D 5844**
- 3.1.13 *purchaser*, *n*—*of an ASTM test*, a person or organization that pays for the conduct of an ASTM test method on a specified product.
- 3.1.13.1 *Discussion*—The preferred term is *purchaser*. Deprecated terms that have been used are *client*, *requestor*, *sponsor*, and *customer*.

  D 6202
- 3.1.14 *reference oil*, *n*—an oil of known performance characteristics, used as a basis for comparison.
- 3.1.14.1 *Discussion*—Reference oils are used to calibrate testing facilities, to compare the performance of other oils, or to evaluate other materials (such as seals) that interact with oils.

  D 5844
- 3.1.15 *soot*, *n*—*in internal combustion engines*, submicron size particles, primarily carbon, created in the combustion chamber as products of incomplete combustion. **D 5862**
- 3.1.16 *sponsor*, *n*—*of an ASTM test method*, an organization that is responsible for ensuring supply of the apparatus used in the test procedure portion of the test method.

- 3.1.16.1 *Discussion*—In some instances, such as a test method for chemical analysis, an ASTM working group can be the *sponsor* of a test method. In other instances, a company with a self-interest may or may not be the *developer* of the test procedure used within the test method, but is the *sponsor*, of the test method
- 3.1.17 *standard test*, *n*—a test on a calibrated test stand using the prescribed equipment that is assembled according to the requirements in the test method, and conducted according to the specified operating conditions.
- 3.1.17.1 Discussion—The specified operating conditions in some test methods include requirements for determining a test's operational validity. These requirements are applied after a test is completed, and can include (1) mid-limit ranges for the average values of primary and secondary parameters that are narrower than the specified control ranges for the individual values, (2) allowable deviations for individual primary and secondary parameters from the specified control ranges, (3) downtime limitations, and (4) special parameter limitations.

#### Sub. B Glossarv

- 3.1.18 *wear*, *n*—the loss of material from, or relocation of material on, a surface.
- 3.1.18.1 *Discussion*—Wear generally occurs between two surfaces moving relative to each other, and is the result of mechanical or chemical action or by a combination of mechanical and chemical actions. **D 5302** 
  - 3.2 Definitions of Terms Specific to This Standard:
  - 3.2.1 heavy land carbon, n—see CRC Manual 18.14
- 3.2.2 *Keystone ring*, *n*—a compression ring with both sides tapered.
  - 3.2.3 *liner bore polishing*, *n*—see CRC Manual 18.
- 3.2.4 *new laboratory*, *n*—a laboratory that has not had two acceptable reference oil test results on approved reference oils (see special circumstances in 3.2.5.1).
- 3.2.4.1 Discussion—A laboratory not running either a 1K or 1N test for 24 months from the start of the last test is considered a new laboratory. Under special circumstances (such as extended downtime due to industry-wide parts shortage or fuel outages), the TMC may extend the lapsed time requirement. Non-reference oil tests conducted during an extended time allowance shall be annotated on the comment form
- 3.2.5 *new test stand*, *n*—a test engine and support hardware that has never been calibrated under this test procedure.
  - 3.2.6 scratching, n—see CRC Manual 18.
  - 3.2.7 scuffing, n—in lubrication, see CRC Manual 18.
- 3.2.8 *test time*, *n*—*in this test method*, all engine test time accumulated when carrying out this test procedure.
- 3.2.9 *varnish*, *n*—*in internal combustion engines*, see CRC Manual 18.
  - 3.3 Abbreviations:
  - 3.3.1 BDC—bottom dead center.
  - 3.3.2 BSOC—break specific oil comsumption.
  - 3.3.3 EOT—end of test.
  - 3.3.4 *EOTOC*—end of test oil consumption.
- <sup>14</sup> Available from the Co-ordinating Research Council Inc., 219 Perimeter Center Pkwy., Atlanta, GA 30346.

- 3.3.5 EWMA—exponentially weighted moving average.
- 3.3.6 *LTMS*—TMC Lubrication Test Monitoring System.
- 3.3.7 SA—severity adjustment.
- 3.3.8 TDC—top dead center.
- 3.3.9 *TGF*—top groove fill.
- 3.3.10 *TLHC*—top land heavy carbon.
- 3.3.11 WDK—weighted demerits (1K).
- 3.3.12 *WDN*—weighted demerits (1N).

#### 4. Summary of Test Method

4.1 A Caterpillar 1Y540 diesel engine, or a 1Y73 diesel engine with a 1Y541 conversion arrangement (see 6.2), is built up prior to test (either 1K or 1N test procedure) in accordance with the accompanied directions using a special parts kit. These include disassembly, solvent cleaning, measurement, and rebuild of the power section in strict accordance with specifications. The parts comprise a new piston, ring assembly, and cylinder liner which are measured and installed prior to test. The engine crankcase is solvent cleaned and worn or defective parts replaced. The test stand is equipped with appropriate accessories for controlling speed, load, and various other engine operating conditions. Suitable systems are provided for treating the inlet air and controlling the exhaust gases. Using the test oil as the engine lubricating oil, the single cylinder, calibrated diesel engine is run for a total of 252 h under the prescribed test conditions. A specified break-in procedure precedes each test and whenever the engine needs to be restarted. During the test, engine oil consumption is periodically measured. At the end of the test (either 1K or 1N), the engine is disassembled and the piston, liner, and rings photographed, inspected, and measured. Average oil consumption and used oil condition data are also recorded.

#### 5. Significance and Use

5.1 These are accelerated engine oil tests (known as the 1K and 1N test procedures), performed in a standardized, calibrated, stationary single-cylinder diesel engine using either 0.4 % sulfur fuel (1K test) or 0.04 % sulfur fuel (1N test), that give a measure of (1) piston and ring groove deposit forming tendency, (2) piston, ring and liner scuffing and (3) oil consumption. Test results from these procedures have been correlated with test results from field engines; that is, certain multi-cylinder direct ignition engines under heavy duty service prior to 1990. Correlation was particularly good with regard to piston and ring groove deposits. These test methods are used in the establishment of diesel engine oil specification requirements as cited in Test Method D 4485 for appropriate API Performance Category C oils (API 1509). These test methods can also be used in diesel engine oil development.

#### 6. Apparatus

- 6.1 General Laboratory Requirements:
- 6.1.1 Engine Operation and Buildup Area—Keep the ambient air free from gross dirt, dust, and other contamination, especially in the build-up area, following accepted engine test laboratory practice.

<sup>&</sup>lt;sup>15</sup> ASTM Research Reports RR:D02:1273 and RR:D02-1321 on the Caterpillar 1K/1N procedures are available from ASTM International Headquarters.

- 6.1.2 Measurement Area—As good practice, maintain this area at about 50 to 75°F (10 to 25°C). The actual air temperature is not critical within this range, but maintain it within  $\pm$  5°F (3°C) to achieve acceptable repeatability in the measurement of dimensions of parts. Filter the air supply to the area to remove particles larger than about 400 µin. (10 µm) and maintain at 45 to 65 % relative humidity. If unable to do this, keep the air free from gross particulate contamination as indicated in 6.1.1.
- 6.1.3 Parts Rating Area—Maintain as specified in the Appendix of CRC Manual No. 18.
- 6.1.4 *Parts Cleaning Area*—(**Warning**: Provide adequate ventilation and fire protection in areas where solvents are used (see Annex A17).
- 6.2 Test Engine—The test engine for these 1K and 1N test procedures is either (a) a Caterpillar 1Y540 engine 16 or (b) a Caterpillar 1Y73 engine with a 1Y541 conversion arrangement 16. Details are given in the Caterpillar Service Manual. 16 Each test engine (a) is a direct injection, single-cylinder diesel engine with a four-valve arrangement, (b) has a 137.2 mm (5.4 in.) bore and a 165.1 mm (6.5 in.) stroke resulting in a 2.4 L (148.8 in.3) displacement and (c) is equipped with a number of modified and unmodified accessories which are described in 6.3. See Annex A1 for specifications for engine build.
- 6.3 Test Engine Accessories and Parts—Many of the accessories of the assembled Caterpillar engines (see 6.2) require modifications for these test methods. These modifications are described herewith.
- 6.3.1 *Intake Air System*—The system comprises an air heater chamber, isolation hose and appropriate piping. Construction details are given in Annex A2. To ensure good precision, the system shall be uniform within a laboratory and among laboratories. The system shall be capable of filtering, heating, compressing, and humidifying the inlet air in accordance with the specified engine operating conditions in Annex A10.
- 6.3.1.1 Filtering—Use an air filter capable of  $10\mu m$  (or smaller) filtration.
- 6.3.1.2 *Heating*—Heating shall be provided to heat the intake air to the specified temperature. Locate the air temperature measurement tap at the P/N 1Y632 adapter (see Annex A2). For air barrels mounted horizontally, the location of the pressure tap and air outlet pipe may be interchanged (see Annex A2).
- 6.3.1.3 *Compressing*—Provide air compression capability. Locate the intake air pressure measurement tap at the air barrel (see Annex A2). When air barrels are mounted horizontally, the locations of the pressure tap and air outlet pipe may be interchanged (see 6.3.1.2).
- 6.3.1.4 *Humidifying*—The equipment shall be capable of humidifying compressed air to 17.8 g  $H_2O/kg$  (125 grains/lb)

- of dry air and maintaining the humidified inlet air at a specified temperature. See Annex A2 for location of humidity measurement tap.
- 6.3.1.5 *Inspection of Air Intake Barrel*—Prior to each stand calibration test, inspect the intake air barrel for rust and debris. Perform the inspection through either of the pipe flanges using a borescope or other optical means.
- 6.3.2 Exhaust System—The exhaust system comprises an exhaust elbow, a welded 45 ° pipe nipple, a bellows assembly, an exhaust barrel, and exhaust piping downstream of the barrel that contains a restriction valve to maintain the exhaust gases at back pressures up to 64  $\pm$  0.3 in. Hg (216  $\pm$  1 kPa). Drawings of the component parts, dimensions, and instrument locations are given in Annex A3. The exhaust system shall also provide for exhaust gas temperature measurement and exhaust gas sampling, the exhaust gas temperature range being 550  $\pm$  30°C.
- 6.3.2.1 Exhaust Barrel—The exhaust barrel may be insulated or water-cooled. Place the new exhaust elbow P/N 1Y631-2 (see Annex A3) at the rear side or front of the engine. The volume of the exhaust barrel and the dimensions and distance of the exhaust piping from the exhaust elbow to the barrel are specified in Figs. A3.1 to A3.4. The downstream distance of the restriction valve from the exhaust barrel is not specified.
- 6.3.2.2 Exhaust Probe—Use an exhaust probe to sample exhaust gases for air/fuel ratio determinations. Install the probe using a suitable reducer and compression fitting within 1.2 m (4 ft) downstream of the exhaust restriction valve. Locate the probe in mid-stream and parallel to the exhaust flow as shown in Fig. A3.5.
- 6.3.2.3 *Exhaust Temperature*—Measure the exhaust temperature with thermocouple P/N 1Y467 or equivalent located as shown in Fig. A3.4.
- 6.3.2.4 *Exhaust Pressure*—Measure the exhaust pressure in the exhaust barrel as shown in Fig. A3.2. Set the pressure at the conditions specified in Table A10.1 by adjusting the restriction valve.
- 6.3.3 Cooling System—Provide a closed circulating cooling system with an engine-driven centrifugal water pump. System details as given in Figs. A4.1 to A4.4 show (a) cooling system modifications; (b) coolant temperature, flow and pressure measurement locations; and (c) a water pump bypass arrangement. See 6.3.3.5 regarding system cleaning.
- 6.3.3.1 *Cooling System Modification*—Modify the cooling system as shown in Fig A4.4.
- 6.3.3.2 Coolant Flow, Control and Measurement—Modify the engine coolant lines from the cylinder head to the standpipe in accordance with Fig. A4.1. As shown, the coolant line contains (a) a calibrated, 25.4 mm (1.0 in.) Barco flowmeter, P/N BR 12705-16-31<sup>17</sup> to measure the coolant flow and (b) a P/N 1Y496 orifice, 15.797 mm (0.618 in.) in diameter before the flowmeter to develop cooling system pressure and thereby to eliminate coolant cavitation. Control coolant flow at 65  $\pm$

<sup>&</sup>lt;sup>16</sup> Available from Caterpillar Inc., Engine System Technology Development, P.O. Box 610, Mossville, Il 61552-0610. Service and parts manuals available are (1) Caterpillar Service Manual for Single Cylinder Oil Test Engine for Diesel Lubricants, Form No. SENR2856 and (2) Caterpillar Parts Book, Form No. SEBP1408.

<sup>&</sup>lt;sup>17</sup> The Barco flowmeter (Venturi Meter) is available as P/N No. BR12705-16-31 from Aeroquip Co., Maddock Mechanical Industries, 833 N. Orleans, Chicago, IL 60610.

- 2.0 L/min (17.3 gal/min) at Step 5 (see Table A10.1) by a 3/4 in. bypass valve down-stream of the water pump. Replace the production hose and the restrictive 90° elbows that connect the bypass valve to the cylinder block by a Gates 20777 hose<sup>18</sup> or equivalent (see Fig. A4.3). Measure the coolant pressure at the block to ensure that proper cooling system operation has been attained (see Fig. A4.2).
- 6.3.3.3 Engine Temperature Differential—As an indicator of coolant system performance, maintain the engine temperature differential ( $\Delta T$ ) (coolant temperature out of the cylinder head minus coolant temperature into the block) at 5.0  $\pm$  1.0° C (9.0  $\pm$  1.8 °F). Also control the coolant temperature out at 93 $\pm$  2.5 °C (199.4  $\pm$  4.5 °F).
- 6.3.3.4 Engine Coolant—The engine coolant is a mixture of 50/50 volume ratio of coolant (Caterpillar brand P/N 8C3684 in a gallon container or P/N 8C3686 in a 55-gal drum)<sup>19</sup> to mineral-free water, the mineral content being ≤34.2 ppm (2 grains/gal) of total solids in water. This coolant mixture may be used for up to six tests or three months, whichever comes first. Maintain the mixture at a 50/50 ratio of coolant to water and verify periodically with either a Caterpillar tester P/N 5P3514 or P/N 590957 or equivalent commercial tester. Keep the coolant mixture substantially free from solids contamination (total solids <5000 ppm) and at the correct additive level by checking with test kit P/N 8T5296.
- 6.3.3.5 Cooling System Cleaning Procedure, General—Clean the system when visual inspection shows the presence of (a) oil or grease (see 6.3.3.6), (b) mineral deposits or rust, or both (see 6.3.3.7). When the cooling system is contaminated by both oil and scale, first remove the oil, then remove the scale. Cylinder head coolant passages also may be cleaned after the head is removed.
- 6.3.3.6 *Removal of Oil and Grease from Cooling System*—Follow these steps:
- (1) Operate the engine until the engine oil and coolant water reach operating temperatures and then shut down the engine and drain the coolant from the cooling system.
- (2) Fill the cooling system with oil/grease cleaning solution comprising 454 g (1 lb) of trisodium phosphate ( $Na_3PO_4$ ) dissolved in 38 L (10 gal) of water. Run the engine for 5 min to ensure complete solution with any engine coolant left in the cooling system from (I).
- (3) Shut down the engine, drain the oil/grease cleaning solution and flush the cooling system with fresh water. Drain the water from the system.
- 6.3.3.7 Removal of Scale from Cooling System—Follow these steps:
- (1) Operate the engine until the engine oil and coolant water reach operating temperatures and then shut down the engine and drain the coolant from the cooling system.
- (2) Fill the cooling system with scale cleaning solution comprising 454 g (1 lb) of commercial sodium bisulfate (NaHSO<sub>4</sub>) dissolved in 38 L (10 gal) of water. Run the engine at operating temperatures for 30 min.

- (3) Shut down the engine, drain the scale cleaning solution, and flush the cooling system with fresh water. Drain the water from the system.
- (4) Fill the system with oil/grease cleaning solution comprising 454 g (1 lb) of trisodium phosphate (Na<sub>3</sub>PO<sub>4</sub>) dissolved in 38 L (10 gal) of water. Run the engine for 5 min to ensure complete solution with any water left in the cooling system from (3).
- (5) Shut down the engine, drain the oil/grease cleaning solution and flush the cooling system with clear water. Drain the water from the system.
  - (6) Disassemble the engine and prepare for the next test.
- 6.3.4 *Dynamometer*—Use a dynamometer or other suitable loading device to maintain and control engine load and speed.
- 6.3.5 Engine Starting System—Use an engine starting system capable of delivering to the engine 136 N.m (100 lbf-ft) breakaway and 102 N.m (75 lbf-ft) sustained torque at 200 r/min.
- 6.3.6 Engine Instrumentation—Locations of the various measurement sensors and taps, and installation details and calibration requirements are given as follows: (1) for intake air system (see 6.3.1 and Annex A2); (2) for exhaust system (see 6.3.2 and Annex A3); (3) for cooling system (see 6.3.3 and Annex A4); (4) for oil system modifications, see Annex A5; and (5) for other locations, see Annex A6.
- 6.3.6.1 *Thermocouples*—Install the thermocouples or equivalents to a depth such that the sensor tip rests in the middle of the fluid stream at the following specified temperature measurement locations:

air-to-engine – P/N 1Y468 (see Annex A2) engine exhaust – P/N 1Y467 (see Annex A3)

- fluids, water, oil, fuel P/N 1Y466 (see Annexes A5 and A6) 6.3.6.2 Locate the instruments for measuring fuel pressure and fuel temperature as shown in Fig. A6.1.
- 6.3.6.3 Locate the instrument for measuring crankcase pressure to the crankcase as shown in Fig. A6.2.
- 6.3.6.4 Calibration of Instruments—Calibrate all facility read-out instrumentation used for the test immediately prior to commencing a test stand calibration sequence. The test laboratory may, at its own discretion, carry out instrumentation calibrations prior to subsequent stand calibration tests, that is, those that follow a failed or invalid first attempt. Refer to Annex A12 for calibration tolerances and allowable time constants.
- 6.3.6.5 Calibration of Instrument Measurement Standards—Calibrate, annually, all temperature, pressure, and speed measurement standards themselves against recognized national standards. Maintain a record of these calibrations for at least two years.
- 6.3.7 Standardized Fuel System and Fuels—To ensure that fuel line pressure transients are held to acceptable conditions, install the fuel system components as specified in the service manual accompanying the diesel engine, taking especial care to use the high pressure fuel lines and fuel pump components described therein. In addition, the system shall have a fuel consumption measuring device (see 6.3.7.1), a fuel return line with a check valve (see 6.3.7.2) or shut-of solenoid (see 6.3.7.3). Install instruments for measuring fuel pressure and

<sup>&</sup>lt;sup>18</sup> The Gates hose, P/N 20777, is available from The Gates Rubber Co., 900 S. Broadway, Denver, CO 80217-5887.

<sup>&</sup>lt;sup>19</sup> Available from Caterpillar Inc. , Caterpillar Brand antifreeze, P/N 8C3684 (1-gal) or P/N 8C3686 (55-gal drum).

temperature in the locations shown in Fig. A6.1. Control fuel pressure and temperature in accordance with the requirements for engine operating conditions in Table A10.1. Change the fuel filter when the pressure deviates from specification requirements.

6.3.7.1 Fuel Consumption Measuring Device—Install a suitable fuel consumption measuring device to keep fuel consumption rates within required tolerances. Maintain the fuel flow transducer filter time constant at 73 s max. There shall be no variation in fuel transfer pump pressure or exhaust temperature when switching from the engine operating fuel system to the fuel rate measuring system.

6.3.7.2 Fuel Return Line—The fuel return line runs from the 1.19 mm (0.047 in.) D orificed tap, through the P/N 307946 elbow at the fuel pump, to the fuel scale. This line provides fuel temperature stabilization at the pump and also allows entrained air to be expelled from the system. Place a check valve or shut-off solenoid in the return line to prevent fuel from backing into the pump during engine shutdown.

6.3.7.3 Shut-off Solenoid—A P/N 9L8791 solenoid or equivalent should be placed at the pump housing fuel inlet to control the fuel flow. Location of the solenoid near the fuel pump decreases the fuel volume available to the pump and can reduce shut-down time if the solenoid is activated by the engine oil/water pressure safety circuit.

6.3.7.4 Fuels—The test fuels are obtainable from Haltermann Products<sup>20</sup> as LLC 0.4 % sulfur diesel test fuel (see 7.2.1) for the 1K test and LLC low sulfur research diesel fuel (LSRD-4, 0.04 % sulfur) (see 7.2.2) for the 1N test. The fuels are essentially the same in properties (although specification limits show minor variations (compare Tables A8.1 and A8.2)), except, as shown, for the marked difference in sulfur contents. Use the high heating value to calculate the fuel rate as specified in Annex A10 and Table A12.2. Include the fuel analysis for the last batch used for the test in the final report form (Fig. A13.20, Form 17). The fuel analysis is provided by the fuel supplier. If more than one batch is used, this shall be noted in the comments section of the report with appropriate percentages of run time. Take a sample of the fuel used in the stands calibrated for both 1K and 1N tests prior to each test and have it analyzed for sulfur. Report the results of this analysis in the comment section.

6.3.8 Engine Lubrication System—Use the lubrication system of the engine (see 6.2), but make modifications as shown in Annex A5 to the (a) remote mount oil pump relief valve (see Fig. A5.1), (b) oil pump relief valve plug (see Fig. A5.2), (c) oil pump accessory drive drain (see Fig. A5.3) and (d) oil filter housing assembly (see Fig. A5.4). The engine lubrication system itself is shown in Fig. A9.1.

6.3.8.1 Engine Oil Temperature and Pressure Measurement Locations, and Operating Conditions—Locations of the measurement points are shown in Figs. A5.5 through A5.7. The oil cooling jet pressure and the oil to manifold temperature limits are given in Table A10.1. Record other oil pressure and

temperature readings, as necessary, to monitor the operational conditions of the engine and its lubrication system.

6.3.8.2 *Engine Oil Scale System*—Install an engine oil scale system to measure accurately engine oil consumption (see Fig. A5.8). The system shall have a capacity to measure about 6 L (5 kg (11 lbs)) of engine oil to within 4.5 g (0.01 lb). The hoses<sup>21</sup> to and from the oil scale reservoir shall be of sufficient flexibility to eliminate measurement errors. Hose length to and from the oil scale cart shall be 2.7 m (9 ft) max.

6.3.8.3 Oil Filter Replacement—Replace the P/N 1Y636 factory oil/filter group by the new P/N 1Y0699 filter group. Fit the original oil lines directly into the mounting bracket as on the P/N 1Y7277 bracket. Attach the oil line from the oil cooler, to the lower oil hole, and the line to the oil manifold to the upper hole. The base assembly includes a pressure sensitive bypass around the filter. Install the last chance screen P/N 1Y3549. Disassemble and clean the oil filter bypass valve before each test.

6.3.8.4 *Oil Pump Modifications*—Modify the oil pump (see Fig. A5.1) by (*a*) adding an external oil pump bypass to safely and conveniently adjust oil pressure on engine break-in and warm-up; (*b*) routing directly the oil pump drive housing drain line to the oil pan to ensure proper drainage of the housing; and (*c*) tapping deeper the oil bypass port and installing a bolt to fill the dead oil space (see Fig. A5.2).

6.3.9 Gas Meter for Measuring Engine Blowby—Measure the engine blowby with a displacement type gas meter or equivalent fitted with an oil separator and surge chamber. Attach the meter to the engine in two steps. First, attach the fitting on the P/N 1Y479 valve (see Table A15.1) to the crankcase breather; then attach the meter by way of this fitting to the engine by using appropriate length of hose and pipe. When switching from a normal operating system to the blowby measuring system, allow no more than a minimal increase in crankcase pressure for a period not exceeding 4 min.

6.3.10 Procurement of Parts and Warranty—Obtain information concerning the test engine, new engine parts, replacement parts and permissible substitution of replacement parts from Caterpillar, Inc. (see A15). Table A15.1 shows a listing of parts by part numbers (P/N) referenced in these 1K/1N standard methods, while A15.2 provides information on parts warranty.

#### 7. Reagents and Materials

7.1 Engine Coolant—A mixture of equal volumes of mineral-free [total dissolved solids, ≤ (34.2 ppm) (2 grains/gal) (0.03 g/L) max.] water and Caterpillar brand antifreeze, P/N 8C3684 (see Table A15.1) in a 1-gal container, or P/N 8C3686 (see A15) in a 55-gal drum. (Warning—Combustible. Health hazard.)

7.2 Test Fuels:

7.2.1 *Test Fuel for 1K Test*—Diesel test fuel containing 0.4 mass % natural sulfur known as 0.4 % sulfur diesel test fuel (SDTF)<sup>20</sup>. The specification for this fuel is given in Table A8.1. (**Warning**—Combustible. Health hazard.)

 $<sup>^{\</sup>rm 20}$  Available from Haltermann Products, Ten Lamar, Ste. 1800, Houston, TX 77002.

 $<sup>^{21}\,\</sup>mbox{Gould/Imperial}$  Eastman flexible hoses, P/N C405-100 or equivalent are suitable.

- 7.2.2 *Test Fuel for 1N Test*—Diesel test fuel containing 0.04 mass % natural sulfur known as low sulfur diesel test fuel (LSRD-4)<sup>20</sup>. The specification for this fuel is given in Table A8.2. (**Warning**—Combustible. Health hazard.)
- 7.3 Stoddard Solvent, Specification D 235, Part 1. (Warning—Combustible. Health hazard.)
- 7.4 Dispersant Engine Cleaner—<sup>22</sup> (Warning—Use with adequate safety precautions.)
- 7.5 Aqueous Detergent Solution, prepared from a commercial laundry detergent.
  - 7.6 Sodium Bisulfate (NaHSO<sub>4</sub>), commercial grade.
  - 7.7 Trisodium Phosphate (Na<sub>3</sub>PO<sub>4</sub>), commercial grade.
- 7.8 *Pentane*—Any mixture of branched and normal aliphatic hydrocarbons containing at least 95 volume % of pentanes and not more than a total of 0.5 volume % hydrocarbons  $< C_4$  and  $> C_6$ . (**Warning**—Flammable. Health hazard.)
- 7.9 Reference Oil, as supplied by TMC for calibration of the test stand.
- 7.10 *Test Oil*—See test oil sample requirements (see Section 8).
- 7.11 Engine Oil, for shakedown run, use REO 217 available from CRC.
- 7.11.1 *Engine Oil, Substitute*, for oiling cylinder liner and when test oil unavailable at assembly, use Exxon-Mobil EF-411 oil.<sup>23</sup>
  - 7.12 Lead Shot, <sup>24</sup>approximately 5 mm (0.2 in) in diameter.
  - 7.13 Light Grease. <sup>2</sup>
  - 7.14 Diesel Piston Rating Equipment.
  - 7.14.1 Diesel Piston Rating Lamp—See A11.5.
- 7.14.2 Diesel Piston Rating Booth, of plywood, 1200 mm  $\times$  775 mm  $\times$  648 mm (see A11.6).
  - 7.15 Valve Guide Honing Equipment—see A1.2.
  - 7.15.1 Sunnen P-300 Dial Bore Gage.<sup>26</sup>
  - 7.15.2 Sunnen P-375 Probe.
  - 7.15.3 Ralmike's Ringmaster Set, to set P-300 gage.<sup>27</sup>
  - 7.15.4 Stanley Model D-30LR-4 Air Drill, 400 r/min.<sup>28</sup>
  - 7.15.5 Sunnen Honall P-180 Hone Head and Driver Group.
  - 7.15.6 JK-12-370AS Mandrell. 26
  - 7.15.7 *PK-12A Adapter*. <sup>26</sup>
  - 7.15.8 LN-3702A Stone Retainer. <sup>26</sup>
  - 7.15.9 K-12-J68 Stones. 26
  - 7.15.10 S-370 Truing Sleeve. <sup>26</sup>
  - 7.15.11 MAN-845-5 Sunnen Hone Oil, 5 gal.
  - 7.15.12 LBN-700 Stone Dresser. 26
  - 7.15.13 VST-2012 Perfect Circle Seal Groove Tool. 16
- <sup>22</sup> Dispersant engine cleaner may be ordered from The Lubrizol Corp., 29400 Lakeland Blvd., Cleveland, OH 44092.
- <sup>23</sup> A suitable engine oil is Exxon-Mobil EF411. It is available from Exxon-Mobil Oil Corp., Att: Illinois Order Board, P.O. Box 66940, AMF-O'Hare, IL 60666. Request P/N 47503-8.
- <sup>24</sup> Lead shot is available as 375 DIABOLO, 22 cal (5.5 mm) 14.3 gr. pellets from Benjamin Sheridan. Racine WI 53403.
- Benjamin Sheridan, Racine WI 53403.

  <sup>25</sup> Light grease is available as AMOCO, RYKON Premium Grease from Eddins-Walcher Co., 9421 Andrews Highway, Odessa, TX 79765.
- <sup>26</sup> Available from Sunnen Products Co., 7910 Manchester Road, St. Louis, MO 63143.
- <sup>27</sup> Available from Ralmike Tool-A-Rama, 4505 S. Clinton Ave., South Plainfield, NJ 07080.
  - <sup>28</sup> Available from Stanley Tool Div., 700 Beta Dr., Cleveland, OH 44143.

- 7.15.14 Sunnen P-180 Head and Driver.
- 7.15.15 Sunnen B-L-12-370AS Mandrell.
- 7.15.16 L-12-J68 Stones. <sup>26</sup>
- $7.15.17\ \textit{LN-3167A Stone Retainer.}^{26}$
- 7.16 *Gages*—One Ring, Four Feelers and One Taper (optional, see 9.3.3).<sup>28</sup>

#### 8. Test Oil Sample Requirements

- 8.1 *Selection*—The sample of test oil shall be representative of the lubricant formulation being evaluated and shall be uncontaminated.
- 8.2 *Inspection*—New oil baseline inspection requirements are described in Fig. A13.9 (Form 6).
- 8.3 *Quantity*—A total of approximately 10 US gal (38 L) of test oil are required to run the test.

#### 9. Preparation of Apparatus

- 9.1 Engine Inspection:
- 9.1.1 General—Completely inspect the engine at an interval of every second test stand calibration run or 18 months, whichever comes first, the aim being to ensure that wearing surfaces, such as, main bearings and journals, rod bearings and journals, camshaft bearings, valve train components, fuel system components, and so forth, are within manufacturer's specifications. Refer to the 1Y540 Service Manual for engine disassembly, assembly, inspections, and specifications requirements <sup>16</sup>. This inspection shall terminate the stand's current calibration (see Section 10), if any. Re-calibrate whenever the crankshaft is removed for any purpose other than bearing replacement.
- 9.1.2 Engine Instrumentation—Inspect and recalibrate periodically instruments (with their accompanying probes or sensors) of the engine, including those of the fuel and cooling systems (see 6.3.3, 6.3.6 and 6.3.7).
- 9.1.3 *New and Converted Engine Crankcases*—Inspect new and converted engine crankcases to ensure the presence of a proper paint coating. Coat crankcases, as needed, with either of the two approved paints.<sup>29</sup>
- 9.1.4 *Cooling Jets*—Measure the internal diameters of cooling jet tubes. Reject tubes that do not meet specification requirements.
- 9.1.5 Shakedown Run After Rebuild—Perform a shakedown run after rebuild using REO 217 engine oil obtainable from CRC (see 7.11). Continue with the run until two consecutive 12-h periods show a stable copper level in the engine oil. Ensure that the valve opening and closing tolerance on the camshaft is  $\pm$  4 crankshaft degrees.
  - 9.2 Engine Pre-Test Lubrication System Flush:
- 9.2.1 *Preparation*—To ensure proper flushing and draining, drill a hole in the oil pump accessory drive housing and install a plug (see Fig. A5.3).
- 9.2.2 Flushing/Cleaning Summary—Flush and clean the lubrication system before each test so as to remove deposits

<sup>&</sup>lt;sup>29</sup> Either of the following two paints is acceptable: (1) In one gallon cans, Yellow Primer Paint Cat Part No. IE2083A, Primer No. A123590, Serial No. BIMO115877, B.A.S.F. Part No. U27YD005, obtainable from B.A.S.F. Coating and Colorant Div., P.O. Box 1297, Morganton, NC 28655 and (2) Glyptal 1201 Red Enamel, obtainable from Brownell Outlet, 84 Executive Avenue, Edison, NJ 08817.

from surfaces of all engine cavities. To achieve this, flush the crankcase of used oil by a series of liquid flushes in eleven steps as follows (see Fig. A9.2): (1), with Stoddard solvent (Step 1), (2), with a mixture of Stoddard solvent and a dispersant engine cleaner (Step 2), (3) with additional repeated flushes with Stoddard solvent until the solvent remains clean (Steps 3 to 6 or 7 as necessary) and (4) a flush of the lubrication system and crankcase with the test oil to remove the solvent before it is drained (see 9.2.3 on cooling jet alignment). This test oil flush is also used to check alignment of the piston cooling jet (see 9.2.3). Finally, double flush the engine crankcase with test oil before starting the test (see Fig. A9.2, Steps 9 to 11). If the test oil is not available at engine assembly use Exxon-Mobil EF411 engine oil.

- 9.2.3 Cooling Jet Alignment—Use the final test oil flush (see Fig. A9.2) that removes the remaining solvent to check alignment of the piston cooling jet by using a poly(methyl methacrylate) top piston. Alignment may be done with either the jug assembly or the alignment fixture (see Figs. A9.10, A9.11 and A9.12).
- 9.2.4 Cleaning of Some Other Components—Before each test clean the oil weigh system. Also disassemble and clean the engine oil bypass valve. On occasion extra cleaning may be required.
- 9.2.5 Additional Oil Filter—Install a full-flow paper element filter in the flushing unit to remove engine wear particles during the engine flush. TEI CLR engine oil filter housing No. 2418 and filter element No. 3105<sup>30</sup> have been found satisfactory for this purpose. These particles have been known to cause piston scuffing during subsequent tests.
- 9.2.6 Flushing Procedure Components—Use the components shown in Figs A9.3 through A9.12 to conduct the engine flushing procedure. (See Fig. A9.8 (Views A and B) of flushing component location). A dummy engine oil filter may be used during the flush sequence.
  - 9.2.7 Flushing Procedures—(See, also, Fig. A9.2):
- 9.2.7.1 With the crankcase breather secured to the side of the crankcase and the connecting rod assembled on the crankshaft, rotate the crankshaft until the top end of the connecting rod is below the cylinder block bore in the top of the crankcase.
- 9.2.7.2 Install the poly(methyl methacrylate) or clear plastic cover (see Fig. A9.3) on the top surface of the crankcase as shown in Fig. A9.8 (View A).
- 9.2.7.3 Install a new P/N 8N9586 (see Annex A15) engine oil filter and a clean P/N 1Y5700 (see Annex A15) element in the flushing pump oil filter housings. Change both oil flush cart filters after each engine flush.
- 9.2.7.4 Connect the flushing pump outlet hose to the engine oil cooler drain location.
- 9.2.7.5 Remove breather assembly P/N 1Y2592 (see Annex A15) (top portion of the side assembly) and clean separately by soaking in Stoddard solvent. Air dry.

- 9.2.7.6 Insert the P/N 1Y653 (Annex A15) rocker shaft oil line in the center opening of the clear plastic cover (see Fig. A9.3).
- 9.2.7.7 Place the flushing pump inlet in a clean supply tank containing 7.6 L (2 gal) of Stoddard solvent. Open the crankcase drain, start the flushing pump and oil scale pumps and run this material once through the engine into a drain pan. Do not recirculate. Drain oil scale reservoir.
- 9.2.7.8 Close the crankcase drain and connect the flushing pump inlet line to the crankcase drain. Add to the crankcase 7.6 L (2 gal) of a flushing mixture comprising 1.9 L (0.5 gal) of dispersant engine cleaner and 5.7 L (1.5 gal) of Stoddard solvent.
- 9.2.7.9 Connect the flushing pump outlet line to the engine oil cooler drain location. Open the crankcase drain valve, start the flushing pump and oil scale pumps and circulate the flushing mixture through the engine for approximately 15 min. Turn off the pumps, but do not drain the flushing mixture from the crankcase. Open completely the oil pressure regulator during flushing.
- 9.2.7.10 Close the oil cooler drain valve, disconnect the flushing pump outlet hose from the oil cooler drain location and connect to the crankcase sprayer (see Fig. A9.5).
- 9.2.7.11 Remove the P/N 1Y653 (see Annex A15) oil line from the poly(methyl methacrylate) coverhole and insert the crankcase sprayer through the opening in the poly(methyl methacrylate) cover. Start the flushing pump and oil scale pumps and spray the interior of the crankcase by slowly moving the sprayer around and into all accessible areas of the crankcase (see Fig. A9.8, View A) for approximately 10 min. Turn off the pumps, but do not drain the flushing mixture from the crankcase. Insert the crankcase sprayer into the oil scale reservoir and start the flush pump and oil scale pumps. Spray the reservoir for 10 min. Turn off the pumps, but do not drain the flushing solution from the crankcase.
- 9.2.7.12 Remove the one-half in. pipe plug from the modified 1Y1990 governor housing cover (see Fig. A9.6). Insert the crankcase sprayer (see Fig. A9.5) through the opening in the governor housing cover. Start the pumps and spray the interior governor housing for about 10 min. Turn off the pumps, but do not drain the flushing solution from the crankcase.
- 9.2.7.13 Remove the oil spout assembly from the front of the crankcase and install the front cover sprayer (see Fig. A9.7) as shown in Fig. A9.8.
- 9.2.7.14 Connect the flushing pump outlet to the 0.64 cm  $(1/3 \text{ in.}) \times 12.7$  cm (5 in.) fitting. Start the flushing pump and oil scale pumps and spray the interior of the front cover for about 10 min. Drain the crankcase, governor housing, engine and flushing pump unit filters, oil cooler and oil pump accessory drive housing, and oil scale reservoir. Discard the drained flushing mixture.
- 9.2.7.15 Using Stoddard solvent, repeat steps 9.2.7.9-9.2.7.14 until the Stoddard solvent discharge is clean. Three to four flushes with Stoddard solvent are usually sufficient to remove all traces of the flushing mixture from the engine.

<sup>&</sup>lt;sup>30</sup> The oil filter, P/N 2418 and filter element, P/N 3105 are available from Test Engineering, Inc., 12718 Cimarron Path, San Antonio, TX 78249.

9.2.7.16 Drain the Stoddard solvent from the crankcase, governor housing, engine and flushing pump unit filters, oil cooler, oil pump accessory drive housing, and oil scale reservoir.

9.2.7.17 Prepare the flush with test oil by blocking off the 1Y653 oil line to the rocker arm shaft and installing the 1/4 in. (0.635 cm) fitting (see Fig. A9.9) on the open end of the line. Close all drain openings.

9.2.7.18 Using the flushing pump, add 4.7 L (5 qt) of test oil to the engine crankcase through the engine oil cooler.

9.2.7.19 Connect the flushing pump outlet to the engine oil cooler drain location. Start the flushing pump and oil scale pumps and force any Stoddard solvent left in the system out through the crankcase drain. After the Stoddard solvent has been forced out of the system, connect the inlet line of the flushing pump to the crankcase drain. Install the *dummy* piston and the assembled cylinder block and liner. The *dummy* piston with a poly(methyl methacrylate) top is shown in Figs. A9.10 and A9.11. Re-install the oil filler spout and 1.27 cm (1/2 in.) pipe plug in the modified governor housing cover (see A9.6).

9.2.7.20 Open the crankcase drain and start the flushing pump and oil scale pumps. Set and maintain the oil pressure at 359 kPa (52 psi). With the starter or dynamometer, turn the engine over at a speed of 200 r/min for one minute. Turn off the pumps and drain all of the oil from the engine crankcase, governor housing, engine and flushing pump unit filters, oil cooler, oil pump accessory drive housing, and oil scale reservoir. Discard the drained oil.

9.2.7.21 Again add 4.7 L (5 qt) of test oil to the engine crankcase through the engine oil cooler. Repeat the flushing procedure in 9.2.7.20. During this flush, check the alignment of the piston cooling nozzle and adjust, if necessary, being certain that oil condition has stabilized before adjustment. Drain the oil and install a new P/N 8N9586 oil filter (see Annex A15). Re-install crankcase breather assembly P/N 1Y2592 (see Annex A15).

9.3 Engine Pre-Test Measurements and Inspections—Measure and inspect the engine components prior to each test. Information on component reusability and assembly is found, herein, and in the P/N 1Y540 Service Manual<sup>16</sup>. Part numbers for replacement parts are also given in this manual.

9.3.1 *Crankshaft Angles*—Record the crankshaft angles at the specified exhaust and intake cam lift before each test and show a full lift profile before each reference test. See 1Y540 Service Manual.

9.3.2 Cylinder Head and Specification for Valves—Use a new or reconditioned head for each test. Ensure that measurements after reconditioning are within specification requirements as shown in Fig. A1.1. Also measure valve head projection and ensure that it meets specification requirements. Record the measurement. Conduct non-reference tests using cylinder head/jug assemblies that during their laboratory histories had been subjected to at least one complete and acceptable calibration test.

9.3.2.1 *Valve Guide Bushings*—The valve guide bushings have threaded bores and are machined to close fit tolerances to the valve stem. See A1.2 for the reconditioning method. Use a

short arbor and a long stone for valve guide honing, the final valve guide sizing operation.

9.3.2.2 Fuel Nozzle—Remove the fuel nozzle from the cylinder head before commencing reconditioning. Use either Service Kit P/N 6V7020 (see Annex A15) to pull the nozzle or a suitable adapter that is threaded on the nozzle head. Replace the P/N 9L9098 seal and P/N 2W6163 (see Annex A15) fiber washer as needed. Inspect the nozzle tip for carbon build-up and deformed surfaces. Replace questionable nozzles. Check the valve opening pressure (V.O.P.) before each test using any commercially available nozzle testing tool or a P/N 5P4150 (see Annex A15) nozzle tester group. A V.O.P. equal to or greater than 10 342 kPa (1500 psi) is satisfactory. Remove the P/N 2W1230 screw (see Annex A15) only during this check. See the Caterpillar Service Manual for additional information. Fuel injection housing bolts may be standardized to the hex head type of Grade 8 quality.

9.3.3 Piston and Rings—Use a new piston (P/N 1Y0727) and new rings (P/N 1Y0728) for each test recording measurements before and after each test (see Annex A15 for all P/Ns). The measurements before the test ensure that good parts are evaluated and are compared to measurements after the test to determine the amount of wear. Before the test clean all three rings using pentane and a lint-free cotton cloth. Measure the ring side clearances and ring end gaps of all three rings in accordance with the procedure in Fig. A1.2. For Keystone ring side clearance measurements, the ring shall be confined in a dedicated slotted liner (see Fig. A1.2) or a ring gage 137.16 mm (5.400 in.) in size (see Fig. A1.2). Obtain the average side clearances with four feeler gages of equal width and 0.01 mm thickness increments at 90° spacing around the piston. Similarly, measure the rectangular side clearance. Measure minimum side clearance in accordance with directions in CRC Manual 18. Measurement may also be made using taper gages.

9.3.4 Cylinder Liner—For each test, select a new cylinder liner (P/N 1Y3555) having a surface finish of 0.4 to 0.8 µm. First remove the protective grease with Stoddard solvent, then clean the liner bore with a hot water/detergent solution (see 7.5) and rinse with hot water. Measure the surface finish and record the results on Fig. A13.12 (Form 9). Oil the liner bore with Exxon-Mobil EF-411 oil. Assemble the cylinder liner, block and head, torquing the stud nuts as shown in Fig. A1.5. Measure the liner with a dial bore gage to ensure that the out-of-round and taper conditions are within specified tolerances measured at five intervals as shown in Figs. A1.3 and A1.5. Torquing increases the cylinder liner outside diameter at the o-flange necessitating machining of the 1Y544 cylinder block. Machine the block inside diameter as shown in Fig A1.6.

9.3.5 Compression Ratio—Before starting each test, ensure that the engine has the specified compression ratio of 14.5 to 1 by measuring the piston-to-head clearance. For this measurement use lead shot<sup>24</sup> approximately 5 mm (0.2 in.) in diameter. Place four lead shots on top of the piston at 90° intervals on the major and minor piston diameters, holding them in position with light grease. With the piston near the top of the stroke, install and torque to specifications the head and block assembly. Then in succession, turn the engine over top center by

hand, remove the head and block assembly and measure the thickness of the lead shot to obtain the average piston-to-head clearance. The piston-to-head clearance shall measure  $3.556\pm0.076~mm~(0.140\pm0.003~in.).$  Use multiple block gaskets (P/N 1Y3698) (see Annex A15) to adjust the clearance. If the piston-to-head clearance still exceeds the requirement, check the crankshaft main and rod journals, connecting rod main bearings and piston pin and rod bushings for excessive wear. Also, check the piston cooling jet-to-piston skirt clearance to ensure that no contact is made.

9.3.6 Fuel Timing—Before each test, ensure that the engine fuel timing is set at  $31.5 \pm 0.5^{\circ}$  before top center (BTC) of the piston travel. Set the engine flywheel which has  $2^{\circ}$  marked intervals to coincide with the piston travel. Make a final check to ensure that the fuel timing is set correctly. The fuel flow timing method (described in A1.6) is the preferred method for assessing quickly timing settings. Alternatively, use an electronic fuel timing instrument before each test, provided that it is equivalent in accuracy to the Caterpillar or AVL device. The electronic instrument shall be calibrated to give the same timing values as the fuel flow timing method. Refer to Service Manual SENR2856<sup>16</sup> for instructions and fuel timing dimensions for major rebuilds or fuel pump disassemblies.

9.3.7 *Pre-Test Component Inspections*—For future reference, inspect all components and assemblies that are exposed when the engine is disassembled and record the observations. These include valve train components, bearings, journals, housings, seals, and gaskets as well as those items noted in 9.3.1-9.3.3. Replace those that fail to meet requirements.

9.3.7.1 Inspect the special fuel plunger for erosion as noted in A1.8.

9.3.7.2 Ensure that the valve camshaft timing meets the requirements as listed in Service Manual SENR2856 (that is,  $\pm 4^{\circ}$  tolerance).

9.4 Engine Assembly—Assemble the engine with components and bolt torques as specified in Engine Service Manual P/N 1Y540 (see Annex A15), aiming for the mean of the specified values. In keeping with good assembly practices, ensure that (a) the components are clean and lubricated, (b) airborne dirt and debris are kept to a minimum in the assembly area (see 6.1), and (c) standard assembly techniques such as staggered piston ring gap positions are maintained.

9.5 Pressure Testing of Fuel System Assembly—Pressure test the fuel system assembly, notably the high pressure fuel line and components at 20 000 kPa (3000 psi), to ensure that it is leak-proof. Because the fuel line connections are routed under the valve cover, fuel leakage can lead to undesirable fuel dilution of the engine oil. A fuel dilution greater than 2.0 % volume at 24 h will render the test operationally invalid. The pressure test will also show if the P/N 7W8629 line assembly needs to be replaced.

9.5.1 *Pressure Testing Procedure*—After engine assembly, connect a high pressure fuel line to the external rocker arm housing fitting where the P/N 1Y648 line assembly connects. Using a P/N 5P4150 CAT nozzle tester pump, pressurize the system to 20 000 kPa (3000 psi). Close the back bleed valve of

the pump to check pressure leak-off rates. Hereafter, the fuel system should maintain pressure with little or no pressure leak-off.

#### 10. Calibration of Engine Test Stand

10.1 General Requirements and Frequency of Calibration:

10.1.1 To maintain test consistency and severity levels, calibrate the engine test stand at regular intervals in accordance with the requirements of the TMC using TMC reference oils.

10.1.2 TMC shall establish frequency of calibration testing.

10.1.2.1 Based on whichever occurs first, run a calibration test on a reference oil assigned by TMC either 12 months from the start of date of the last acceptable calibration test, or after 15 test starts run under the test type for which the test stand was calibrated (1K or 1N). A test stand can be calibrated as both a 1K and 1N test stand and failure to calibrate under one test shall not invalidate the calibration for the other.

10.1.2.2 To enhance reference oil test program design and test severity monitoring, the TMC may move up or extend reference oil tests.

10.1.2.3 If a reference test calibration period is extended beyond the normal duration, any subsequent non-standard reference tests shall include a notation of this fact in the comments section. Additionally, written confirmation from the TMC shall be attached to the report.

10.1.3 Complete any non-reference oil tests before the expiration of the current calibration. If a test does not complete when expected due to unscheduled shutdowns, continue the calibration to the end of the test.

10.2 Runs:

10.2.1 *Double Blind Runs*—TMC shall administer double blind tests on a maximum of every third engine in each laboratory annually.

10.2.2 Runs on REO 810 and Subsequent Reblends—Once per calendar year, the Surveillance Panel shall solicit calibrated laboratories for a volunteer to run one 1K and one 1N calibration test on Oil 810 (or a subsequent reblend). The 0.5 g/kWh maximum BSOC limit shall not be applied to these tests. Instead, BSOC shall be treated in the same manner as the other control charted parameters. For this BSOC shall have a calculated mean and standard deviation that shall be used in conjunction with the lambda and k values specified by the LTMS system. Theses tests shall be treated in every other respect as any other calibration tests.

10.3 Specified Test Parameters—The specified test parameters for determination of test acceptance are as follows:

10.3.1 Top groove fill, percent area (critical parameter).

10.3.2 Weighted total deposits, demerits (critical parameter).

10.3.3 Transformed top land heavy carbon, transformed units, percent area (non-critical parameter).

10.3.4 Brake specific oil consumption (BSOC), g/kW-h (non-critical parameter).

10.4 Calibration Test Acceptance Criteria—See TMC Lubrication Test Monitoring System (LTMS) for calibration test targets and acceptance criteria.

10.5 Failing Calibration Test:

10.5.1 Failure of a Reference Oil Test—Failure of a calibration test to meet test acceptance criteria can indicate (a) a

testing stand problem, (b) a testing laboratory problem, (c) an industry-wide problem or (d) a false alarm. When failure occurs, the laboratory in conjunction with the TMC shall attempt to determine the cause.

10.5.2 Action to Determine Cause of Problem—First, TMC shall decide, with advice from industry specialists (testing laboratories, test procedure developer, ASTM Technical Guidance Committee, Surveillance Panel, and so forth), if the cause of any unacceptable blind reference oil test is isolated to one particular stand or is related to other stands as well. Second, if the problem is isolated to an individual stand, calibrated testing on other stands can continue throughout the laboratory. Third, if it is decided that more than one stand may be involved, the involved stands shall be considered not calibrated until the problem is identified, corrected, and an acceptable reference oil test completed in one of the involved stands.

10.5.3 *Non-standard Tests*—If non-standard tests are conducted on the calibrated test stand, at the discretion of TMC, the test stand may be required to be recalibrated prior to running standard tests.

10.6 Test Numbering—Each 1K/1N test shall be identified by a test stand number and test run number. All runs shall be numbered sequentially. All repeat calibration runs shall be appended with a letter (also sequentially). The letter suffix sequencing for each test type calibration shall be maintained until the calibration is accepted. Any test start, regardless of type, shall increment the run number. Test start is the start of accumulation of any engine test time by this test procedure.

10.6.1 Example of Test Numbering—See Table 1.

10.7 Reference Oils—The reference oils used to calibrate the 1K and 1N test stands are formulated or selected to represent specific chemical types or specific performance levels or both. The TMC assigns the reference oils for calibration tests. The oils are available from the TMC and are supplied under code numbers (blind reference oils).

10.7.1 Banning Extra Analysis/Testing of Reference Oils—Reference oils shall not be identified by chemical analysis and laboratory bench testing of physical properties. Such analysis and testing would undermine the confidentiality required to operate an effective blind reference oil system. Only those chemical analyses and physical tests specified within this procedure shall be performed. However, the TMC may authorize analyses and bench testing under special circumstances. When authorized, written confirmation of the circumstances involved, data obtained, and the name of the person authorizing such analyses and bench testing shall be supplied to TMC.

TABLE 1 Example of Test Numbering

| Test |                |                | Run No. |
|------|----------------|----------------|---------|
|      | 1K             | 1N             |         |
| 1st  | Reference Fail |                | 1       |
| 2nd  | Reference Fail |                | 2A      |
| 3rd  | Reference Fail |                | 3B      |
| 4th  |                | Reference Fail | 4       |
| 5th  |                | Shakedown      | 5       |
| 6th  |                | Reference Pass | 6A      |
| 7th  | Reference Pass |                | 7C      |
| 8th  | Non-reference  |                | 8       |
| 9th  |                | Non-reference  | 9       |

10.8 Severity Adjustments:

10.8.1 *Non-Reference Oil* —Non-reference oil test results may be adjusted to maintain intended severity levels.

Note 1—See fixed candidate oil test pass criteria in Specification D 4485.

10.8.2 Severity Adjustments—Use a method accepted by the Surveillance Panel for calculating a severity adjustment (SA) for non-reference test results. When a significant bias is identified according to the control chart technique (10.8.3), apply a severity adjustment (SA) to non-reference oil test results. The SA remains in effect until subsequent calibration test results indicate that the bias is no longer significant. SA's are calculated and applied on a laboratory basis.

10.8.3 Control Chart Techniques for Severity Adjustment (SA)—Apply standardized calibration oil test results to an exponentially weighted moving average (EWMA) technique. Standardize the values using the following ratio: Delta/SD ((result — target)/standard deviation). The target and standard deviation values are available from the TMC. Include all operationally valid calibration test results on a laboratory control chart. Record the test results on the chart in order of completion. Completion of tests shall be recorded by EOT date and time. EOT time shall be reported as hour and minute according to the 24 h clock (1 a.m. = 1:00, 1 p.m. = 13:00). Reporting test completion time enables the TMC to order tests that are completed on the same day for industry plotting purposes. Report calibration test results to the TMC in order of test completion. Results from at least two tests are required to start a control chart. Calculate EWMA values using the following equation:

$$Z_i = \text{Lambda} \times Y_i + (1 - \text{Lambda}) \times Z_{i-1}$$
 (1)

where:

= 0

 $Y_i$  = standardized test result,

 $Z_i$  = EWMA of the standarized test result at test order

 $\iota$ , and

Lambda = the appropriate lambda from the LTMS docu-

ment

10.8.3.1 If the absolute value of EWMA, rounded to three decimal places, exceeds the alarm limit in the LTMS document, apply an SA to subsequent non-reference oil results.

10.8.4 Example of Calculation of Severity Adjustment—This example shows how to calculate and apply EWMA and SA values (test targets being examples only).

10.8.4.1 TGF Severity Adjustment:

(1) Applicable test targets: Mean, 40.8; standard deviation (SD), 15.9; TGF, 55;  $Z_i$ , 0.897.

(2) Standard test result:  $Y_2 = (TGF - Mean)/SD = (55 - 40.8)/15.9 = 0.893$ .

(3) Alarm limit: 0.653.

(4) EWMA:  $Z_2 = 0.2 \times Y_2 + 0.8 \times Z_1 + 0.896$ .

10.8.4.2 Since | 0.896 | > 0.653, an SA shall be applied as follows:  $SA = -1 \times EWMA \times SD$  (in the example, SA = -14). For TGF, round off the SA to a whole percent; for WDK/WDN, round off to one decimal place; and for TTLHC, round off to three decimal places. Do not adjust BSOC and EOTOC for severity. Enter this number on Fig. A13.2 (Form 1) in the

appropriate laboratory severity adjustment box and add to it the test result. An SA shall remain in effect until the next calibration test. At that time, calculate a new EWMA and SA.

#### 11. Engine Operating Procedure

- 11.1 Engine Run-In—After the engine components have been prepared and assembled as described in Section 9, perform the final engine preparations and the 60-min run-in itself as follows:
  - 11.1.1 Fill the crankcase with 6 L of fresh test oil.
  - 11.1.2 Install a new P/N 8N9586 oil filter.
- 11.1.3 Fill the cooling system with specified coolant and ensure that the facility coolant to the engine heat exchanger is operational.
- 11.1.4 Pressurize the fuel system to remove air, then return the system to a non-pressurized state before starting the engine.
- 11.1.5 Finally, ensure that all other systems and facilities are operational.
- 11.1.6 Obtain familiarity with the engine run-in operating conditions (see Table A10.1), and note the five time-related steps.
- 11.1.7 Start the engine run-in by turning the engine on and then ensuring that the operating conditions of Table A10.1 are strictly followed, and the rated load condition observed as shown under Step No. 5 of Table A10.1.
- 11.1.8 During the 5-step run-in period measured in minutes (5+5+10+20+20=60 min) check and correct for leakage, and make adjustments as necessary to meet the engine operating requirements in A10.1.
- 11.2 Cool-Down Procedure—Except for emergencies or uncontrolled stops, at the end of the 60-min run-in period start a 20-min cool-down period by following the run-in period in partial reverse order as follows: Step No. 3 (10 min), Step No. 2 (5 min) and Step No. 1 (5 min) and including the observance of the test parameters in Table A10.1, finally turning the engine off
- 11.3 *Warm-Up Procedure*—For all subsequent starts throughout the test, warm up the engine in accordance with the run-in directions in 11.1.1-11.1.8.
  - 11.4 Operating Conditions and Oil Additions:
- 11.4.1 After the run-in (60 min) and cool-down (20 min) periods of 11.1 and 11.2 and while the engine is hot, drain the oil for 30 min from the crankcase, governor housing, oil cooler, engine oil filter, oil pump accessory drive housing, and weigh scale.
- 11.4.2 Charge the engine with 4.95  $\pm$  0.11 kg (10.9 $\pm$  0.24 1b) of test oil (reference or non-reference, as required).
- 11.4.3 Start and warm-up the engine for the 252 h test in accordance with 11.1.1-11.1.8, observing the test conditions in Table A10.1. Turn on the oil scale pumps when the engine reaches operating temperatures at the start of Step No. 5 in Table A10.1. Record the full oil scale pump mark at the end of this step.
- 11.4.4 Throughout the test, record the oil scale reading at least every hour. Add oil to the full mark (initial fill level) every 12 h, but *do not overfill*, recording the weight of oil added.
- 11.4.5 Measure oil consumption in accordance with 11.5 and take used oil samples for analysis in accordance with 11.6.

- 11.4.6 During the test hold all control parameters within the specified tolerance range in Table A10.1. Failure to do so affects the validity of the test.
- 11.4.7 *Test Duration*—The test duration is 252 h. It is counted from the moment that stabilized conditions are attained, a maximum of 30 min being allowed to attain stabilization
- 11.4.8 Calculation of Offset from Mean and of Deviation—At the end of the test, calculate the offset from the mean (in percent) and deviation (in percent) outside of the specification tolerance (see Annex A12). Report on Fig. A13.4 (Form 3).
  - 11.5 Measurement of Oil Consumption:
- 11.5.1 Use linear regression to calculate oil consumption (see Annex A7).
- 11.5.2 Plot graphically the oil scale readings taken hourly over a 12-h period versus time at which the reading was taken (see Annex A7). Delete the first reading after the oil addition from the linear regression.
- 11.5.3 Derive 12-h oil consumption data points for plotting on Fig A13.16 (Form 13) and reporting (see 13.2.4.1).
- 11.5.3.1 For a 12-h period, including a shutdown, calculate the BSOC from linear regression as follows (excluding the first oil weigh reading after shutdown in the linear regression): (a) calculate the linear regression for the periods before and after shutdown and (b) average the two linear regressions to obtain the oil consumption for the 12-h period. Base the BSOC calculations on actual average engine horsepower over the 12-h period.
- 11.5.4 Derive average values of oil consumption for recording on Fig. A13.9 (Form 6). Also derive and record average oil consumptions between 0 to 24 h and 0 to 252 h.
- 11.5.4.1 Derive the end of test oil consumption (EOTOC) from the average of the last two 12-h (BSOC) figures. For a normal, completed test, this number is the same as the 252-h BSOC number.
  - 11.6 Sampling Used Oil:
- 11.6.1 Obtain samples of new oil and used oil after run-in and at 24, 72, 156, 204 and 252 h. The quantity of each sample shall be 237 mL (8 oz).
  - 11.6.2 See 12.4.2 for tests required on the used oil.
- 11.6.2.1 Testing of the used oil samples taken at 72 and 156 h is optional.
- 11.6.3 After the used oil samples are taken, fill the oil system to the initial level.
- 11.7 Shutdowns, Lost Time, and Off Tolerance Conditions—Report on Fig. A13.10 (Form 7) the test hours, date, and length of off-test conditions for all occurrences. Also, record when the engine is off-test conditions, early inspections or early test termination with the reasons for the occurrences. If the cool down procedure is not used, identify the shutdown as an emergency shutdown. A maximum of 125 h of off-test conditions is allowed. Always pump the oil from the scale cart to the engine crankcase to ensure adequate oil volume for engine restarting. In the event of an emergency shutdown, a 2-h engine off-condition shall be maintained to allow complete engine cooldown before restarting. To limit the ingress of foreign

matter into the combustion chamber and to protect the deposits, rotate the engine to top dead center of the compression stroke during downtime.

- 11.7.1 Always pump the oil from the scale cart to the engine crankcase to ensure an adequate oil volume for engine restarting.
- 11.7.2 In the event of an emergency shutdown, maintain a 2-h engine off condition before restarting to allow complete engine cool-down.
- 11.8 Recording of Exhaust Temperature—An exhaust temperature recorder may be used to track all regular starts, run-ins, and shut-downs and as well all exhaust temperature excursions that occur from speed and load changes during run-in, warm-up and cool-down procedures. Examine all exhaust temperature excursions for possible effects on test results. Operate the engine so as to minimize exhaust temperature excursions from speed, load, and air pressure variations or adjustments.
- 11.9 Air-Fuel Ratio Measurement—Calculate the air-to-fuel ratio within 24 h of test hour 24 and test hour 252. Use either an orifice air flow meter and fuel flow measuring device or exhaust gas analysis. Draw gas samples by way of the exhaust pressure probe, its location being shown in Fig. A3.5. Tables and formulae for deriving air-fuel ratios are shown in Table A10.2.
- 11.9.1 *Air-Fuel Ratio Report*—The report shall include the following three entries:
- 11.9.1.1 Observed measurement data comprising either (a) percent  $CO_2$  and percent  $O_2$  or (b) air flow and fuel flow.
  - 11.9.1.2 Calculated air-fuel ratio from Table A10.2.
  - 11.9.1.3 Date and test hours observed.
- 11.10 Recording of Engine Conditions—Note the engine conditions listed in Table A10.1 at least once per hour, recording data before adjustments are made. These data show the actual engine conditions at each hour of test; they should not be averages of data logged during the test hour. Record in the test report all observed readings that exceed the limits.
  - 11.11 Humidity Requirements/Calibration/Measurement:
- 11.11.1 Humidity Measurement—Record humidity readings each test hour using the laboratory's primary humidity measuring system. This system shall be accurate to within  $\pm$  0.648 g ( $\pm$  10 grains) of the humidity measuring chilled mirror dew point hygrometer (see 11.11.2). Make corrections to each hourly reading for non-standard barometric conditions using factors either taken directly from Tables X1.1 to X1.8 or derived from the perfect gas law equation in X1.2.
- 11.11.2 Calibration of Primary Humidity Measuring System—Calibrate the primary humidity measuring system during the first 24 h of each stand calibration test with a chilled mirror dew point hygrometer having an accuracy of  $\pm$  0.55 °C at 24 °C ( $\pm$  1 °F at 75 °F) dew point and moisture content of  $\pm$  0.6 g/kg ( $\pm$  4 grains/lb) of dry air. Perform additional stand calibrations when ambient temperature and ambient humidity conditions differ from the last semi-annual ambient test condition to ensure that the stand humidity remains within test requirements.
- 11.11.2.1 The humidity (hygrometer) tap is located on the air inlet tube leading to the air heater chamber (see Fig. A2.1).

The sample line shall not be hygroscopic and may require insulation to prevent a temperature decrease to below the dew point.

- 11.11.2.2 Calibration Procedure—Make a series of paired comparison measurements between the primary system and the chilled mirror dew point hygrometer. The comparison period lasts for 20 min to 2 h, measurements being taken at 1 to 6 min intervals, for a total of 20 paired measurements. The measurement interval should be appropriate for the time constant of the humidity measuring instruments. Check the flow rate to ensure that it is within the equipment manufacturer's requirements.
- 11.11.2.3 Calibration Measurements and Calculations—Take all measurements with the dew point hygrometer at atmospheric pressure and correct to standard conditions (101.12 kPa (29.92 in. Hg)) using the perfect gas law equation (see X1.2) or from humidity correction factors taken from Tables X1.1 to X1.8. From the differences between the results of each pairs of measurements, calculate the mean and standard deviation (see Appendix X2). The absolute value of the mean difference of humidity shall not exceed 0.648 g (10 grains) and the standard deviation shall be  $\leq 0.324$  g ( $\leq 5$  grains). Both requirements shall be met when calibrating the primary humidity measurement. If one or both requirements are not met, investigate the cause, make repairs, and recalibrate. Maintain calibration records for two years.
- 11.11.3 Combustion Air System Drain Taps—Drain taps may be installed at low points of the combustion air system. Keep them open during shut-down and warm-up.

# 12. Engine and Parts Inspections, Photographs and Measurements

- 12.1 Refer to the appropriate reporting forms (see Annex A13) before doing the inspections and recording the data. Also when recording data, clearly indicate under which procedure (1K or 1N) the data where obtained.
  - 12.2 Pre-Test Measurements of Engine Parts—See 9.3.
- 12.3 Post-Test Information—At the completion of the engine test inspect for deposits and measure the wear of piston, rings, and liner as described herewith. Photograph the piston/ring assembly and section the cylinder liner (see Fig. A13.17, Form 14).
- 12.3.1 Deposit Ratings, Photographs, Measurements—Remove the piston and ring assembly from the engine. Examine the assembly and measure the components in accordance with the CRC Diesel Piston Rating System Manual No. 18 that utilizes the varnish scale (see A11.1). Photograph the pistons and rings, and perform deposit ratings as follows:
- 12.3.1.1 Photograph the piston and rings with the rings placed on top of the piston to show the ring gaps (thrust view) and 180° from the gaps (anti-thrust view). Ensure that the photographs of the pistons show the piston from the crown down to at least the bottom of the pin bore.
- 12.3.1.2 When rating second groove and land deposits only two levels of carbon (light and heavy) are applicable.
- 12.3.1.3 Define and break down the undercrown rating area as shown in Fig. A11.1.
- 12.3.1.4 Use a piston deposit demerit rating as specified in CRC Manual  $18.^{14}$

- 12.3.1.5 Rate the top land heavy carbon piston deposits within 15 min after the power unit or piston assembly is removed from the engine.
- 12.3.1.6 After the crownland (topland) heavy deposits are rated, wash the crownland in solvent and wipe dry before continuing with the rating.
- 12.3.1.7 Training of Piston Deposit Rating Specialist (Rater)—Piston deposit raters shall be trained by the CRC Rating Task Force. They shall maintain rating expertise by attending rating seminars or workshops annually. The rater shall attend either the CRC Task Force seminar held each spring or the expanded CRC Heavy Duty Piston Rating Workshop held each autumn, or both. The rater shall rate a minimum of six diesel pistons at the seminar or workshop. If the rater is unable to attend either session, the rater shall make alternative arrangements at the earliest opportunity. In applying these seminar attendance requirements to a laboratory having more than one rater, the laboratory shall be expected to send at least one heavy duty diesel piston rater annually.
- 12.3.1.8 Referee Ratings—To detect quickly and correct any shifts in rater severity, all operationally valid calibration tests shall be refereed. Also, any test reviewed by the test procedure developer shall be referee-rated. Test laboratories shall supply the entire rating breakdown for land No. 1 to the referee laboratory. The referee rater shall use the test laboratory results for land No. 1 when computing WDK/WDN. All pistons to be referee-rated shall be wrapped in paper and placed in plastic with the CRC approved dessicant chips and sealed before being shipped to the referee laboratory. Refereed results shall be reported to TMC on Fig. A13.8 (Form 5A) within ten working days of test completion.
- 12.3.2 Piston/Ring Side Clearances—Determine the level of deposit formation in the piston/ring area by measuring the piston/ring side clearance. Substantially follow the procedure as shown in Fig. A1.2 for pre-treatment measurement. Insert the feeler gage between the ring and groove carefully so as not to disturb or remove the deposit. Do *not* force the gage as this could dislodge the deposit. Record clearances on all rings as shown in Fig A13.2 (Form 1) and Fig. A13.11 (Form 8).
- 12.3.3 *Ring End Gap Increase*—Measure the ring gap according to Fig. A1.2. Post-test, clean the rings to remove carbon. If scraping the rings is required, use an instrument made from soft material, such as, wood. Measure and record the end gap in accordance with 9.3.3 and Fig. A13.11 (Form 8).
- 12.3.4 Liner Wear/Bore Polishing Measurements & Photographs—Carry out liner preparation and measurements in accordance with the CRC Diesel Liner Rating Method (May 1985) as given in A11.3.
- 12.3.4.1 First remove the deposits on the liner above the piston ring travel.
- 12.3.4.2 Then, to determine the liner wear step, measure the surface profile at the wear step location transversely and longitudinally relative to the crankshaft at four locations about 15 mm from the top of the liner.
- 12.3.4.3 Record the measurements as liner wear on the report sheet as shown in Fig. A13.12 (Form 9).
- 12.3.4.4 Section the cylinder liner for measurement of the amount of bore polishing and for photographing. The sectioned

- liner shall show the thrust and anti-thrust sides (see Annex A11, Fig A13.17 (Form 14), and Fig. X3.2). Use the proposed CRC Diesel Liner Rating Method (May 1985) (see A11.3).
  - 12.4 Oil Inspections:
- 12.4.1 *New Oil Inspections*—Perform the following tests on the new oil (see Fig A13.9 (Form 6)):
- 12.4.1.1 Kinematic Viscosity at 100 °C by Test Method D 445.
  - 12.4.1.2 Base number by Test Method D 4739.
- 12.4.1.3 For reference against used oil tests, wear metals, that is, iron, aluminum, copper, chromium, and lead, and air-borne particle contamination element, silicon by Test Method D 5185.
- 12.4.2 *Used Oil Inspections*—Perform the following tests on the used oil at 24, 204 and 252 h:
  - 12.4.2.1 Same tests as for new oil (see 12.4.1).
  - 12.4.2.2 Fuel dilution by Test Method D 3524.
- 12.5 *Oil Consumption*—Calculate and record the average oil consumption for each 12-h period and between 0 to 24 and 0 to 252 h periods (see Fig. A13.16, Form 13).
- 12.5.1 For a 12-h period including a shutdown, calculate the BSOC as follows:
- 12.5.1.1 Do not include the first oil weigh reading after the shutdown in the linear regression.
- 12.5.1.2 Calculate the linear regression for the period before the shutdown.
- 12.5.1.3 Calculate the linear regression for the period after the shutdown.
- 12.5.1.4 Average both regressions to obtain the oil consumption for the 12-h period.
- 12.5.2 Derive BSOC calculations from actual engine horse-power over the 12-h period.
- 12.5.3 Record average oil consumptions between 0 to 24 h and 0 to 252 h.
- 12.5.4 Record oil consumptions on the Summary Sheet (Fig. A13.9 (Form 6)).
- 12.6 Unscheduled Shutdowns and Off-Limit Operation—During the 252-h test, if the engine is shut down or operated out of test limits, report the engine hours, and time and date of these occurrences. Also report the time that the engine is off-test limit condition, has early test termination, and the reasons for the occurrences. Report, in addition, all prior reference test events that were deemed operationally and statistically invalid or aborted (see 11.7 and Fig. A13.10 (Form 7)). Account for all runs during the calibration sequence.
  - 12.6.1 *Missing or Bad test Data*—Observe the following:
- 12.6.1.1 If the engine is shut down or operated out-of-test limits during the 252-h test, record the engine hours, time and date.
- 12.6.1.2 Record the time the engine is off-test conditions, has early test inspections or test terminations, and note the reasons for the occurrences.
- 12.6.1.3 Record missing or bad test data in Fig. A13.18 (Form 15).
- 12.6.1.4 Consider the test operationally invalid if it has greater than four consecutive hours without data acquisition on any controlled parameter.

- 12.6.1.5 If any alternative data acquisition method is used, record in the comment section.
- 12.6.1.6 If any prior reference test reports were deemed operationally invalid, statistically invalid or aborted, record in the comment section.

#### 13. Report

- 13.1 General Directions:
- 13.1.1 Use the test report forms (see Annex A13) and the data dictionary (see Annex A14) for the 1K/1N final report. *Clearly show under which procedure*, 1K or 1N, the data were obtained.
- 13.1.1.1 Report data to the precision and format given in the data dictionary (see Annex A14).
  - 13.1.2 Attach to each calibration report:
- 13.1.2.1 The control chart summary page sent to the laboratory from TMC,
- 13.1.2.2 The fuel batch analysis page received from the fuel supplier, Haltermann Products, and
  - 13.1.2.3 The parts photographs.
  - 13.2 Specific Directions:
- 13.2.1 Report all deposits, wear and engine operational data as required by the forms in Annex A13 (Forms 1 to 17).
- 13.2.2 Report a summary of the overall test results on Fig. A13.2 (Form 1) and of the engine minimum, maximum, and average operational data on Fig. A13.3 (Form 2).
- 13.2.3 Show the 1K or 1N engine operating conditions by plotting hourly data points on Fig. A13.14 (Form 11) and Fig. A13.15 (Form 12).
- 13.2.3.1 The graphs may be formatted as one per page or any combination that the laboratory desires so long as the parameters are plotted in the same sequence with adequate resolution.
  - 13.2.4 Oil Consumption:
- 13.2.4.1 Calculate average oil consumption for each 12-h period and record on Fig. A13.16 (Form 13).
- 13.2.4.2 Report on Fig. A13.2 (Form 1) end of test oil consumption (EOTOC) as the average of the last two 12-h BSOC figures. For a normally completed test, this number is the same as the 252-h BSOC number.
  - 13.2.5 Ring and Liner Wear Measurements:
- 13.2.5.1 Report on Fig. A13.11 (Form 8) and Fig. A13.12 (Form 9) the ring and liner wear measurements respectively.
- 13.2.6 Reporting of Unusual Conditions on Fig. A13.10 (Form 7):
  - 13.2.6.1 Record any missing or bad test data.
- 13.2.6.2 If a test has more than four consecutive hours without data acquisition, it shall be considered operationally invalid.
- 13.2.7 Include in the report photographs of the pistons, rings and sectioned liner showing the thrust and anti-thrust sides (Fig. A13.17 (Form 14)) and Fig. X3.2 (an example of a completed form).
  - 13.3 Electronic Transmission of Test Results (Optional):
- 13.3.1 Transmit test results electronically using the ASTM Data Communications Committee Test Report Transmission Model (see Section 2 Flat File Transmission Format) available from TMC. Refer to the data dictionary in A14 for use with this test.

- 13.4 Reporting Calibration Test Results
- 13.4.1 Transmit calibration test results by facsimile to TMC immediately after completion of the test using the cover sheet (Fig. A13.1), Fig. A13.2 (Form 1), Fig. A13.3 (Form 2), Fig. A13.4 (Form 3), and Fig. A13.10 (Form 7). For the test to be considered valid, the laboratories shall transmit data to TMC within seven days of end of test (EOT).
- 13.4.2 Test results may be transmitted electronically (see 13.3) if approved by TMC.
- 13.4.3 TMC shall review all calibration test results to determine test acceptability.
- 13.4.3.1 If the calibration test results are judged acceptable, the reference oil code and the industry average results for the reference oil shall be disclosed by TMC.
- 13.4.3.2 If the calibration test results are judged not acceptable, the test laboratory shall offer an explanation. If an explanation is not readily available, all test related equipment shall be checked. If a fault is still not identifed, it shall be assumed that the problem is related to the laboratory and another reference oil shall be assigned.
- 13.4.4 Forward one copy of the standard final test report with photographs for each 1K and 1N reference oil test to each of the following:
- 13.4.4.1 Caterpillar Inc., Tech Center, Bldg. L, 100 N.E. Adams St., Peoria, IL 61629.
- 13.4.4.2 ASTM Test Monitoring Center, 6555 Penn Ave., Pittsburgh, PA 15206-4489.
- 13.4.5 For the test to be valid, send the completed final test report to TMC within 30 days of the end of test (EOT).

#### 14. Precision and Bias

- 14.1 Test precision is established on the basis of reference oil test results (for operationally valid tests) monitored by the ASTM Test Monitoring Center. The data are reviewed semi-annually by the Single-Cylinder Diesel Surveillance Panel. Contact the ASTM TMC for current industry data.
- 14.1.1 Table 2 and Table 3 summarize reference oil intermediate precision and reproducibility of the test as of July 10, 1998.
- 14.1.2 Intermediate Precision (I.P.) is defined as the difference between two results obtained by the same operator or laboratory under constant operating conditions on the same oil that would, in the long run, in the normal and correct conduct of the test method, exceed the values shown in Table 2 and Table 3 in only one case in twenty.
- 14.1.3 Reproducibility (R) is defined as the difference between two single and independent results obtained by different operators working in different laboratories on the same oil that would, in the long run, in the normal and correct

TABLE 2 1K Reference Oil Precision Data

Note 1—These statistics are based on results obtained on Test Monitoring Center Reference Oils 809, 809-1, 811 and 811-1.

| Variable                             | S <sub>I.P.</sub> | I.P.   | $S_R$ | R      |
|--------------------------------------|-------------------|--------|-------|--------|
| Weighted total deposits, demerits    | 67.27             | 188.36 | 68.73 | 192.44 |
| Top groove fill, %                   | 12.2              | 34.2   | 12.4  | 34.7   |
| Top land heavy carbon, In (TLHC + 1) | 0.918             | 2.570  | 0.932 | 2.610  |
| Average oil consumption, g/Kw-h      | 0.086             | 0.241  | 0.089 | 0.249  |

#### **TABLE 3 1N Reference Oil Precision Data**

Note 1—These statistics are based on results obtained on Test Monitoring Center Reference Oils 809-1, 811-1, 1004, 1004-1 and 1004-2.

| Variable                             | S <sub>I.P.</sub> | I.P.  | $S_R$ | R     |
|--------------------------------------|-------------------|-------|-------|-------|
| Weighted total deposits, demerits    | 28.77             | 80.56 | 30.80 | 86.24 |
| Top groove fill, %                   | 16.5              | 46.2  | 16.5  | 46.2  |
| Top land heavy carbon, In (TLHC + 1) | 0.838             | 2.346 | 0.846 | 2.369 |
| Average oil consumption, g/Kw-h      | 0.084             | 0.235 | 0.085 | 0.238 |

#### Legend:

 $S_{LP}$  = intermediate precision standard deviation.

*I.P.* = intermediate precision.

 $S_R$  = reproducibility standard deviation.

R = reproducibility.

conduct of the test method, exceed the values shown in Table 2 and Table 3 in only one case in twenty.

14.1.4 Bias is determined by applying an acceptable statistical technique to reference oil test results and when a significant bias is determined, a severity adjustment is permitted for non-reference oil test results (see TMC Memo 94-200, Lubricant Test Monitoring System document for details).

#### 15. Keywords

15.1 deposits; engine oil; engine wear;1K test;1N test; piston-ring-liner scuffing; piston ring sticking; top land heavy carbon

#### **ANNEXES**

#### (Mandatory Information)

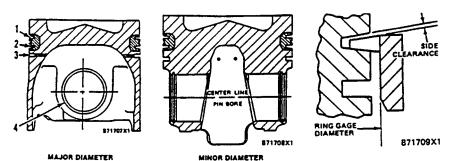
#### A1. SPECIFICATIONS FOR TEST ENGINE AND ENGINE BUILD

- A1.1 See Fig. A1.1 for the specification for valves.
- A1.2 Procedure for Honing Valve Guides:
- A1.2.1 Use equipment shown in parts list (see 7.15).
- A1.2.2 Clean valves with a clean cloth and Stoddard solvent.
- A1.2.3 Measure valve stems with a micrometer, 25.4 mm (1 in.).
- A1.2.4 If required, install new valve guides into the cylinder head. Either press or drive the valve guides into the head using the tool specified in the service manual.
- A1.2.5 Before honing, cut a groove in the top of the intake guides for the P.C. seals using the Perfect Circle tool VST-2012.
- A1.2.6 Hone the guides with a P-180 Honal. Measure the guides with a Sunnen P-300 bore gage and a P-375 probe. Hone the intake valves to a clearance of 0.0254 mm (0.0010 in.) and the exhaust valves to 0.0508 mm (0.0020 in.), the tolerance of the clearance being + 0.005 mm (0.0002 in.).
- A1.2.7 After honing, clean the guides with a nylon tooth brush.
- A1.2.8 Machine the intake valve seat inserts into the head as specified to 30.25 + 0.25  $^{\circ}$  and the exhaust valves to 45.25 + 0.25  $^{\circ}$ .
- A1.2.9 Clean the head and guides with Stoddard solvent and blow dry.
- A1.2.10 Lubricate the valves and guides with engine oil (API service CD) and assemble into the head.
- A1.2.11 Additional valve clearance ( $0.0127 \, \text{mm}$  ( $0.0005 \, \text{in.}$ )) is allowed after test, giving a maximum for the intake valve of  $0.038 \, \text{mm}$  ( $0.0015 \, \text{in.}$ ) and for the exhaust valve of  $0.0635 \, \text{mm}$  ( $0.0025 \, \text{in.}$ ).
- A1.2.12 Reuse, provided the requirements in A1.2.11 are met.

- A1.2.13 The intake valves guides may be pre-cut for the valve guide seals before insertion into the head. A go-no-go gage may be used for valve depth measurements.
  - A1.3 Piston Specifications—See Fig. A1.2.
  - A1.4 Details of Cylinder Liner:
- A1.4.1 *Liner Specifications 1Y3555 Cylinder Liner*—Surface finish shall be 0.4 to 0.8 µm (R<sub>a</sub>). See Figs. A1.3-A1.6.
- A1.5 Cylinder Head Torquing Procedure:
- A1.5.1 Disassemble the rocker box and inspect before each test. (See Fig. A1.7).
- A1.5.2 Put clean engine oil on all stud threads and tighten the nuts to the correct torque in the following sequence.
- A1.5.3 Rocker arm shaft group is not assembled for initial head torque. Use separate 1Y609 pedestal under No. 6 nut.
- A1.5.4 Step 1—Tighten nuts 1 to 6 in number sequence to  $270 \pm 25$  N·m ( $200 \pm 18$  lbf·ft).
- A1.5.5 Step 2—Tighten nuts 1 to 6 in number sequence to  $450 \pm 20$  N·m ( $330 \pm 15$  lbf·ft).
- A1.5.6 Step 3—Tighten nuts 1 to 6 in number sequence, again  $450 \pm 20 \text{ N} \cdot \text{m}$  (330  $\pm 15 \text{ lbf} \cdot \text{ft}$ ) Cylinder liner inside diameter is measured at end of Step No. 3.
- A1.5.7 *Step 4* Loosen No. 6 nut and install the rocker arm shaft group.
- A1.5.8 Step 5—Tighten nut 6 to a torque of 270  $\pm$  25 N-m (200  $\pm$  18 lbf-ft).
- A1.5.9 Step 6—Tighten nut 6 to a torque of 450  $\pm$  20 N-m (330  $\pm$  15 lbf-ft).
- A1.5.10 Step 7—Tighten nut 6 again to a torque of 450  $\pm$  20 N-m (330  $\pm$  15 lbf-ft).
- A1.5.11 Height of dowel for the rocker arm pedestal from the cylinder head is  $3.25 \pm 0.25$  mm (0.128  $\pm 0.010$  in.)
- A1.5.12 Torque for exhaust manifold studs is 27  $\pm$  4 N-m (20  $\pm$  3 lbf-ft).

#### **VALVES**

| Height of valve guides from top of cylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| head $32.3 \pm 0.8 \text{ mm} (1.27 \pm 0.03 \text{ in.})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| Discourse for the second of th |                                              |
| Diameter of valve stems (new)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTAKE EXHAUST                               |
| reamed to fit valve. (See valve fit procedure at the end of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117ARE EXHAUST                               |
| section) 9.472 mm (0.3729 in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Diameter of valve head:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |
| Exhaust valve41.81 ± 0.13 mm (1.646 ± .005 in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |
| Intake valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Angle of intake valve face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Depth of bore in head for valve seat inserts, exhaust and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Diameter of valve seat insert for exhaust valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.850 10.613                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Bore in head for valve seat insert for exhaust valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) 84 6                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Diameter of valve seat inset for intake valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>,                                    </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Bore in head for valve seat insert for intake valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| T 1100 IIII (1100 III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
| Outside diameter of the face of the valve seat insert:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
| Exhaust seat40.41 ±0.13 mm (1.591 ±.005 in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40348X3                                      |
| Intake seat 44.04±0.13 mm (1.734±.005 in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| Valve seat width:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s                                            |
| Exhaust seat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                          |
| Angle of face of intake valve seat insert:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Angle of face of exhaust valve seat insert:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |
| 45 1/4°± 1/2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 07/////                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| ) "Use again" thickness of valve lip:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |
| Exhaust valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |
| Intake valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| ) Dimension from top of closed valve to face of head:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 11 11 11 11 11 11 11 11 11 11 11 11 1     |
| Maximum permissible dimension for intake and exhaust:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.07 mm (0.042 in)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1107 11111 (313 12 11)                       |
| Minimum permissible dimension for intake and exhaust:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05 mm (0.002 in)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| ) Umbrella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| ) Perfect Circle Seal VS-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| Perfect Circle Tool VST2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |
| TOTAL  |                                              |


FIG. A1.1 Specification for Valves

A1.6 Fuel Flow Timing Dimension Check (Bubble Method):

- A1.6.1 Procedure for Checking Timing:
- A1.6.1.1 Check flywheel point setting (see SENR2856 Sevice Manual, p 147).
- A1.6.1.2 Pressurize air into the fuel system at  $7 \pm 1.2$  kPa (28  $\pm$  7 in. H<sub>2</sub>O). Remove the fuel rack pin and rotate the fuel rack clockwise to the full *on* position.
- A1.6.1.3 Turn the crankshaft by hand in normal rotation (counter-clockwise rotation from the flywheel end) starting at  $90^{\circ}$  BTC on the compression stroke.
- A1.6.1.4 The air at  $90^{\circ}$  BTC should flow from the adapter bleed line.
- A1.6.1.5 Bleed the fuel using air pressure until a constant stream of bubbles is achieved.

A1.6.1.6 Slowly rotate the crankshaft (counter-clockwise from the flywheel end) until the bubbles stop, stopping rotation immediately after the bubbles stop flowing. This step is known as bypass closing. Failure to observe it by continued crank rotation will cause incorrect timing values. (a) Place the Vernier on top of the flywheel. Put the 32.0° line of the Vernier at the flywheel pointer. Ensure that the 30° line of the Vernier is in the direction of the 30° mark of the flywheel. See Fig. A1.8. (b) Read down on the Vernier to the location where a line on the Vernier directly matches up with a timing line on the flywheel. Read the Vernier value at the location where the lines match up. This is the fuel timing ° BTDC.

#### 1Y0727 Piston And 1Y0728 Rings

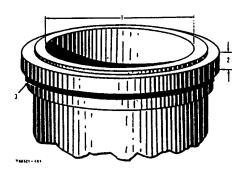


TOP RING<sup>A</sup> INTERMEDIATE RINGA OIL CONTROL RINGA Width of groove in piston for piston ring  $2.455 \pm 0.01 \ \text{mm}$ 3.21  $\pm$  0.01 mm (new) Thickness of piston ring (new) 2.365 ± 0.01 mm 3.137 ± 0.006 mm Side Clearance between groove and pis- $0.193 \pm \ 0.032 \ mm$  $0.090\,\pm\,0.02\;mm$  $0.073\,\pm\,0.016$  mm ton ring (new) End gap clearance between end of ring (new) installed in 137.160 mm (5.4 in.)  $0.724~\pm~0.76~mm$  $0.673\,\pm\,0.076$  mm  $0.572\,\pm\,0.190\;mm$ 

- (a) Assemble piston ring on the piston with UP side toward the top of the piston.
- (b) Install piston and ring in a 137.160 mm (5.4000 in.) diameter ring gage.
- (c) Push piston and ring until ring to be measured is at the top of the gage as shown. Keep the piston in the center of the gage.
- (d) Measure the side clearance with a feeler gage at both major diameter (90° from the centerline of the pin bore) and minor diameter. Either measurement should be within specifications shown.

Install the oil control ring with gap in the sprint 180° away from the gap in the ring.

(1) Top ring groove.


diameter gage.

- (2) Intermediate ring groove.
- (3) Oil control ring groove.
- (4) Bore in piston for pin. . . . . . . . . 50.815  $\pm$  0.008 mm (2.006  $\pm$  0.003 in)

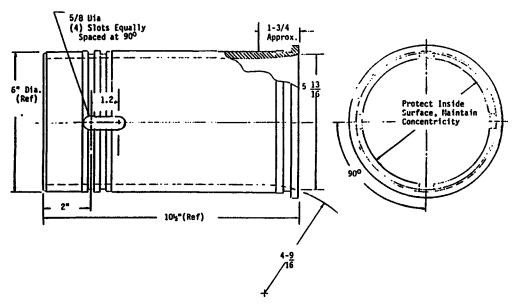
Piston pin diameter 50.795  $\pm$  0.005 mm (1.9996  $\pm$  0.002 in.)

Clearance between pin and bore in piston . . . . . 0.020  $\pm$  0.013 mm (0.008  $\pm$  0.0005 in.)

#### FIG. A1.2 Piston Specifications



Note 1-Legend:


- (1) Bore in liner (new)  $137.185 \pm 0.025$  mm (5.401  $\pm 0.001$  in.). With head torqued to block, assembled liner diameter is measured at 15 mm (0.6 in.) 25.4 mm (1.0 in.) 50.8 mm (2.0 in.) 130. mm (5.1 in.) 230. mm (9.0 in.) from top of liner. Out of round (difference of transverse and longitudinal diameters at each vertical height level). Max.-0.038 mm (0.0015 in.) Taper (Difference of all vertical height diameters in either the transverse or longitudinal direction). Max.-0.050 mm (0.0020 in.) Minimum assembled liner diameter-137.154 mm (5.3998 in.)
- (2) Thickness of flange on liner-8.89  $\pm$  0.02 mm (.350  $\pm$  .0008 in.)
- (3) Filler band.

#### FIG. A1.3 Details of Cylinder Liner

- A1.6.1.7 The air flow at the timing setting (bypass closing and start of fuel injection) should stop and occur at  $31.5^{\circ} \pm 0.5$  BTC. Measure the position by the Vernier.
- A1.6.1.8 Continue rotation with the crankshaft past the timing setting and air flow should return.
- A1.6.1.9 Further crankshaft rotation within 180° of the timing setting should approach another point where the air does not flow. This step ensures that the fuel timing is set on the correct side of the fuel cam. Fig. A1.9 is a diagram of the bubble method apparatus.

A This engine uses Keystone style piston rings and grooves int the piston for top rings. The piston ring lands are also elliptically ground, therefore measure top and ringside clearance as follows:

# ∰ D 6750 – 02



Note 1—Retrofit not to distort inside diameter or surface.

FIG. A1.4 Front and Side Views of Cylinder Liner

| Г           |               | VERTICAL LOCATION OF MEASUREMENT |        |       |        |       | VERTICAL LOCATION OF |       |        |       |       |
|-------------|---------------|----------------------------------|--------|-------|--------|-------|----------------------|-------|--------|-------|-------|
| Cyl.<br>No. | Serial<br>No. |                                  | A      |       | В      | ,     | c                    | ,     | D      |       | Ε     |
| 140.        | 110.          | LONG.                            | TRANS. | LONG. | TRANS. | LONG. | TRANS.               | LONG. | TRANS. | LONG. | TRANS |
| 1           |               |                                  |        |       |        |       |                      |       |        |       |       |
| 2           |               |                                  |        |       |        |       |                      |       |        |       |       |
| 3           |               |                                  |        |       |        |       |                      |       |        |       |       |
| 4           |               |                                  |        |       |        |       |                      |       |        |       |       |
| 5           |               |                                  |        |       |        |       |                      |       |        |       |       |
| 6           |               |                                  |        |       |        |       |                      |       |        |       |       |

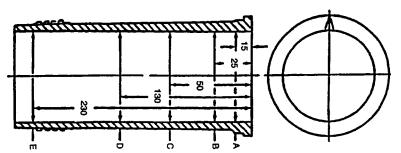
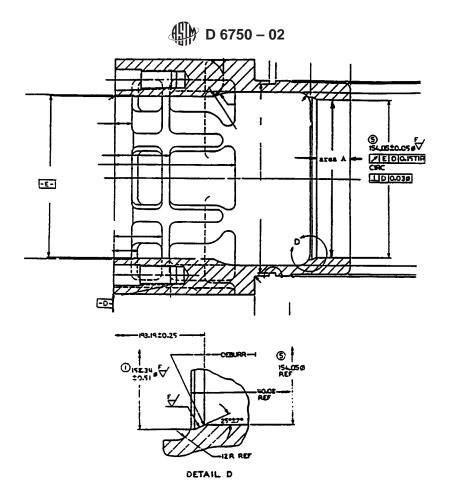
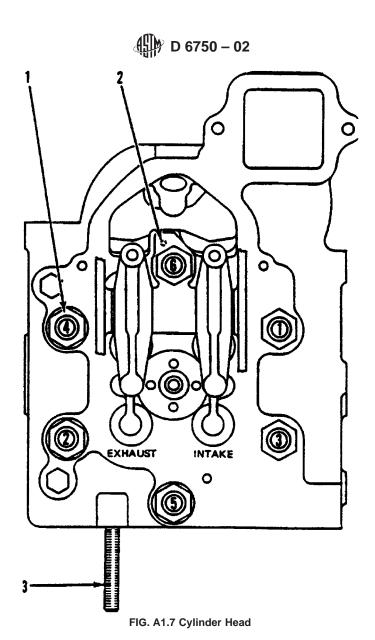
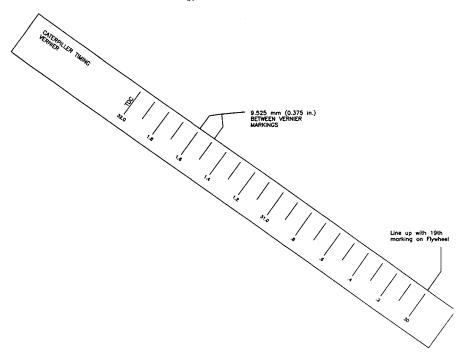




FIG. A1.5 Measurements of Cylinder Liner

A1.7 *1Y615 Cooling Jet I.D. Verification and Alignment*—See Fig. A1.10.

A1.8 Fuel Pump Plunger Erosion—See Fig. A1.11.



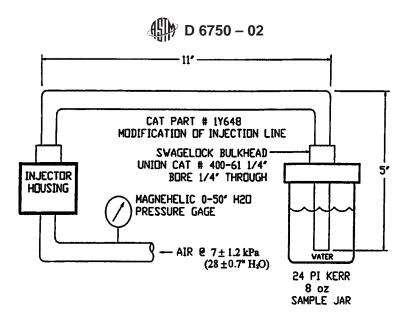


Note 1—1Y544 Cylinder Block (modifications required for product type cylinder liners)

Note 2—Machine o-ring area bore to 154.05 mm and tolerance shown.

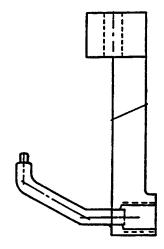
Note 3—During assembly the cyl. liner o-ring flange must not touch the block in area A (liner distortion may occur). Use feeler gage to check clearances.

FIG. A1.6 Cylinder Block Modifications






Note 1-Vernier Information


- (1) Make certain distance between the lines of the Vernier are 9.525 mm (0.375 in.).
- (2) Slowly rotate crankshaft (CCW from flywheel end) until bubbles stop. STOP ROTATION IMMEDIATELY AFTER THE BUBBLES STOP FLOWING. This is by-pass closing. Continued crank rotation will cause incorrect timing values.
- (3) Place the Vernier on top of the flywheel. Put the 32.0° line of the Vernier at the flywheel pointer with 30° line in the direction of 30° mark of the flywheel.
- (4) Read down on the Vernier to the location where a line on the Vernier directly matches up with a timing line on the flywheel. Read the Vernier °TDC value at the location where the lines match up.
- (5) Method to determine Vernier length:

20 flywheel division (40°) = 195 mm Length of Vernier scale =  $\frac{195 \times 19}{20}$ = 185.25 mm Length of 0.1° on vernier = 185.25 20 = 9.2625 mm

FIG. A1.8 Vernier for Measuring Flywheel Position



Note 1—Use Vernier to measure flywheel position. FIG. A1.9 Diagram of Bubble Method Apparatus



Note 1—Ensure jet tube I.D. at threaded end (opposite end of orifice) is  $0.135\pm\,0.005$  in. diameter.

Note 2—Tube can be inspected with:

No. 29 drill (0.1360 in.) nominal size.

No. 28 Drill (0.1405 in.). Drill should not fit in tube.

No. 3.3 mm drill (0.1299 in.). Drill should fit in tube.

Note 3—Replace 1Y615 cooling jet if not within specifications.

Note 4—When aligning the P tube (piston cooling jet tube), use an oil pressure of 358 kPa (52 psi) (system pressure).

FIG. A1.10 1Y615 Cooling, Jet I.D. Verification and Alignment

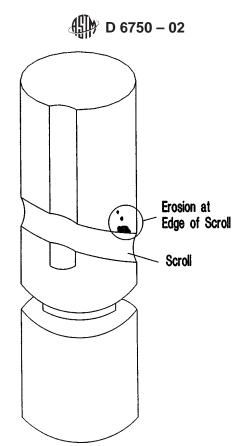



FIG. A1.11 Fuel Pump Plunger Erosion

#### A2. INTAKE AIR SYSTEM DETAILS

- A2.1 See Fig. A2.1 and Fig. A2.2.
- A2.2 1Y38 Surge Chamber and Heater Assembly:
- A2.2.1 *General Dimensions*—This assembly is essentially a pressure vessel with internal electrical heating elements. The

general dimensions of the surge chamber are: (1) volume, 204 L (7.37  $\text{ft}^3$ ); (2) inside diameter, 533 mm (21.00 in.); and (3) inside height, 933 mm (36.75 in.). See Table A2.1.

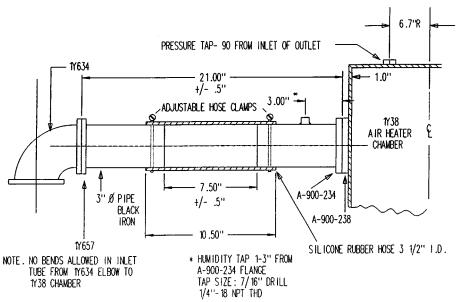



FIG. A2.1 Inlet Air Piping Arrangement



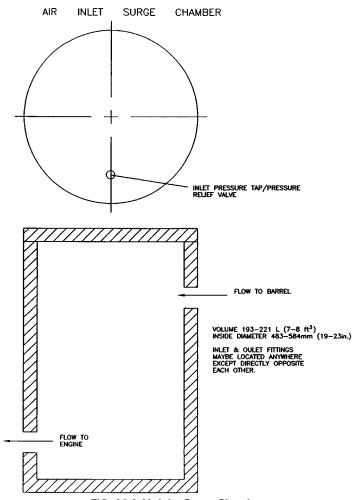



FIG. A2.2 Air Inlet Surge Chamber

- A2.2.2 *Permissible Changes in Design*—If individual requirements or local building codes necessitate changes in the design, the following modifications are permissible:
  - A2.2.2.1 Volume may vary from 193 to 221 L (7 to 8 ft<sup>3</sup>).
- A2.2.2.2 Inside diameter may vary from 483 to 584 mm (19 to 23 in.).
- A2.2.2.3 Inside height is a function of the volume and inside diameter.
- A2.2.2.4 Inlet and outlet fittings may be anywhere except opposite one another.
- A2.2.2.5 The type and arrangement of heating controls may be determined by local conditions.
- A2.2.2.6 The chamber may be located in any position relative to the engine so long as (a) the length of the air transfer pipe is  $533.4 \pm 12.7$  mm ( $21.0 \pm 0.5$  in.) from the face of the surge chamber mounting pad to the face of the 1Y634 elbow; and (b) the air transfer pipe contains no bends between the surge chamber and the 1Y634 elbow.
- A2.2.2.7 A stand may be constructed to raise the chamber to the proper height to fit the engine arrangement and mounting.
- A2.3 See Fig. A2.3 for intake air temperature location and Fig. A2.4 for horizontal air barrel pressure tap location.

### TABLE A2.1 Bill of Material, Surge Chamber and Heater Assembly

Note 1-Dimensions are in inches unless otherwise specified.

Note 2—Drawings are available from Caterpillar.

| Item |                                   | Caterpillar |                                        | No.      |
|------|-----------------------------------|-------------|----------------------------------------|----------|
| No.  | Name                              | Part No.    | Description                            | Required |
| 1-1  | Surge chamber and Heater Assembly |             |                                        | 1        |
| 1-2  | Bolt                              | L1648       | 3/8–24thd 2.50 long <sup>A</sup>       | 1        |
| 1-4  | Thermostatic switch               |             | -                                      | 2        |
| 1-5  | Lockwasher                        | 3B4506      | Std. for .375 diameter bolt            | 20       |
| 1-6  | Bolt                              | 2A4996      | 3/8-24thd 1.375 long                   | 20       |
| 1-7  | Pressure relief valve             |             | В                                      | 1        |
| 1-8  | Gasket                            |             | 0.0312 thick <sup>C</sup>              | 1        |
| 1-9  | Mounting plate                    |             | 20×12×.0625 thick                      | 1        |
|      |                                   |             | SAE 1020 steel                         |          |
| 1-10 | Spacer                            | 8B7430      | 0.750 OD 0.359 ID .532                 | 4        |
|      |                                   |             | thick SAE 1020 steel                   |          |
| 1-11 | Bolt                              | L1590       | 1/4-28thd 1.125 long                   | 4        |
| 1-12 | Lockwasher                        | 3B4504      | Std. for 0.250 diameter bolt           | 4        |
| 1-13 | Nut                               | 1B4201      | 1/4-28thd                              | 4        |
| 1-14 | Electrical junction box           |             | 12×18×4 std pull box w/hinged cover    | 1        |
| 1-15 | Strip heater                      |             | D                                      | 24       |
| 1-16 | Gasket                            |             | 0.0312 thick <sup>C</sup>              | 1        |
| 2-1  | Assembly                          |             |                                        | 1        |
| 2-2  | Top ring                          |             |                                        | 1        |
| 2-3  | Bottom plate                      |             |                                        | 1        |
| 2-4  | Strap-surge chamber               |             |                                        | 1        |
| 2-5  | Hook                              |             |                                        | 1        |
| 2-6  | Pad                               |             |                                        | 1        |
| 3-1  | Assembly                          |             |                                        | 1        |
| 3-2  | Top cover                         |             |                                        | 1        |
| 3-3  | Inner bracket                     |             |                                        | 1        |
| 3-4  | Outer bracket                     |             |                                        | 1        |
| 4-1  | Terminal assembly                 |             |                                        | 5        |
| 4-2  | Nut                               |             | 7/16-14thd SAE 73 brass                | 29       |
| 4-3  | Washer                            |             | Std. for .437 dia. bolt                | 10       |
| 4-4  | Insulator                         |             | 1.250 OD, .453 ID, .187 thick Synthane | 5        |
| 4-5  | Stud                              |             | 7/16-14thd 3 long brass                | 5        |
| 4-6  | Collar                            |             | · ·                                    | 5        |
| 4-7  | Insulator assembly                |             |                                        | 48       |
| 4-8  | Washer                            |             | .750 OD, .265 ID, .125 thick Mica      | 48       |
| 4-9  | Insulator                         |             | .500 OD .265 ID                        | 48       |
| 4-10 | Insulator                         |             | 1.687×1×.0625 w/.265 hole Mica         |          |
| 4-11 | Bolt                              |             | 1/4-20thd 1 long                       | 48       |
| 4-12 | Washer                            |             | Std. for .250 diameter bolt            | 48       |
| 4-13 | Nut                               |             | Std. for 1/4 20thd                     | 48       |
| 4-14 | Electric cable cover              |             |                                        | 1        |
| 4-15 | Terminal connector                |             |                                        | Ē        |
| 4-16 | Lower bracket assembly            |             |                                        | 1        |

A 40 °F per turn-normally closed-contacts open with increase of temperature. Turning screw counter-clockwise causes contacts to open at a higher temperature.

B Set to pop off at 137.9 ± 3.4 kPa (20 ± 0.5 psi).

C Make gaskets to fit top ring (2-2) and pad (2-6).

D Terminal on element goes to inside of barrel on inner rings and to outside of barrel on outer rings.

<sup>&</sup>lt;sup>E</sup> As required.

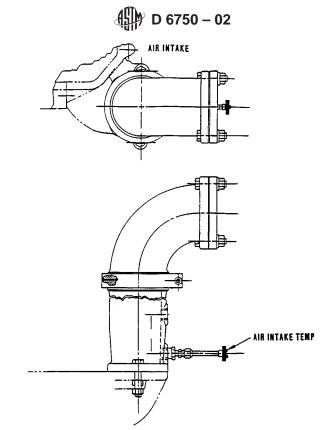
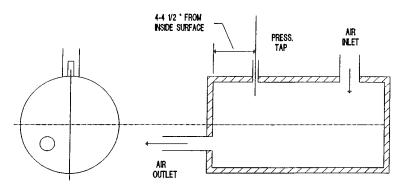




FIG. A2.3 Intake Air Temperature Location



Note 1—Air outlet should be  $90^\circ$  or greater from the air pressure tap. FIG. A2.4 Horizontal Air Barrel Pressure Tap Location

## A3. EXHAUST SYSTEM DETAILS

A3.1 See Figs. A3.1-A3.5.



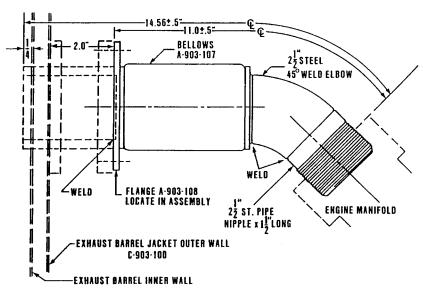



FIG. A3.1 Exhaust Piping Arrangement

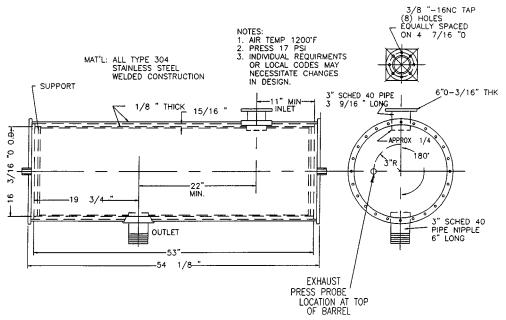
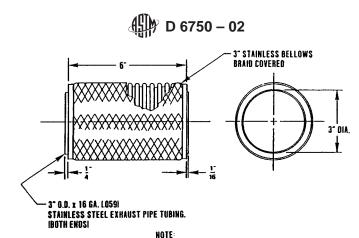
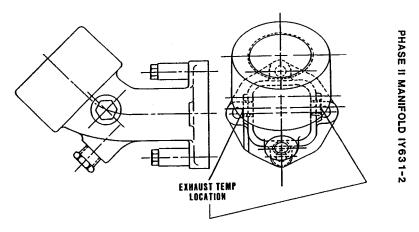
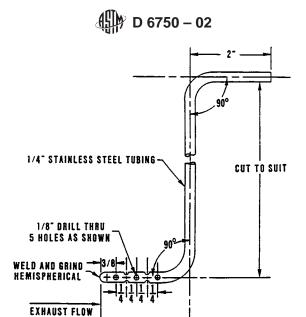





FIG. A3.2 Exhaust Barrel Diagram




NOTE: RUNNING TEMP 1150°F FIG. A3.3 Exhaust Bellows



Either location is acceptable.

FIG. A3.4 Thermocouple Location in Exhaust Manifold



NOTE. WALL THICKNESS .03 IN.
FIG. A3.5 Exhaust Gas Sample Probe

## A4. COOLING SYSTEM DETAILS

A4.1 See Figs. A4.1-A4.4.

# **⚠** D 6750 − 02

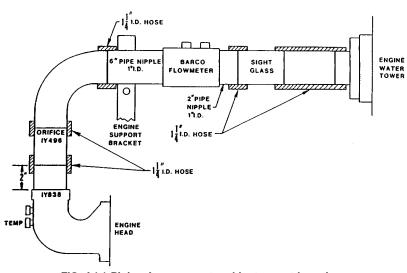



FIG. A4.1 Piping Arrangement and Instrument Locations

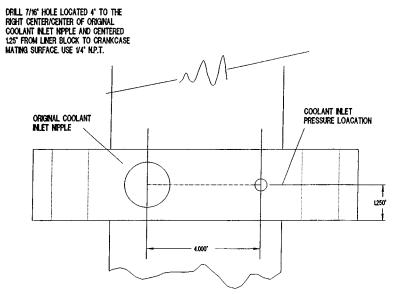
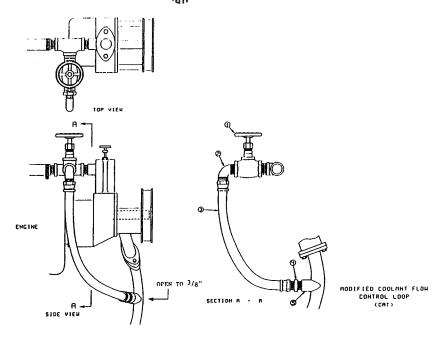
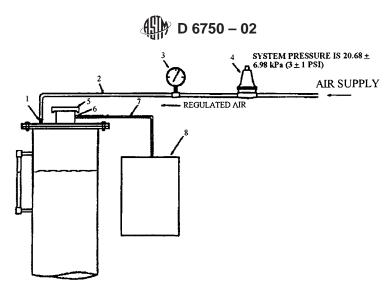




FIG. A4.2 Block Coolant Pressure Tap Location

# **∰** D 6750 − 02



Note 1-3/4 in. valve


Note 2—90° elbow  $\frac{3}{4}$  in. MNPT - TO No. 10AN.

Note 3—No. 10 hose with swivels.

Note 4—Connector  $\frac{3}{8}$  in. MNPT - TO No. 10AN. Drill to  $\frac{7}{16}$  in. inside diameter.

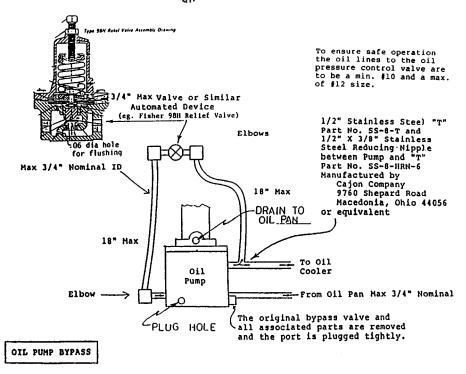
Note 5—Modify existing boss on the water pump intake. Drill and tap to 3/8 in. NPT.

FIG. A4.3 Water Pump Bypass Arrangement



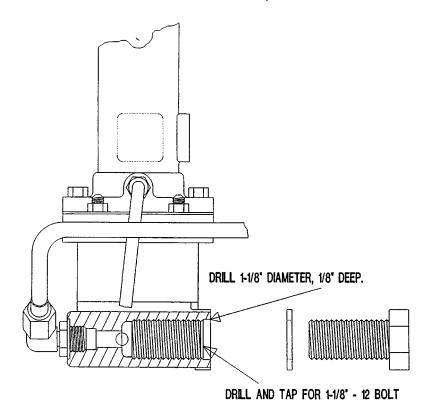
Pressurized Coolant System

Note 1-Legend:


- 1. 1/4 in. NPT-to No. 4AN (male connector)
- 2. No. 4 hose
- 3. Pressure gage 0-15 PSIG
- 4. Pressure regulator (self bleeding)
- 5. Radiator cap 15-16 PSIG
- 6. Radiator filler neck
- 7. Overflow tube
- 8. Overflow tank

Note 2—If the system builds to greater than regulator setting, then condensate will back-flow through regulator. FIG. A4.4 Cooling System Modification

## A5. OIL SYSTEM MODIFICATIONS AND INSTRUMENT LOCATIONS


A5.1 See Figs. A5.1-A5.8.

## ∰ D 6750 – 02



Note 1—Available from General Meters and Controls, 1776 Commerce Drive, Bos 625, Elk Grove, Village, IL 60007 as Oil Pressure External Relief Valve Fisher 98H-17 ½ in. Cast Iron Body, S.S. Diaphragm.

FIG. A5.1 Remote Mount Oil Pump Relief Valve



Note 1—Install: 1-2H3751 bolt (1-1/8-12  $\times$  2-1/2"); 1-5B3265 gasket. If desired, bolt thread may be sealed with 7M7456 bearing mount. **FIG. A5.2 Oil Pump Relief Valve Plug** 

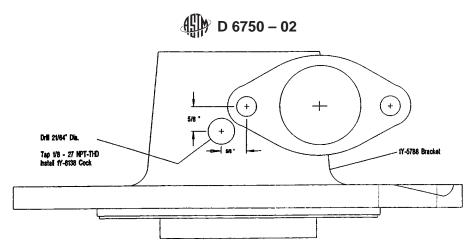
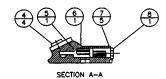
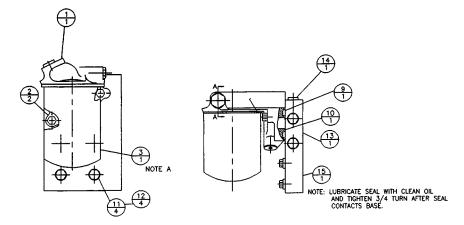





FIG. A5.3 Oil Pump Accessory Drive Housing Drain





Note 1—Legend:

| Quantity | PART NO. | NAME       |
|----------|----------|------------|
| 1        | IN4426   | Base AS.   |
| 2        | OS1571   | Bolt       |
| 1        | 8N9586   | Filter AS. |
| 4        | 9S8005   | Plug       |
| 1        | IN4424   | Valve      |
| 1        | IN4425   | Spring     |
| 5        | SK0360   | Seal       |
| 1        | IN4423   | Plug       |
| 1        | 6J2244   | Seal       |
| 1        | 5P7530   | Seal       |
| 4        | OS1590   | Bolt       |
| 4        | 5M2894   | Washer     |
| 1        | 7M7410   | Plug       |
| 1        | 5B8994   | Gasket     |
| 1        | 1Y0698   | Bracket    |

FIG. A5.4 Oil Filter Housing Assembly

# ∰ D 6750 – 02

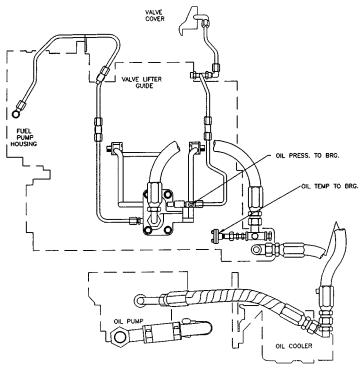



FIG. A5.5 1Y580 Engine Oil Lines Group - Part 1

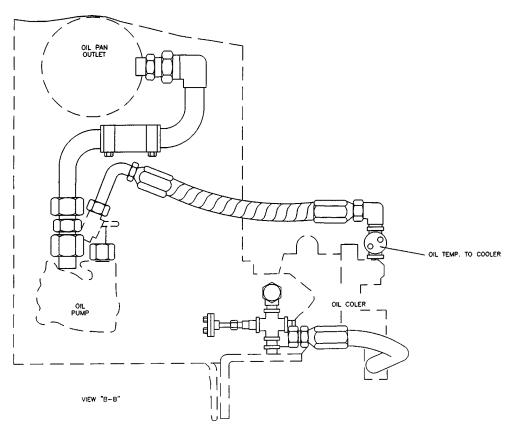



FIG. A5.6 1Y580 Engine Oil Lines Group - Part 2

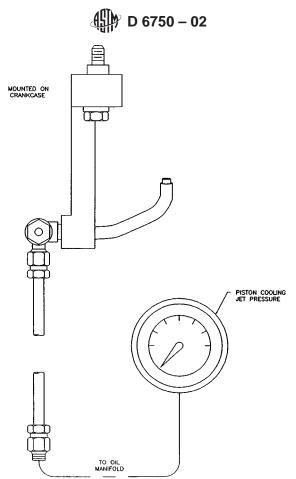
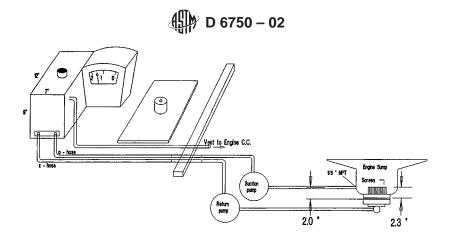




FIG. A5.7 1Y616 Piston Cooling Jet Group



Note 1—Requirements:

(1) Suction pump and hose

Type - Viking C-90 pump or equivalent

Flow -6 GPH/ -1.5 GPH

Speed – 285 R/min

Hose – 0.25" ID; 9' total length (max.)

Pulley – 4.95" OD

(2) Return pump and hose

Type – Viking C-92 pump or equivalent Flow Differential – 3 GPH /– 1 GPH

Speed - 163 R/min

Hose – 0.25" ID; 9' total length (max.)

Pulley - 8" OD

(3) Pump motor (both pumps)

Type - 56 Nema Grainger 6K949 or equivalent

Speed - 1140 R/min

H.P. - 3/4

Pulley - 1.5" OD

Vent line – 0.25" OD hose

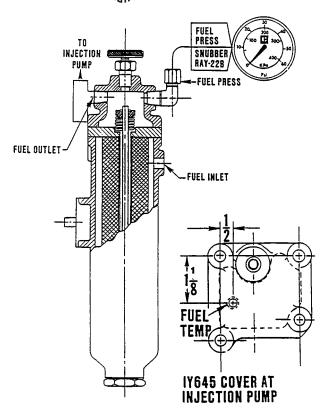

- (4) Oil in reservoir 2 qt
- (5) Scale precision 0.01 (properly damped)
- (6) Flexible hose To/from reservoir from fixed cart support Gould/Imperial catalog C405-100

FIG. A5.8 Low Flow Oil Scale System

# A6. OTHER PRESSURE AND TEMPERATURE MEASUREMENT LOCATIONS

A6.1 See Figs. A6.1 and A6.2.





Note 1—Fuel gage snubber available from Operating and Maintenance Specialities, Charlotte, NC: As Ray Snubber, Model 22B. FIG. A6.1 Fuel Pressure and Temperature Measurement Locations

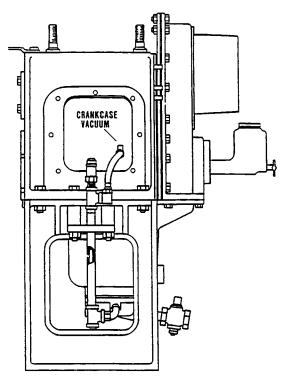



FIG. A6.2 Crankcase Pressure Measurement Location

### A7. OIL CONSUMPTION LINEAR REGRESSION METHOD

A7.1 If there is good reason to assume that a variable Y is dependent upon another variable X and that the relationship is linear, the best-fit line describing this relationship can be plotted using: Eq A7.1 and A7.2. Also, see Figs. A7.1 and A7.2.

$$b = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}}$$
(A7.1)

$$a = \left\lceil \frac{\sum y_i}{n} - b \frac{\sum x_i}{n} \right\rceil \tag{A7.2}$$

$$r^{2} = \frac{\left[\sum x_{i}y_{i} - \frac{\sum x_{i}\sum y_{i}}{n}\right]^{2}}{\left[\sum (x_{i})^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}\right]\left[\sum (y_{i})^{2} - \frac{\left(\sum y_{i}\right)^{2}}{n}\right]}$$
(A7.3)

where:

 $Y_i$  points = oil weights taken at time X,

 $X_i$  points = times at which oil weight observation X are

made (that is, hours 1,2,....n),

b = slope of best-fit line = oil consumption,

a = Y-intercept, and

 $r^2$  = goodness of fit (if 1, perfect; if 0, no fit at all).

A7.2 Methods of Computation of Oil Consumption Using Linear Regression:

A7.2.1 Oil consumption may be calculated during any period by performing a linear regression on  $Y_i$  and  $X_i$  data points where:

 $Y_{\rm i}={
m oil}$  weight taken at time X (from digital readout, strip chart, or as recorded by a computer), and

 $X_i$  = time at which oil observation Y is taken (from manual log or computer memory).

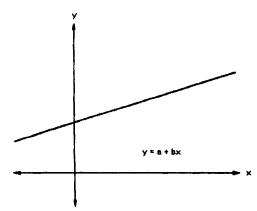



FIG. A7.1 Oil Consumption Linear Regression Graph

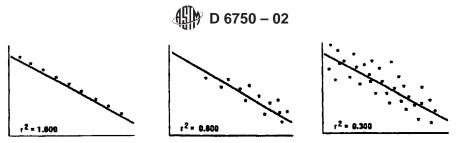



FIG. A7.2 Examples of Goodness of Fit

# A8. TEST FUEL SPECIFICATIONS

A8.1 See Tables A8.1-A8.3.

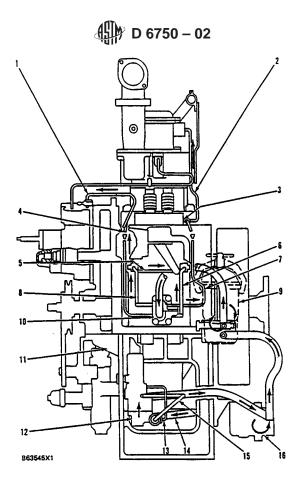


# TABLE A8.1 Specification for 1K Test Fuel

| Test                | ASTM Method      | Requirement                              |           |
|---------------------|------------------|------------------------------------------|-----------|
| Flash point         | D 93             | 140°F (60.0°C) min. or legal             |           |
| Pour point          | D 97             | 20°F (–7°C) max.                         |           |
| Cloud point         | D 2500 OR D 3117 | Report                                   |           |
| Water and sediment  | D 1796           | 0.05 volume % max.                       |           |
| Ramsbottom carbon   | D 524            | 0.20 mass % max.                         |           |
| residue on 10%      |                  |                                          |           |
| residuum            |                  |                                          |           |
| Ash                 | D 482            | 0.01 mass % max.                         |           |
| Distillation        | D 86             | IBP Report                               |           |
|                     |                  | 10 % Report                              |           |
|                     |                  | 50 % 500-530°F (260-277°C)               |           |
|                     |                  | 90 % 590-620°F (310-327°C)               |           |
|                     |                  | EP 659-690°F (343-366°C)                 |           |
| Kinematic viscosity | D 445            | 2.0-4.0 cSt (2.0-4.0 mm <sup>2</sup> /s) |           |
| At 104°F (40.0°C)   |                  |                                          |           |
| Total sulfur        | D 2622           | 0.380-0.420 mass %                       |           |
| (must be natural)   |                  |                                          |           |
| Copper corrosion    | D 130            | no. 2 max.                               |           |
| (122°F, 50°C, 3 h)  |                  |                                          |           |
| Acid No. (an-E)     | D 664            | 0.15 mg KOH/g max.                       |           |
| Cetane No.          | D 613            | 47.0-53.0                                |           |
| Density             | D 287 OR D 1298  | report                                   |           |
| API gravity         | D 287 OR D 1298  | 33-35°API                                |           |
| Cracked stocks      |                  | none                                     |           |
| Hydrocarbon types   | D 1319           | report                                   |           |
| Hydrocarbon Types   | D 2425           | Component                                | Mass %    |
|                     |                  | Aliphatic paraffins                      | 45.0-65.0 |
|                     |                  | Monocycloparaffins                       | report    |
|                     |                  | Dicycloparaffins                         | 0.0-15.0  |
|                     |                  | Tricycloparaffins                        | report    |
|                     |                  | Alkybenzenes                             | 5.0-10.0  |
|                     |                  | Indans/Tetralins                         | report    |
|                     |                  | Indenes                                  | report    |
|                     |                  | Napthalene                               | report    |
|                     |                  | Napthalenes                              | 5.0-15.0  |
|                     |                  | Acenaphthenes                            | report    |
|                     |                  | Acenaphthylenes                          | report    |
|                     |                  | Tricyclic aromatics                      | report    |

# TABLE A8.2 Specification for 1N Test Fuel

| Test                    | ASTM Method | Requirement        |        |
|-------------------------|-------------|--------------------|--------|
| Flash point             | D 93        | 54°C min.          |        |
| Pour point              | D 97        | –18°C max.         |        |
| Cloud point             | D 2500      | −12°C max.         |        |
| Water and sediment      | D 2709      | 0.05 volume % max. |        |
| Ramsbottom carbon       | D 524       | 0.35 mass % max.   |        |
| residue on 10% residuum |             |                    |        |
| Ash                     | D 482       | 0.01 mass % max.   |        |
| Distillation            | D 86        | IBP 177-199°C      |        |
|                         |             | 10 % 210-232°C     |        |
|                         |             | 50 % 249-277°C     |        |
|                         |             | 50 % 299-327°C     |        |
|                         |             | EP 327-360°C       |        |
| Kinematic viscosity     | D 445       | 2.0-3.2 cSt        |        |
| At 40°C                 |             |                    |        |
| Total sulfur            | D 2622      | 0.03-0.05 mass %   |        |
| (must be natural)       |             |                    |        |
| Copper corrosion        | D 130       | no. 3 max.         |        |
| Cetane index            | D 4737      | 42-48              |        |
| Cetane number           | D 613       | 42-48              |        |
| API gravity             | D 287       | 32-36°API          |        |
| Hydrocarbon Types       |             | Component          |        |
| -                       |             | ·                  |        |
|                         | D 5186      | Aromatics % volume | 28-35  |
|                         | D 1319      | Olefin             | report |
|                         | D 1319      | Saturates          | report |


# TABLE A8.3 Estimation of High Heating Value of Fuel from API Gravity

Note 1—For calculating heat input, use the high heating value (gross heat of combustion) estimated from the API gravity of the fuel. The relationship between gross heat of combustion and API gravity figures in this table was obtained from NIST Miscellaneous Publication No. 97.

| Gravity                           | Gross Heat | of Combustion |
|-----------------------------------|------------|---------------|
| Degrees, A.P.I.,<br>15.6°C (60°F) | kJ/kg      | (BTU/lb)      |
| 30                                | 45 155     | (19 420)      |
| 31                                | 45 225     | (19 450)      |
| 32                                | 45 318     | (19 490)      |
| 33                                | 45 388     | (19 520)      |
| 34                                | 45 481     | (19 560)      |
| 35                                | 45 551     | (19 590)      |

# A9. LUBRICATION SYSTEM, FLUSH APPARATUS, AND PROCEDURE

A9.1 See Figs. A9.1-A9.12.



Note 1-B63545X1 Legend

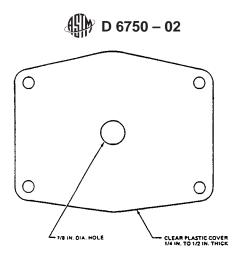

- 1. Line to fuel cam
- 2. Line to rocker arm shaft.
- 3. Line to lifter.
- 4. Line to accessory shaft.
- 5. Line to piston cooling jet.
- 6. Line to rear main bearing. 7. Line to rear cam bearing.
- 8. Line to front main bearing.
- 9. Oil filter.
- 10. Manifold.
- 11. Oil pan.
- 12. Oil pump.
- 13. Drain line.14. Oil pump supply line.
- 15. Bypass line.
- 16. Oil cooler assembly.

FIG. A9.1 Lubrication System

| PROCEDURE                                                                                                                                                                                                                                            | FLUSH FLUID                                                                           | PUMP CO          | NNECTION            | FLU                | SHING                 | TIME (              | min)           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|---------------------|--------------------|-----------------------|---------------------|----------------|
|                                                                                                                                                                                                                                                      |                                                                                       | Inlet            | Outlet              | Engine Oil<br>Line | Crank<br>case         | Governor<br>Housing | Front<br>Cover |
| I. Install a new 8N9586 oil filter and a clean 1Y5700 element in the flushing pump unit. Remove crankcase breather 1Y2592 from engine and wash in solvent until clean. Air dry.                                                                      | 7.6 L (2 U.S.gal)<br>Stoddard solvent<br>No recirculation;<br>Crankase drain<br>open. | Solvent tank     | Oil cooler drain    | 5                  |                       |                     |                |
| *2. Recirculate cleaning mixture.                                                                                                                                                                                                                    | Cleaning mixture:                                                                     | Crankacase drain | Oil cooler drain    | 15                 |                       |                     |                |
| Turn on oil scale pumps.                                                                                                                                                                                                                             | 1.9 L (0.5 U.S.gal)<br>engine cleaner                                                 | Crankacase drain | Crankcase sprayer   |                    | 10                    | 10                  |                |
|                                                                                                                                                                                                                                                      | 5.7 L (1.5 U.S.gal) Stoddard solvent                                                  | Crankacase drain | Front cover sprayer |                    |                       |                     | 10             |
| *3. Drain mixture from crankcase, governor                                                                                                                                                                                                           | Solvent flush A                                                                       | Crankacase drain | Oil cooler drain    | 15                 |                       |                     |                |
| housing, drive housing, oil cooler, oil scale reservoir, and engine and flushing pump                                                                                                                                                                | 7.6 L (2 U.S. gal)                                                                    | Crankacase drain | Crankcase sprayer   |                    | 10                    | 10                  |                |
| filters. Recirculate using C.                                                                                                                                                                                                                        | Stoddard solvent                                                                      | Crankacase drain | Front cover sprayer |                    |                       |                     | 10             |
| *4. Drain Stoddard solvent from crankcase,                                                                                                                                                                                                           | Solvent flush B                                                                       | Crankacase drain | Oil cooler drain    | 15                 |                       |                     |                |
| governor housing, oil cooler, oil scale reservoir, and engine and flushing pump                                                                                                                                                                      | 7.6 L (2 U.S. gal)                                                                    | Crankacase drain | Crankcase sprayer   |                    | 10                    | 10                  |                |
| filters. Recirculate using B.                                                                                                                                                                                                                        | Stoddard solvent                                                                      | Crankacase drain | Front cover sprayer |                    |                       |                     | 10             |
| *5. Drain Stoddard solvent from crankcase,                                                                                                                                                                                                           | Solvent flush C                                                                       | Crankacase drain | Oil cooler drain    |                    |                       |                     |                |
| governor housing, oil cooler, oil scale reservoir, and engine and flushing pump                                                                                                                                                                      | 7.6 L (2 U.S. gal)                                                                    | Crankacase drain | Crankcase sprayer   |                    | 10                    | 10                  |                |
| filters. Recirculate using C.                                                                                                                                                                                                                        | Stoddard solvent                                                                      | Crankacase drain | Front cover sprayer |                    |                       |                     | 10             |
| *6. Drain Stoddard solvent from crankcase,<br>governor housing, oil cooler, oil scale                                                                                                                                                                | Extra solvent flushes:                                                                | Crankacase drain | Oil cooler drain    | 15                 |                       |                     |                |
| reservoir, and engine and flushing pump                                                                                                                                                                                                              |                                                                                       | Crankacase drain | Crankcase sprayer   |                    | 10                    | 10                  |                |
| filters. If solvent clean, go to step.  Otherwise, recirculate with extra solvent.                                                                                                                                                                   | 7.6 L (2 U.S. gal) Stoddard solvent                                                   | Crankacase drain | Front cover sprayer |                    |                       |                     | 10             |
| 7. Repeat step 6                                                                                                                                                                                                                                     |                                                                                       |                  | -                   |                    |                       |                     |                |
| *8. Drain Stoddard solvent from crankcase, governor housing, oil cooler, oil scale reservoir, and engine and flushing pump filters. Close drain & 1Y653 line. Install dummy piston, cylinder block, liner, oil filler spout, governor housing cover. | 4.7 L (5 U.S.qt.)<br>test oil                                                         |                  |                     |                    |                       |                     |                |
| 9. Add test oil.<br>Recirculate at 359 kPa (52 psi)                                                                                                                                                                                                  | 4.7 L (5 U.S.qt.)<br>test oil                                                         | Crankacase drain | Oil cooler drain    |                    | otor eng<br>least 1 r | ine @ 40<br>nin     | 0r/min         |
| *10. Drain test oil from crankcase, governor housing, accumulator drive housing, oil cooler, and oil scale reservoir, engine and flushing pump filters.                                                                                              |                                                                                       |                  |                     |                    |                       |                     |                |
| 11. Add test oil. Recirculate at 359 kPa<br>(52 psi). Align piston jet. Drain and<br>build for test.                                                                                                                                                 | 4.7 L (5 U.S.qt.)<br>test oil                                                         | Crankacase drain | Oil cooler drain    |                    | R                     | ecirculat           | e 5 min        |

<sup>\*</sup> Low flow oil scale pumps should be turned on during each step.

FIG. A9.2 Flushing Instruction Sheet



Note 1—Use 1 Y3698 gasket as pattern for bolt hole locations. FIG. A9.3 Clear Plastic Cover

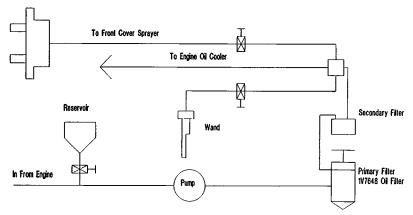



FIG. A9.4 Flushing Cart Flow Schematic

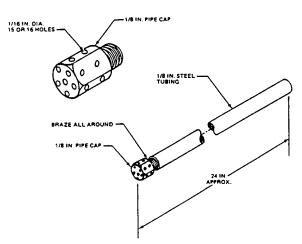



FIG. A9.5 Crankcase/Governor Housing Sprayer

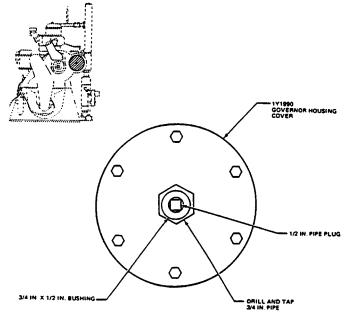
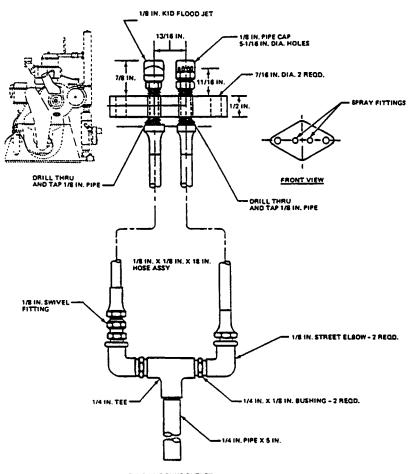




FIG. A9.6 Governor Housing Cover Modification



FLUSHING PUMP OUTLET
FIG. A9.7 Front Cover Sprayer

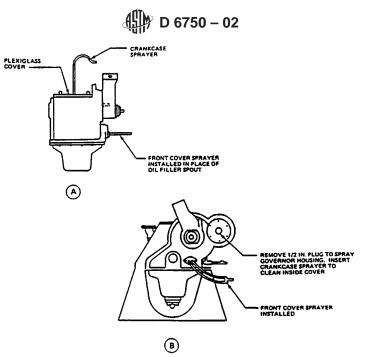
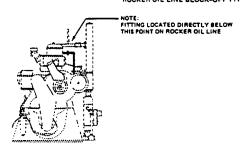




FIG. A9.8 Flushing Component Location

ROCKER OIL LINE BLOCK-OFF FITTING



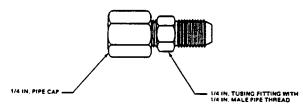



FIG. A9.9 Rocker Oil Line Block-off Fitting

# PLASTIC TOP PISTON COOLING JET TARGET

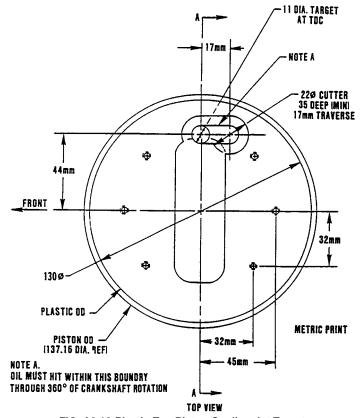



FIG. A9.10 Plastic Top Piston Cooling Jet Target

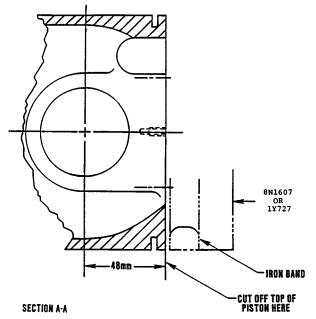



FIG. A9.11 Plastic Top Piston Cooling Jet Target, Section A-A

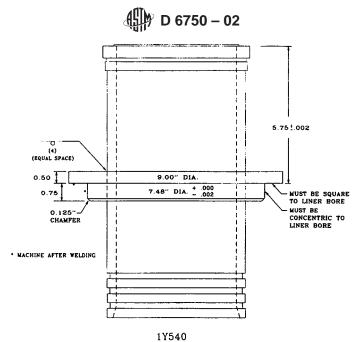



FIG. A9.12 Jet Alignment Fixture (2W6000 Liner)

# A10. ENGINE OPERATING CONDITIONS

A10.1 See Tables A10.1 and A10.2.

# TABLE A10.1 Engine Run-in, Warm-up, Cool-down, and Test Conditions

| Step No.                       | Range | Unit     | 1            | 2    | 3    | 4     | 5        | Step 5 equivalent      |
|--------------------------------|-------|----------|--------------|------|------|-------|----------|------------------------|
| Test Time                      |       | min      | 5            | 5    | 10   | 20    | 20       | in inch-lb. units      |
| Engine speed                   | ± 10  | r/min    | 1000         | 1000 | 1800 | 2100  | 2100     |                        |
| Engine power                   |       | kW       | idle         | 12   | 26   | 38    | 52       | 70 bbp                 |
| BMEP                           |       | kPa      |              | 586  | 690  | 855   | 1240     | 180 ps                 |
| Fuel Rate                      | ± 53  | kJ/min   |              | 2160 | 4250 | 6250  | 8430     | 7990 Btu/min           |
| Fuel flow                      |       | g/min    |              | 48   | 94   | 137   | 185      | 0.408 lb/min           |
| B.S.F.C.                       |       | kg/kW-h  |              |      |      | 0.222 | 0.213    | 0.355 lb/bhp·h         |
| Humidity                       | ± 1.7 | g/kg     |              |      |      | 17.8  | 17.8     | 125 grains/lb          |
|                                |       |          | Temperatures |      |      |       |          |                        |
| Coolant out                    | ± 2.5 | °C       |              |      | 84   | 90    | 93       | 200°F                  |
| Coolant in                     |       | °C       |              |      |      | 86    | 88       | 192°F                  |
| Coolant $\Delta T$             | ± 1   | °C       |              |      |      | 4     | 5        | 9 °F                   |
| Oil to bearing                 | ± 2.5 | °C       |              |      | 76   | 93    | 107      | 225°F                  |
| Oil cooler in                  |       | °C       |              |      |      | 96    | 110      | 232°F                  |
| Inlet air                      | ± 2.5 | °C       |              |      | 93   | 93    | 127      | 260°F                  |
| Exhaust                        | ± 30  | °C       |              |      |      | 405   | 550      | 1020°F                 |
| Fuel injector housing          | ± 3   | °C       |              |      |      | 57    | 57       | 135°F                  |
|                                |       |          | Pressures    |      |      |       |          |                        |
| Oil to bearing                 |       | Max. kPa |              |      |      | 440   | 482      | 70 ps                  |
| Oil to jet                     | ± 13  | kPa      |              |      | 410  | 370   | 360      | 52 ps                  |
| Inlet air (ABS)                | ± 1   | kPa      | 120          | 120  | 160  | 220   | 240      | 71 in. Hg              |
| Exhaust (ABS)                  | ±1    | kPa      |              | 104  | 140  | 180   | 216      | 64 in. Hg              |
| Fuel filter housing            | ± 20  | kPa      |              |      |      | 210   | 210      | 31 ps                  |
| Crankcase vacuum               | ± 0.1 | kPa      |              |      |      |       | 0.7      | 3 in. H <sub>2</sub> O |
| Coolant jug                    |       | kPa      |              |      |      |       | 50       | 7 ps                   |
|                                | ·     |          | Flows        |      |      |       |          |                        |
| Blowby                         |       | L/min    |              |      |      |       | 23       | 50 ft <sup>3</sup> /hı |
| Coolant flow<br>Air/Fuel ratio | ± 2.0 | L/min    |              |      |      |       | 65<br>29 | 17.3 gal/min           |

### **TABLE A10.2 Air-Fuel Ratios**

Note 1—

$$A/F_{O_2} = 14.33786 \left( \frac{100 - 0.064355(\% O_2)}{100 - 4.7619(\% O_2)} \right)$$

$$A/F_{\text{CO}_2} = \left(\frac{208.8367}{\%\text{CO}_2}\right) + 0.9227$$

|                   |        | CO <sub>2</sub>   | \ %C   | $O_2$ /          |       |                  |       |
|-------------------|--------|-------------------|--------|------------------|-------|------------------|-------|
|                   | A/F    |                   | A/F    |                  | A/F   |                  | A/F   |
| % CO <sub>2</sub> | $CO_2$ | % CO <sub>2</sub> | $CO_2$ | % O <sub>2</sub> | $O_2$ | % O <sub>2</sub> | $O_2$ |
| 6.5               | 33.05  | 10.5              | 20.81  | 6.5              | 20.68 | 10.5             | 28.48 |
| 6.6               | 32.56  | 10.6              | 20.62  | 6.6              | 20.82 | 10.6             | 28.75 |
| 6.7               | 32.09  | 10.7              | 20.44  | 6.7              | 20.96 | 10.7             | 29.03 |
| 6.8               | 31.63  | 10.8              | 20.26  | 6.8              | 21.11 | 10.8             | 29.31 |
| 6.9               | 31.19  | 10.9              | 20.08  | 6.9              | 21.26 | 10.9             | 29.60 |
| 7.0               | 30.76  | 11.0              | 19.91  | 7.0              | 21.41 | 11.0             | 29.90 |
| 7.1               | 30.34  | 11.1              | 19.74  | 7.1              | 21.56 | 11.1             | 30.20 |
| 7.2               | 29.93  | 11.2              | 19.57  | 7.2              | 21.72 | 11.2             | 30.50 |
| 7.3               | 29.53  | 11.3              | 19.40  | 7.3              | 21.87 | 11.3             | 30.81 |
| 7.4               | 29.14  | 11.4              | 19.24  | 7.4              | 22.03 | 11.4             | 31.13 |
| 7.5               | 28.77  | 11.5              | 19.08  | 7.5              | 22.20 | 11.5             | 31.46 |
| 7.6               | 28.40  |                   |        | 7.6              | 22.36 |                  |       |
| 7.7               | 28.04  |                   |        | 7.7              | 22.53 |                  |       |
| 7.8               | 27.70  |                   |        | 7.8              | 22.70 |                  |       |
| 7.9               | 27.36  |                   |        | 7.9              | 22.87 |                  |       |
| 8.0               | 27.03  |                   |        | 8.0              | 23.04 |                  |       |
| 8.1               | 26.71  |                   |        | 8.1              | 23.22 |                  |       |
| 8.2               | 26.39  |                   |        | 8.2              | 23.40 |                  |       |
| 8.3               | 26.08  |                   |        | 8.3              | 23.58 |                  |       |
| 8.4               | 25.78  |                   |        | 8.4              | 23.77 |                  |       |
| 8.5               | 25.49  |                   |        | 8.5              | 23.96 |                  |       |
| 8.6               | 25.21  |                   |        | 8.6              | 24.15 |                  |       |
| 8.7               | 24.93  |                   |        | 8.7              | 24.34 |                  |       |
| 8.8               | 24.65  |                   |        | 8.8              | 24.54 |                  |       |
| 8.9               | 24.39  |                   |        | 8.9              | 24.74 |                  |       |
| 9.0               | 24.13  |                   |        | 9.0              | 24.95 |                  |       |
| 9.1               | 23.87  |                   |        | 9.1              | 25.15 |                  |       |
| 9.2               | 23.62  |                   |        | 9.2              | 25.37 |                  |       |
| 9.3               | 23.38  |                   |        | 9.3              | 25.58 |                  |       |
| 9.4               | 23.14  |                   |        | 9.4              | 25.80 |                  |       |
| 9.5               | 22.19  |                   |        | 9.5              | 26.02 |                  |       |
| 9.6               | 22.68  |                   |        | 9.6              | 26.25 |                  |       |
| 9.7               | 22.45  |                   |        | 9.7              | 26.48 |                  |       |
| 9.8               | 22.23  |                   |        | 9.8              | 26.71 |                  |       |
| 9.9               | 22.02  |                   |        | 9.9              | 26.95 |                  |       |
| 10.0              | 21.81  |                   |        | 10.0             | 27.20 |                  |       |
| 10.1              | 21.60  |                   |        | 10.1             | 27.44 |                  |       |
| 10.2              | 21.40  |                   |        | 10.2             | 27.20 |                  |       |
| 10.3              | 21.20  |                   |        | 10.3             | 27.95 |                  |       |
| 10.4              | 21.00  |                   |        | 10.4             | 28.22 |                  |       |

### A11. PROCEDURE FOR RATING PISTON AND LINER

A11.1 Manual for Rating Piston and Liner—Rate piston and liner in accordance with CRC Manual No. 18, Modified CRC Diesel Piston Rating Method, and A13.1 and A13.6. This includes rating the varnish deposit and utilizing the varnish scale described in the manual. Carbon deposit factors range from 1.000 to 0.250 and varnish deposits range from 9.0 to 0.0. Convert varnish scale values to demerit values in accordance with the technique described in the updated 1G2 method.

A11.2 Fig. A11.1 is a diagram of the procedure for rating undercrown deposits.

A11.3 *Procedure for Rating Liner*—Carry out the rating of the liner in sequence as follows:

A11.3.1 Evaluate deposits above ring travel immediately upon the completion of the test or disassembly.

A11.3.2 Liner Preparation:

A11.3.2.1 *Marking*—Draw a straight line on the front and rear of the liner from the top to the bottom. Then mark the thrust and anti-thrust sides as *T* and *AT* respectively. See Fig. A11.2. Finally place on the liner appropriate test identification (for example, run number, and so forth).



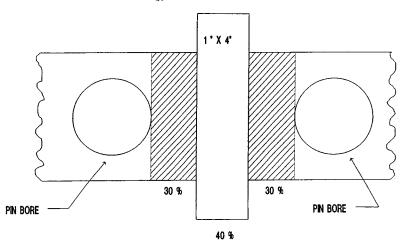
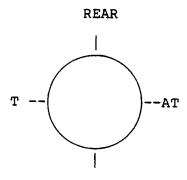




FIG. A11.1 Procedure for Rating Undercrown Deposits



FRONT FIG. A11.2 Rating Liner Marking

A11.3.2.2 *Cutting*—Cut the liner on a vertical line *fore* and *aft*.

A11.3.2.3 *Liner Handling and Surface Preparation*—Handle the liner with care to avoid injury from the sharply cut edges. Wipe both halves of the liner first with a soft cloth dampened with Stoddard solvent and then with a soft, clean, dry cloth.

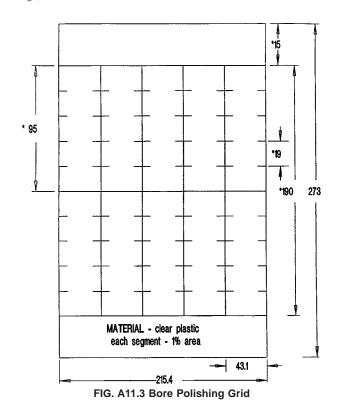
A11.3.3 *Liner Rating*:

A11.3.3.1 *Rating Environment*—Rate the liners in the existing CRC rating booth using the same light as specified for piston rating or a two-bulb fluorescent desk lamp.

A11.3.3.2 Bore Polishing Rating—Outline the bore polished area of the liner with a black magic marker. Insert the overlay in the liner half and use the 10 % segments with 1 % indicators as a guide in estimating the amount of polishing. Record the percent polish for each segment and then summarize the ten areas or equivalent for a permanent recording of the liner polishing. The rating area is defined as the area swept by the rings from the top of the first ring at TDC to the bottom of the ring at BDC. Occasionally, the rating area may include the area above top ring travel.

A11.3.3.3 *Liner Scuffing Rating*—Identical to bore polishing rating (see A11.3.3.2).

A11.3.3.4 Above Top Ring Travel Conditions—For multicylinder engines, check the above top ring travel conditions before piston removal. Use the 20-segmented template to


determine area percentages in the liner. Rate carbon deposits in two levels. If required, report polishing and scratching/scuffing in the area covered.

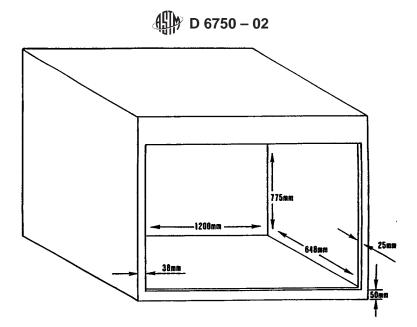
A11.4 Bore Polishing Grid—See Fig. A11.3.

A11.5 Rating Lamp:

A11.5.1 Source and Description—A suitable lamp is the diesel piston rating lamp obtainable from Newark Electronics Corp.<sup>31</sup> described Model No., LFM-1; Stock No., 99F 1100; Mounting Bracket Stock No., 99F 1114; and bulb designation, 20W cool white.

 $<sup>^{\</sup>rm 31}$  Available from Newark Electronics Corporation, 500 N Pulaski Road, Chicago, IL 60624.






A11.5.2 *Mounting*—Mount the lamp in any convenient position such that the liner may be placed and manipulated in the rating booth (see A11.6) while being viewed through the lamp.

A11.5.3 *Bulb Replacement*—Replace the bulb annually or when burned out. After replacement, stabilize the bulb by turning it on for 24 h before using it for rating.

A11.5.4 Use the lamp without the accompanying magnifying lens.

A11.6 Rating Booth—See Fig. A11.4.



Note 1—Materials-Plywood/13mm internal bracing can be made of strips of wood. **FIG. A11.4 Rating Booth** 

### A12. CALCULATION OF PERCENT OFFSET AND PERCENT DEVIATION

### A12.1 See Tables A12.1-A12.4.

- A12.2 Instructions for Calculation of Percent Out/Percent Off:
- A12.2.1 If needed, round off recorded values in accordance with the foot-pound (English) and SI (metric) specifications sheet.
- A12.2.2 For the percent calculations use (optional) the test specifications and tolerances listed on the foot-pound (English) and SI (metric) specifications sheet.
- A12.2.3 Calculate the percent out and percent off using the same units as in the recorded data. For example, if the test is operated in foot-pound units, calculate the percentages in foot-pound units. *Do not convert the units and then calculate the percentages*.
- A12.2.4 The logging frequency used for calculating the percentages shall be at the discretion of the laboratory and shall be at least hourly.
- A12.2.5 Any data used in the calculation of the percentages that are edited should include an explanation. List the data

**TABLE A12.1 Calibration Tolerance** 

| Parameter                              | Tolerance                                                                                                                                       |                                  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Speed, r/min                           | 2                                                                                                                                               |                                  |  |
| Load                                   | Not applicable due to differences wit<br>laboratory during visits.                                                                              | hin industry. TMC to verify each |  |
| Fuel Flow                              | Not applicable due to differences wit laboratory during visits.                                                                                 | hin industry. TMC to verify each |  |
| Humidity                               | Not applicable. Already specified. Ch<br>outlined in the test procedure (see for                                                                |                                  |  |
| Oil Weight                             | Not applicable because relative difference is the only item that matters.  Measurement resolution must be met as defined in the test procedure. |                                  |  |
| Temperatures                           | °F                                                                                                                                              | °C                               |  |
| Coolant out                            | 0.5                                                                                                                                             | 0.25                             |  |
| Coolant in                             | 0.5                                                                                                                                             | 0.25                             |  |
| Oil to bearing                         | 1.0                                                                                                                                             | 0.5                              |  |
| Intake air                             | 1.0                                                                                                                                             | 0.5                              |  |
| Exhaust                                | 2.0                                                                                                                                             | 1.0                              |  |
| Fuel at injector housing               | 1.0                                                                                                                                             | 0.5                              |  |
|                                        | Pressures                                                                                                                                       |                                  |  |
| Oil to bearing, psig                   | 0.1                                                                                                                                             | 0.7 kPa                          |  |
| Oil to jet, psig                       | 0.1                                                                                                                                             | 0.7 kPa                          |  |
| Inlet air, in. Hg                      | 0.1                                                                                                                                             | 0.3 kPa                          |  |
| Exhaust, in. Hg                        | 0.1                                                                                                                                             | 0.3 kPa                          |  |
| Fuel at filter, housing, psig          | 0.1                                                                                                                                             | 0.7 kPa                          |  |
| Crankcase vacuum, in. H <sub>2</sub> O | 0.1                                                                                                                                             | 0.02 kPa                         |  |

TABLE A12.2 Operational Specifications, Measurement Resolution and Rounding

| CAT-1K/IN                      |                               | Inch-Pou                            | nd Specification                     |                            |                            | S                                    | SI Specification                     |                             |
|--------------------------------|-------------------------------|-------------------------------------|--------------------------------------|----------------------------|----------------------------|--------------------------------------|--------------------------------------|-----------------------------|
| Parameter                      | Units                         | Specified<br>Range                  | Minimum<br>Measurement<br>Resolution | Round Value to the Nearest | Units                      | Specified<br>Range                   | Minimum<br>Measurement<br>Resolution | Round Values to the Nearest |
| Speed Power BMEP Fuel rate     | rpm<br>bhp<br>psig<br>Btu/min | 2100 ± 10<br>70<br>180<br>7990 ± 50 | 1                                    | whole number               | rpm<br>kW<br>kPa<br>kJ/min | 2100 ± 10<br>52<br>1240<br>8430 ± 53 | 1                                    | whole number                |
| Fuel flow <sup>A</sup><br>BSFC | lb/h<br>lb/bhp•h              | 24.47 ± 0.15<br>0.355               | 0.01                                 | hundredth                  | g/min<br>kg/kW             | 185 ± 1<br>0.213                     | 0.1                                  | tenth                       |
| Humidity                       | grains/lb                     | $125 \pm 12$                        | 1                                    | whole number               | g/Kg                       | $17.8 \pm 1.7$                       | 0.1                                  | tenth                       |
| Oil weight                     | lb                            | N/A                                 | 0.01                                 | hundredth                  | g                          | N/A                                  | 1                                    | whole number                |
|                                |                               |                                     | Ter                                  | nperatures                 |                            |                                      |                                      |                             |
| Coolant out                    | °F                            | 200 ± 5                             | 0.1                                  | tenth                      | °C                         | 93 ± 2.5                             | 0.1                                  | tenth                       |
| Coolant in                     | °F                            | 191                                 | 0.1                                  | tenth                      | °C                         | 88                                   | 0.1                                  | tenth                       |
| Coolant $\Delta$               | °F                            | 9 ± 2                               | 0.1                                  | tenth                      | °C                         | 5 ± 1                                | 0.1                                  | tenth                       |
| Oil to bearing                 | °F                            | $225 \pm 5$                         | 0.1                                  | tenth                      | °C                         | $107 \pm 2.5$                        | 0.1                                  | tenth                       |
| Oil cooler inlet               | °F                            | 230                                 | 0.1                                  | tenth                      | °C                         | 110                                  | 0.1                                  | tenth                       |
| Inlet air                      | °F                            | $260 \pm 5$                         | 0.1                                  | tenth                      | °C                         | $127 \pm 2.5$                        | 0.1                                  | tenth                       |
| Exhaust                        | °F                            | $1020 \pm 50$                       | 0.1                                  | whole number               | °C                         | $550 \pm 30$                         | 1                                    | whole number                |
| Fuel at injector housing       | °F                            | 135 ± 5                             | 0.1                                  | tenth                      | °C                         | 57 ± 3                               | 0.1                                  | tenth                       |
|                                |                               |                                     | Р                                    | ressures                   |                            |                                      |                                      |                             |
| Oil to bearing                 | psig                          | 70 Max.                             |                                      |                            | kPa                        | 482 max.                             |                                      |                             |
| Oil to jet                     | psig                          | 52 ± 2                              | 0.1                                  | tenth                      | kPa                        | $360 \pm 13$                         | 0.1                                  | tenth                       |
| Inlet air (ABS)                | in. Hg                        | $70.9 \pm 0.3$                      | 0.1                                  | tenth                      | kPa                        | $240 \pm 1$                          | 0.1                                  | tenth                       |
| Exhaust (ABS)                  | in. Hg                        | $63.8 \pm 0.3$                      | 0.1                                  | tenth                      | kPa                        | $216 \pm 1$                          | 0.1                                  | tenth                       |
| Fuel at filter                 | psig                          | $30.5 \pm 2.9$                      | 0.1                                  | tenth                      | kPa                        | $210 \pm 20$                         | 0.1                                  | tenth                       |
| Crankcase vacuum               | in. H <sub>2</sub> O          | $2.8 \pm 0.4$                       | 0.1                                  | tenth                      | kPa                        | $0.7 \pm 0.1$                        | 0.01                                 | hundredth                   |
| Coolant at jug                 | psig                          | 7                                   |                                      |                            | kPa                        | 50                                   |                                      |                             |
|                                |                               |                                     |                                      | Flows                      |                            |                                      |                                      |                             |
| Blowby                         | ft <sup>3</sup> /hr           | 50                                  |                                      |                            | L/min                      | 23                                   |                                      |                             |
| Coolant flow<br>Air/fuel ratio | gpm                           | 17.2 ± 0.6<br>29                    | 0.1                                  | tenth                      | L/min                      | 65 ± 2<br>29                         | 0.1                                  | tenth                       |

A The fuel flow specified range is based on the high heating value of 19,590 btu/lb at an API Gravity of 35. The fuel specification range is 33 to 35 API Gravity.

TABLE A12.3 Conversion Factors, Foot-Pound to Metric

Note 1—Based on Practice E 380-91 (Practice for Use of the International System of Units (SI) (the Modernized Metric System) which has been replaced by IEEE/ASTM SI-10.

| Foot-Pound             | Conversion Factor                | Metric            | No. of Decimal<br>Places to Report |
|------------------------|----------------------------------|-------------------|------------------------------------|
| °F                     | 5/9 (°F-32)                      | °C                | 1                                  |
| lbf/in.2               | psi×6.895                        | kPa               | 1                                  |
| in. Hg                 | in. Hg×3.386                     | kPa               | 1                                  |
| in. H <sub>2</sub> O   | in. H <sub>2</sub> O×0.2491      | kPa               | 2                                  |
| lbf/bhp•hr             | (lbf/bhp•hr)×0.6080              | kg/kW•h           | 6                                  |
| inch                   | in.×25.4                         | mm                | 1                                  |
| lbf•ft                 | lbf•ft×1.3558                    | N•m               | 1                                  |
| Нр                     | Hp•0.746                         | kW                | 1                                  |
| BTU/min                | (BTU/min)×1.0551                 | kJ/min            | 0                                  |
| grains/lb <sub>m</sub> | (grains/lb <sub>m</sub> )×0.1429 | g/kg              | 1                                  |
| gal/min                | (gallons/min)×3.7854             | L/min             | 1                                  |
| ft <sup>3</sup> /hr    | (ft <sup>3</sup> /hr)×0.47195    | L/min             | 1                                  |
| $\Delta^{\circ}F$      | 5/9×°F                           | $\Delta^{\circ}C$ | 1                                  |
| lb <sub>f</sub>        | lb <sub>f</sub> ×453.6           | g                 | 0                                  |

before they are edited, the new value, and the explanation for the change in comments or outlier section of the test report.

A12.2.6 Include these percent calculations within each test report on Form 3 (see Fig. A13.4).

A12.2.7 Calculate each percent out to three significant digits using ASTM E29, Rounding Off Method.

A12.2.8 Round off the calculated average used in the percent off calculation to 0.1 using the rounding off method of Practice E29.

TABLE A12.4 System Time Constants, Maximum Allowable Caterpillar 1K/1N Industry Wide System Time Constant Survey (time, s)

| Measurements      |             |
|-------------------|-------------|
| Speed             | 3.0         |
| Fuel flow         | 73.0        |
| Т                 | emperatures |
| Coolant out       | 3.0         |
| Coolant in        | 3.0         |
| Oil to bearings   | 3.0         |
| Intake air        | 3.0         |
| Exhaust           | 3.0         |
| Fuel at injection | 3.0         |
|                   | Pressures   |
| Oil to bearings   | 3.0         |
| Oil to jet        | 3.0         |
| Intake air        | 3.0         |
| Exhaust           | 3.0         |
| Fuel at filter    | 3.0         |
| Crankcase vacuum  | 3.0         |

A12.2.9 Round off the percent out summation and percent off results to 0.1 using the rounding off method of Practice E29.

A12.2.10 Use the following formula to calculate percent out:

percent out 
$$= \frac{\frac{|A-B|}{C} \times \frac{D}{60} \times 100}{252}$$
 (A12.1)

where:

A = recorded test measurement of parameter that is beyond test limits prior to any corrective action,

B = upper test specification if the measured parameter is out on the high side or the lower test specification if it is out on the low side,

C = specification tolerance of the measured parameter,
 D = length of deviation in minutes (it cannot be less than the logging frequency),

60 = conversion factor for min/h, and

100 = conversion to percent.

A12.2.11 Calculate the percent out for each measured parameter based on its logging frequency. Sum the individual percent outs to arrive at the final percent out for judging test validity. See Table A12.5.

A12.2.12 Use the following formula to calculate the percent off (see Table A12.5):

$$percent off = \frac{\mid X - Specification \mid \times 100}{specification range}$$
 (A12.2)

where:

X = average of all readings of the parameter for the entire test duration, and

specification range = the upper specification limit minus the lower specification limit, or two times the specification tolerance.

A12.3 Allowable Limits for Percent Out and Percent Off-

A12.3.1 Use the parameters in Table A12.6 to judge test validity based on their operational control. Any parameter for a given test with a percent out or percent off that is *greater than* the specifications listed in the table shall be considered to be operated in an invalid manner.

# TABLE A12.5 Example of Calculation of Percent Out and Percent Off

Note 1—This example is for 21 test hours using humidity measured in g/kg.

Note 2—Percent out for test hour 11:

% out = 
$$\frac{\frac{|16.0 - 16.1|}{1.7} \cdot \frac{60}{60} \cdot 100}{252} = 0.023$$

Note 3—At 21 test hours:

Percent out summation = 1.1 (round to 0.1)

Average of the rounded values = 128.6 (round to 0.1)

Percent offset = 15.0 (round to 0.1)

| Test Hours | Raw Value,<br>grains/lb | Rounded Value, grains/lb | % Out for Each Value,<br>Rounded to 0.001 |
|------------|-------------------------|--------------------------|-------------------------------------------|
| 1          | 18.65                   | 18.7                     |                                           |
| 2          | 18.65                   | 18.7                     |                                           |
| 3          | 18.55                   | 18.6                     |                                           |
| 4          | 17.96                   | 18.0                     |                                           |
| 5          | 18.28                   | 18.3                     |                                           |
| 6          | 17.96                   | 18.0                     |                                           |
| 7          | 18.00                   | 18.0                     |                                           |
| 8          | 17.73                   | 17.7                     |                                           |
| 9          | 17.59                   | 17.6                     |                                           |
| 10         | 16.90                   | 16.9                     |                                           |
| 11         | 15.99                   | 16.0                     | 0.023                                     |
| 12         | 15.21                   | 15.2                     | 0.210                                     |
| 13         | 18.28                   | 18.3                     |                                           |
| 14         | 18.93                   | 19.0                     |                                           |
| 15         | 19.27                   | 19.3                     |                                           |
| 16         | 19.64                   | 19.6                     | 0.023                                     |
| 17         | 19.95                   | 20.0                     | 0.117                                     |
| 18         | 19.67                   | 19.7                     | 0.047                                     |
| 19         | 19.64                   | 19.6                     | 0.023                                     |
| 20         | 19.95                   | 20.0                     | 0.117                                     |
| 21         | 18.06                   | 18.1                     |                                           |

TABLE A12.6 Allowable Limits for Percent Out and Percent Off

| Controlled parameter     | Allowable % Out | Allowable % Off |
|--------------------------|-----------------|-----------------|
| Speed                    | 5               | 20              |
| Fuel flow                | 10              | 25              |
| Humidity                 | 10              | 25              |
| Coolant Flow             | 5               | 25              |
|                          | Temperatures    |                 |
| Coolant Out              | 5               | 20              |
| Oil to Bearing           | 5               | 20              |
| Intake air               | 5               | 20              |
| Fuel at injector housing | 5               | 20              |
|                          | Pressures       |                 |
| Oil jet                  | 5               | 25              |
| Intake air               | 10              | 25              |
| Exhaust                  | 10              | 25              |
| Fuel at filter housing   | 5               | 20              |
| Crankcase vacuum         | 10              | 20              |

# A13. 1K/1N TEST REPORTING

A13.1 Examples of all forms necessary for test reporting are provided in Figs. A13.1-A13.18.

# 1K/1N FINAL REPORT COVER

# METHOD METHOD

| CHEC | K ONE |
|------|-------|
| 1K   | 1N    |

VERSION 20020107 BETA

CONDUCTED FOR

|                  |                                                                  | TSTSPC                             | DN1            |                |                     |
|------------------|------------------------------------------------------------------|------------------------------------|----------------|----------------|---------------------|
|                  |                                                                  | TSTSPC                             | DN2            |                |                     |
|                  | V =VALID                                                         |                                    |                |                |                     |
| LABVALID         | I = INVALID                                                      |                                    |                |                |                     |
|                  | N = RESULTS CAN<br>PERFORMANCE (N<br>AN AVERAGE TES              | ON-REFERENC                        | E OIL) AND SHA | ALL NOT BE     | USED IN DETERMINING |
|                  |                                                                  | Test                               | Number         |                |                     |
| Test Stand:      | STAND                                                            | 1030                               | Engine Run #   | :              | ENRUN               |
| EOT Time:        | EOTTIME                                                          |                                    | EOT Date:      | DTCOMP         |                     |
| Oil Code A:      | OILCODE/CMIR                                                     |                                    |                |                |                     |
| Formulation/Star | nd Code: FOR                                                     | M                                  |                |                |                     |
| Alternate Codes: | ALTCODE1                                                         | ALT                                | CODE2          |                | ALTCODE3            |
|                  | s test OPVALID<br>RR:D02-1273/RR:D02<br>e remarks included in th | <ul><li>1321) and the ap</li></ul> |                | ents through t | he information      |
| A CMIR or Non-   | Reference Oil Code                                               |                                    |                |                |                     |
|                  | SUBMIT                                                           | TED BY:                            |                | SUBLAB         |                     |
|                  |                                                                  |                                    |                | SUBSIGIM       | Testing Laboratory  |
|                  |                                                                  |                                    |                | SUBNAME        | Signature           |
|                  |                                                                  | _                                  |                | SUBTITLE       | Typed Name          |
|                  |                                                                  |                                    |                |                | Title               |

FIG. A13.1 Final Report Cover Sheet

# 1K/1N FORM 1 TEST REPORT SUMMARY

| LAB: LAB        | EOT DAT   | E: DTCOM    | 1P                              | END     | TIME: EO | TTIME   | METHOD:               | : METHO        | DD              |
|-----------------|-----------|-------------|---------------------------------|---------|----------|---------|-----------------------|----------------|-----------------|
| STAND: STANI    | 0         | RUN NUMB    | ER: E                           | NRUN    |          |         |                       |                |                 |
| FORMULATION/S   | STAND C   | CODE: FOR   | М                               |         |          |         |                       |                |                 |
| OILCODE/CMIR:   | OILCO     | DE/CMIR     |                                 |         |          |         |                       |                |                 |
| START DATE: DTS | TRT       |             | TOTAL TEST                      | LENGTH: | TESTLEN  | TMC     | OIL TYPE:             | IND            |                 |
| LABORATORY INTI | ERNAL C   | OIL CODE:   | LABOCODE                        |         |          |         |                       |                |                 |
|                 |           |             | CORRECTION<br>EFFECTIVE<br>DATE | WDK/WDN | TGF<br>% | TLHC %  | TRANSFORMED<br>TLHC % | BSOC<br>g/kW-h | EOTOC<br>g/kW-h |
| UNADJUSTED LAB  | RATING    |             |                                 | WD      | TGF      | TLHC    | TTLHC                 | BSOC           | ЕОТОС           |
| INDUSTRY CORREC | CTION (II | F ANY)      | DATECF                          | WDCF    | TGFCF    | TLHCCF  | TTLHCCF               | BSOCCF         | EOTOCCF         |
| SUBTOTAL        |           |             |                                 | WDCOR   | TGFCOR   | TLHCCOR | TTLHCCOR              | BSOCCOR        | EOTOCCOR        |
| LAB SEVERITY AD | JUSTME    | NT (IF ANY) | A DATESA                        | WDSA    | TGFSA    | TLHCSA  | TTLHCSA               | BSOCSA         | EOTOCSA         |
| TOTAL           |           |             |                                 | WDFNL   | TGFFNL   | TLHCFNL | TTLHCFNL              | BSOCFNL        | EOTOCFNL        |

|                               | EFFECTIVE<br>DATE | WDK/WDN | TGF<br>% | TLHC % | TRANSFORMED<br>TLHC % | BSOC<br>g/kW-h | EOTOC<br>g/kW-h |
|-------------------------------|-------------------|---------|----------|--------|-----------------------|----------------|-----------------|
| TEST TARGET MEAN <sup>B</sup> | EFFDATE           | WDM     | TGFM     |        | TTLHCM                | BSOCM          | ЕОТОСМ          |
| TEST TARGET STD B             | EFFDATE           | WDS     | TGFS     |        | TTLHCS                | BSOCS          | EOTOCS          |
| LDESC A, C                    | DTCEFF            | WDPL    | TGFPL    | TLHCPL |                       | BSOCPL         | EOTOCPL         |

|                 | REFEREE<br>LAB | WDK/WDN | TGF<br>% |  |
|-----------------|----------------|---------|----------|--|
| REFEREE RATINGS | RRLAB          | RRWD    | RRTGF    |  |

|                                  | TOP      | INT. 1    | OIL          | PISTON   | LINER    |
|----------------------------------|----------|-----------|--------------|----------|----------|
| RING LOSS OF SIDE CLEARANCE (mm) | LSCTOP   | LSCINT1   | LSCOIL       | - PE-16- |          |
| RING END GAP INCREASE (mm)       | RINGGTI  | RINGGIII  | RINGGOI      | 1122     |          |
| IS THE RING STUCK?               | STUCKTOP | STUCKINI  | STUCKOIL     |          |          |
| SCUFFED AREA %                   | SCUFFTOP | SCUFFINI  | SCUFFOIL     | SCUFFPIS | SCUFFLIN |
| AVERAGE WEAR STEP (mm)           |          | -54: " FE | Arms Francis |          | AWEARST  |
| % BORE POLISH                    |          |           | 167<br>358   |          | BOREPOL  |

Notes:

FIG. A13.2 1K/1N Test Report Summary

<sup>&</sup>lt;sup>A</sup>Non-reference tests only <sup>B</sup>Reference tests only

<sup>&</sup>lt;sup>C</sup>See Appendix X4



# 1K/1N FORM 2

# **OPERATIONAL SUMMARY**

| LAB: LAB EOT DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DTCOM         | ·                           | END TIME                                | EOTTIM     | E METHO  | D.                   | METHOD                  |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------|-----------------------------------------|------------|----------|----------------------|-------------------------|-----|
| D/15. 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UN NUMBE      |                             | RUN                                     | БОТТИМ     | 7 12     |                      | MUIIIOD                 |     |
| STAND: STAND R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UN NUMBE      | K. EIV.                     | KUN                                     |            |          |                      |                         |     |
| FORMULATION/STAND CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DE: FORM      |                             |                                         |            |          |                      | ·                       |     |
| OILCODE/CMIR: OILCODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E/CMIR        |                             |                                         |            |          |                      |                         |     |
| OPERATING CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | MINIMI                      | M MAX                                   | IMUM :     | AVERAGE  |                      | SPECIFICATIO            | )N  |
| ENGINE SPEED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r/min         | IRPM                        | XR                                      | РМ         | ARPM     |                      | $2100 \pm 10$           |     |
| ENGINE POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kW            | IPWR                        | XI                                      | PWR        | APWR     |                      | REPORT                  |     |
| FUEL FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/min         | IFFLO                       | XFF                                     | LO         | AFFLO    |                      | $185 \pm 1$             |     |
| HUMIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/kg          | IHUMID                      | i                                       | MID        | AHUMID   | ·                    | $17.8 \pm 1.7$          |     |
| TEMPERATURE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                             |                                         |            |          |                      | of the state of the     |     |
| COOLANT OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | °C            | ICOLOUT                     | XCOLO                                   | OUT A      | COLOUT   |                      | $93 \pm 2.5$            |     |
| COOLANT IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °C            | ICOLIN                      | XCC                                     | LIN        | ACOLIN   |                      | REPORT                  |     |
| COOLANT delta T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C            | ICOLDT                      | XCO.                                    | LDT        | ACOLDT   |                      | 5 ±1.0_                 |     |
| OIL TO BRG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °C            | IOBRGTMP                    | XOBRGT                                  | MP 40      | BRGTMP   |                      | $107 \pm 2.5$           |     |
| OIL COOLER IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | °C            | IOCOOLIN                    | XOCO0                                   | LIN AC     | OCOOLIN  |                      | REPORT                  |     |
| INLET AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | °C            | IINAIRT                     | XINA                                    | IRT        | AINAIRT  |                      | $127 \pm 2.5$           |     |
| EXHAUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | °C            | <i>IEXHTMP</i>              | XEXH1                                   | MP A       | EXHTMP   |                      | $550 \pm 30$            |     |
| FUEL @ INJECTOR HOUSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G °C          | IFUELTMP                    | XFUELTI                                 | MP AF      | UELTMP   |                      | 57 <u>+</u> 3           |     |
| PRESCRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                             | 1.44                                    |            |          | 963)<br>1716<br>1716 | n dag si ar da sana     |     |
| OIL TO BRG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kPa           | IOBRGPR                     | XOBRO                                   | GPR A      | OBRGPR   |                      | 482 MAX                 |     |
| OIL TO JET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kPa           | IOJETPR                     | XOJE                                    | TPR .      | AOJETPR  |                      | $360 \pm 13$            |     |
| INLET AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kPa           | IINAIRP                     | XINA                                    |            | AINAIRP  |                      | 240 ± 1                 |     |
| EXHAUST (ABS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kPa           | IEBP                        |                                         | EBP        | AEBP     |                      | 216 ±1                  |     |
| FUEL @ FILTER HSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kPa           | IFUELPR                     | XFUE                                    |            | AFUELPR  |                      | $210 \pm 20$            |     |
| CRANKCASE VACUUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kPa           | ICCV                        |                                         | CCV        | ACCV     |                      | $0.7 \pm 0.1$           |     |
| COOLANT JUG PRESSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kPa_          | IJUGPR                      | XJUC                                    | PR         | AJUGPR   |                      | REPORT                  |     |
| FLOWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | IBLOBY                      | XBLO                                    | ORY        | ABLOBY   |                      | DEDODE                  |     |
| BLOWBY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L/min         | ICOLFLO                     |                                         |            | 4COLFLO  |                      | REPORT                  |     |
| COOLANT FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L/min<br>AFR2 |                             |                                         |            |          | 15                   | $\frac{65 \pm 2}{R252}$ |     |
| AIR/FUEL RATIO: 24 HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                             |                                         | RATIO: 252 |          | AF                   | N2J2                    |     |
| PISTON/HEAD CLEARANCE n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | II.           | <u>MEASUREN</u><br>PISTONCL | MENTS AND I                             | VALVE OPE  | 1        |                      | NVALOPN                 |     |
| TISTOWILLAD CLEARANCE II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                             | (C) | MING BTC   | AT AIC   |                      | FUELTIM                 |     |
| The second secon | PART          | NO. (1)                     | SERIAL NO                               | . (2)      | DATE COD | Ε                    | INSPECTION C            | ODE |
| LINER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LINE          |                             | LINERSN                                 |            | LINERDC  | F                    | LINERIC                 | G   |
| RING SET (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RING          | <i>FPN</i>                  |                                         |            | RINGDC   | I                    | RINGIC                  | Н   |
| PISTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIST          | PN PN                       | PISTSN                                  |            | PISTDC   | D                    | PISTIC                  | E   |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4             | +                           |                                         |            |          |                      | <del>•</del>            |     |

(1) AND (2) NUMBER ON PARTS BOX YELLOW LABEL

FIG. A13.3 1K/1N Operational Summary

D. Number below"E" located on top of piston
F. Number on top of "E" located on top of piston
F. Four alphanumeric characters (NNAN) on liner O.D.
F. Four digit number on liner O.D.
T. Three or four digit number on white label on ring set box
NN-NN from part number label on ring set box



# 1K/1N

# FORM 3 OPERATIONAL SUMMARY - OFFSET AND DEVIATION

| LAB: LAB EOT    | DATE: DTCOMP      | END TIME: EO | OTTIME N | METHOD: | METHOD |
|-----------------|-------------------|--------------|----------|---------|--------|
| STAND: STAND    | RUN NUMBER: ENRUN |              |          |         |        |
| FORMULATION/STA | AND CODE: FORM    |              |          |         |        |
| OILCODE/CMIR: O | DILCODE/CMIR      |              |          |         |        |

| CONTROLLED<br>PARAMETER  | ALLOWARLI<br>% OUT | THIS TEST |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E THIS TEST        |
|--------------------------|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| SPEED                    | 5                  | RPMOUT    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RPMOFF             |
| FUEL FLOW                | 10                 | FFLOOUT   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FFLOOFF            |
| HUMIDITY                 | 10                 | HUMOUT    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HUMOFF             |
| COOLANT FLOW             | 5                  | COLFOUT   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COLFOFF            |
| TEMPERATURES             |                    |           | The state of the s |                    |
| COOLANT OUT              | 5                  | COTOUT    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COTOFF             |
| OIL TO BEARING           | 5                  | OBRGOUT   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OBRGOFF            |
| INTAKE AIR               | 5                  | AIRTOUT   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AIRTOFF            |
| FUEL AT INJECTOR HOUSING | 5                  | FIHTOUT   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FIHTOFF            |
| PRESSURES                |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Harasan Territoria |
| OIL JET                  | 5                  | OJETOUT   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OJETOFF            |
| INTAKE AIR               | 10                 | AIRPOUT   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AIRPOFF            |
| EXHAUST                  | 10                 | EXPOUT    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EXPOFF             |
| FUEL AT FILTER HOUSING   | 5                  | FFILOUT   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FFILOFF            |
| CRANKCASE VACUUM         | 10                 | CCVOUT    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCVOFF             |

FIG. A13.4 1K/1N Operational Summary – Offset and Deviation

1K/1N

# FORM 4 PISTON RATING SUMMARY

| TEST                         |                                | LAB    | 3. LAB             |         | DATE     | FOT DATE: DTCOMP | M₽<br>MP | END         | END TIME: | EOTTIME                    |                 | STAND: STAND       | STAND            | Г        | RUN #: ENRUN METHOD: METHOD | RUNIM      | ETHOD         | : MET     | дон                  |         |
|------------------------------|--------------------------------|--------|--------------------|---------|----------|------------------|----------|-------------|-----------|----------------------------|-----------------|--------------------|------------------|----------|-----------------------------|------------|---------------|-----------|----------------------|---------|
| FORMULATION/STAND CODE: FORM | STAND C                        | ODE: F | ORM                |         |          |                  |          |             |           | OILCODE/CMIR: OILCODE/CMIR | DE/CMI          | R: OILC            | CODE/C           | MIR      |                             |            |               |           |                      |         |
| TEST FUEL: TESTFUE           | JEL                            |        | FUEL BATCH: FO     |         | ELBTID   |                  | DAT      | DATE RATED: | : DTRATE  | ľE                         | R               | RATING NUMBER: RNO | UMBER:           | RNO      |                             | R          | RATER: RINIT  | INIT      |                      |         |
| LAST STAND I                 | STAND REFERENCE<br>INFORMATION | E      | DATE<br>COMPLETED: |         | LRDTCOMP | P                | ST.      | STAND #:    | STAND     |                            |                 | RUN#:              |                  | LRENRUN  |                             | TMC        | TMC OIL CODE: | DE: LIND  | Q                    |         |
|                              |                                |        | W                  | WDK/WDN | Z        |                  | TGF      |             |           | TLHC                       |                 | TRAN               | TRANSFORMED TLHC | тнс      |                             | BSOC       |               | I         | EOTOC                |         |
| LAST REF. THIS STAND         | HIS STAN                       | Ð      | T                  | LRWD    | :        | 7                | LRTGF    |             | П         | LRTLHC                     |                 | LRT                | LRTTLHC          |          | LR                          | LRBSOC     |               | LRI       | LREOTOC              |         |
| INDUSTRY AVERAGE             | AVERAG                         | E      | TH                 | LRAWD   |          | T                | LRATGF   |             |           |                            |                 | LRAI               | LRATTLHC         |          | LR                          | LRABSOC    |               | LRA       | LRAEOTOC             |         |
| INDUSTRY STD                 | RY STD                         |        | TI                 | LRSWD   |          | T                | LRSTGF   |             |           |                            |                 | LRSI               | LRSTTLHC         |          | LR                          | LRSBSOC    |               | LRS       | LRSEOTOC             |         |
| TOTAL PISTON RATINGS SUMMARY | RATING                         | S SUM  | MARY               |         |          |                  |          |             |           |                            |                 |                    |                  |          |                             |            |               |           |                      |         |
|                              | GROOVES                        | /ES    |                    |         |          |                  | LANDS    |             |           |                            |                 |                    | UPPER            | ER       | UNDER                       | ER         |               | PIN BORES | RES                  |         |
| DEP.                         | NO. 1                          | . 1    | NO. 2              | . 2     | NO.      | .3               | NO.      | . 1         | NO. 2     | 2                          | NO.3            | 3                  | SKIRT            | τ        | CROWN                       | Z.         | FRONT         | Ę         | REAR                 | 2       |
| FACTOR                       | A,%                            | DEM.   | A,%                | DEM.    | A,%      | DEM.             | A,%      | DEM.        | A,%       | DEM.                       | A,% I           | DEM.               | A,%              | DEM.     | A,% I                       | DEM.       | A,% I         | DEM.      | A,%                  | DEM.    |
| $^{\mathrm{C}}_{f A}$ HC-1.0 | GIHCA                          | дэнср  | G2HCA              | СЗНСБ   | ВЭНСА    | сзнср            | ТІНСЯ    | пнср 1      | 12нся 1   | 12HCD 1                    | тэнсч т.        | и пансь            | USHCA            | USHCD C  | ОСНСА U                     | иснср Р.   | PFHCA PI      | PFHCD F   | PRHCA P.             | PRHCD   |
| R MC-0.5                     | GIMCA                          | GIMCD  |                    |         | G3MCA    | взмср            |          |             |           |                            |                 |                    |                  |          |                             | *          |               |           |                      |         |
| B LC25                       | GILCA                          | GILCD  | GZLCA              | дэтср   | взгся    | азтср            | ПІСА     | аэтт        | 1 rott    | 1 a27727                   | L3LCA L         | TICD               | USLCA            | nsrcp t  | UCLCA                       | UCLCD      | PFLCA PI      | PFLCD I   | PRLCA                | PRLCD   |
| 0                            |                                |        |                    |         |          |                  |          |             |           |                            |                 |                    |                  |          |                             |            |               |           |                      |         |
| N TOTAL                      | SIACTOT                        | прстог | 52ACTOT 6          | зъстот  | зястот   | зарстот          | LIACTOT  | прстот 1.   | 2ACTOT 22 | 2DCTOT 1.3                 | 3ACTOT 31       | soctor us          | sactor us        | SDCTOT V | CACTOT VC                   | CDCTOT PF. | PEACTOT PFI   | FDCTOT PA | PRACTOT PR           | RDCTOT  |
| 6-8                          | GIL9A                          | G1T8D  | G2L9A              | G5T8D   | G3L9A    | G3T9D            | 111.94   | T11.9D      | L2L9A 1   | 1 26727                    | 131.9A L        | 7 26787            | USV9A L          | OSV9D    | UCV9A U                     | UCV9D P    | PFV9A P.      | PFV9D 1   | PRV9A P              | PRV9D   |
| 7 - 7.9                      | GIL8A                          | G118D  | G2L8A              | G2T8D   | G3L8A    | Q3T8D            | 11184    | Q8717       | L2L8A 1   | 1 G8727                    | L3L8A L         | 28787              | USV8A L          | OSV8D    | UCV8A U                     | UCV8D P    | PFV8A P.      | PFV8D 1   | PRV8A P              | PRV8D   |
| 6.9-9                        | GIL7A                          | GIL7D  | 621.74             | СЛГД    | G3L7A    | G3T1D            | 11174    | רודים       | 12174 1   | ו מנחנדו                   | L3L7A L         | 131.70             | USV7A L          | USV7D (  | UCV7A U                     | UCV7D P    | PFV7A P.      | PFV7D 1   | PRV7A P              | PRV7D   |
| L 5-5.9                      | GIL6A                          | G116D  | 621.64             | G2T6D   | G3L6A    | G3T6D            | T1764    | T179D       | L2L6A 1   | 121.6D                     | L3L6A L         | T3T6D 1            | USV6A L          | USV6D    | UCV6A U                     | UCV6D P    | PFV6A P.      | PFV6D 1   | PRV6A P              | PRV6D   |
| A 4-4.9                      | GILSA                          | GILSD  | GZLSA              | G2T2D   | G3L5A    | G3T2D            | LILSA    | TILSD       | LZLSA     | 177.5D                     | L3LSA           | T3T2D r            | USVSA            | USVSD    | UCV5A U                     | UCVSD P    | PFV5A P.      | PFV5D 1   | PRV5A P              | PRV5D   |
| 0 3-3.9                      | GIL4A                          | GILAD  | G2L4A              | G2L4D   | G3L4A    | G3L4D            | LILAA    | LILAD       | L2L4A 1   | L2L4D 1                    | L3L4A L         | 1314D L            | USV4A L          | USV4D [  | UCV4A U                     | UCV4D P    | PFV4A P.      | PFV4D 1   | PRV4A P              | PRV4D   |
| U 2-2.9                      | GIL3A                          | GIL3D  | G2L3A              | G2L3D   | G3L3A    | G3T3D            | LIL3A    | TIT3D       | L2L3A 1   | 1213D                      | L3L3A L         | 13130              | USV3A            | USV3D    | UCV3A U                     | UCV3D P    | PFV3A P       | PFV3D 1   | PRV3.4 P             | PRV3D   |
| E 1-1.9                      | GILZA                          | GITID  | G2L2A              | агпъ    | G3L2A    | G3L2D            | LILZA    | агліт       | 12124     | 1 GCTCT                    | L3L2A L         | ו מכדנד            | USVZA            | USV2D    | UCV2A U                     | UCV2D P    | PFV2A P.      | PFV2D 1   | PRV2A P              | PRV2D   |
| K >0-0.9                     | GILIA                          | GITID  | GZLIA              | GZLID   | G3L1A    | G3T1D            | LILIA    | TITID       | LZLIA     | 1 2777                     | L3LIA           | רזרום ר            | USVIA            | USVID    | UCVIA                       | UCVID      | PFV1A PI      | PFVID     | PRV1A P              | PRVID   |
| CLEAN                        | GILCLNA                        | 0      | 52LCLNA            | 0       | 33LCLN4  | 0                | LILCLNA  | 0           | 2LCLNA    | 0                          | згсгия          | 0                  | SVCLNA           | 0        | CVCLNA                      | 0          | FVCLNA        | 0         | PRVCLNA              | 0       |
| TOTAL                        | GIALTOT                        | TOTTOL | G2ALTOT            | STOLIOL | G3ALTOT  | TOTTOES          | LIALTOT  | IDLIOT      | 2241.707  | 201.701                    | 3ALTOT 3        | 3DLTOT US          | SALTOT           | SPLTOT   | CALTOT                      | CDLTOT     | PFALTOT PF    | PEDLTOT   | PRALTOT              | PRDLTOT |
| RATING                       | GIUWD                          |        |                    |         | 15       | 470              | 15       |             | 15        |                            | 15              |                    | 15               |          | ٦::                         |            | 7 🖹           |           | ר די וי              |         |
| LOCATION FACTOR              | 1.5                            | 5      | 1.5                | 2       | 25       | 5                | 1        |             | -         |                            | 25              |                    | 50               |          | 20                          |            | 0             |           | 0                    |         |
| IND RATING                   | GIWD                           | D      | GZWD               | Q       | G3WD     | D                | LIWD     |             | L2WD      |                            | L3WD            |                    | USWD             | D        | UCWD                        |            | PFWD          | 9         | PRWD                 |         |
| TGF %                        |                                | _      | INT. GR. FILL      | _       | %        |                  | WDK/WDN  | NO.         |           | UNWE                       | UNWEIGHTED DEP. | ) DEP.             | H.               | L. HVY   | T.L. HVY. CARBON %          | % NO       | T.L. FI       | LAKED     | T.L. FLAKED CARBON % | % NC    |
| TGF                          |                                |        | IGF                |         |          |                  | ИND      |             |           | 7                          | UWD             |                    |                  | ТГНС     | J.F.                        |            |               | TLFC      |                      |         |
|                              |                                |        |                    |         |          |                  |          |             |           |                            |                 |                    |                  |          |                             |            |               |           |                      |         |

FIG. A13.5 1K/1N Piston Rating Summary

# 1K/1N Form 4A PISTON RATING WORKSHEET

| LAB: LAB      | EOT DAT  | E: DTCOMP   |       | END TIME: | EOTTIME | METHOD: | METHOD |
|---------------|----------|-------------|-------|-----------|---------|---------|--------|
| STAND: STAN   | ID       | RUN NUMBER: | ENRUN |           |         |         |        |
| FORMULATION   | /STAND ( | CODE: FORM  |       |           |         |         |        |
| OILCODE/CMIR: | OILCO    | ODE/CMIR    |       |           |         |         |        |

RATEWSIM

Note 1—Refer to Fig. X3.1 for example of piston rating worksheet FIG. A13.6 1K/1N Piston Rating Worksheet

# 1K/1N

# FORM 5 SUPPLEMENTAL PISTON DEPOSITS (GROOVE SIDES AND RINGS)

| LAB.                                   | LAB         |        |               | FOT          | FOT DATE:  | DTCOMP |         | FND     | FND TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EOTTIME  |         | METHOD  |                | METHOD   |             |
|----------------------------------------|-------------|--------|---------------|--------------|------------|--------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|----------------|----------|-------------|
| STAND:                                 | STAND       | MD     |               |              | RUN NUMBER |        | ENRUN   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |
| FORMULATION/STAND CODE:                | /LS/NC      | AND CC | 1             | FORM         |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |
| OILCODE/CMIR:                          | ]<br>]<br>] |        | ОЛТСО         | OILCODE/CMIR |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |
|                                        |             |        |               | CARBON       |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VARNISH  | HSIN    |         |                |          |             |
| DEPOSIT TYPE                           | Ä           |        | ЭН            | MC           | ГС         | 6-8    | 9.T - T | 6.9 - 9 | 6.5 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-4.9    | 3 - 3.9 | 2 - 2.9 | 1 - 1.9        | 6.0 - 0< | CLEAN       |
|                                        |             | F      | CITHCA        | CHERCA       | GITICA     | 61704  | 61784   | F719    | GITGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FSLLD    | GITA    | CITES   | FC115          | CITIA    | GITCINA     |
|                                        | -           | - m    | GIBHCA        | GIBMCA       | GIBLCA     | GIB9A  | GIB84   | GIB7A   | GIB6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GIBSA    | GIB4A   | GIB3A   | PZEID<br>CIB2A | GIBIA    | GIBCLNA     |
| GROOVE                                 |             |        |               |              |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |
| TOP                                    |             | Т      | <i>G2THC4</i> | G2TMCA       | G2TLCA     | G2T9A  | G278A   | G277A   | <i>G2T6A</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G2T5A    | G2T4A   | G2T3A   | G2T2A          | G2TIA    | GZTCLNA     |
| AND                                    | 7           | В      | <i>G2BHCA</i> | G2BMCA       | G2BLCA     | G2B9A  | G2B8A   | G2B7A   | G2B6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GZB5A    | G2B4A   | GZB3A   | GZBZA          | G2B1A    | G2BCLNA     |
| BOILOM                                 |             | T      | G3THCA        | G3TMCA       | взпся      | 63794  | G378A   | 6377.4  | G3T6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G3T5A    | G3T4A   | G3T3A   | VZ189          | G3T1A    | G3TCLNA     |
|                                        | 3           | В      | <i>G3ВНСА</i> | G3BMCA       | G3BLCA     | G3B9A  | G3B8A   | G3B7A   | G3B6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G3B5A    | G3B4A   | СЗВЗА   | G3B2A          | G3B1A    | G3BCLNA     |
|                                        |             | T      | RITHCA        | RITMCA       | RITLCA     | RIT9A  | R1784   | R177A   | RIT6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RITSA    | RIT4A   | RIT3A   | RITZA          | RITIA    | RITCLNA     |
|                                        | _           | В      | RIBHCA        | RIBMCA       | RIBLCA     | RIB9A  | R1B8A   | RIB7.4  | RIB6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RIBSA    | RIB4A   | RIB3A   | RIB2A          | RIBIA    | RIBCLNA     |
|                                        |             | BK     | RIBKHCA       | RIBKMCA      |            | R1BK9A | RIBK84  | RIBK7.4 | RIBK64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RIBKSA   | RIBK4A  | RIBK3A  | RIBK2A         | RIBKIA   | RIBKCLNA    |
| TOP                                    |             | ı      | Total Control | 707000       | no succe   | ,0200  | 0.000   | Faced   | 7,7200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r same a | 0.000   | , care  | 7 6254 0       | rimed    | r in source |
| BOTTOM                                 | 7           | - m    | R2BHCA        | RZBMCA       | RZBLCA     | R2B9A  | R2B84   | R2B7A   | R2B6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R2BSA    | R2B4A   | R2B3A   | R2B2A          | R2B1A    | RZBCLNA     |
| OF RINGS                               | <u> </u>    | BK     | R2BKHCA       | RZBKMCA      | RZBKLCA    | R2BK9A | R2BK8A  | R2BK7.4 | R2BK6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RZBKSA   | R2BK4A  | R2BK3A  | RZBKZA         | R2BK1A   | R2BKCLNA    |
|                                        |             |        |               |              |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |
|                                        | _1          | T      | R3THC4        | R3TMCA       | RSTLCA     | R3T9A  | R3T8A   | R3T7A   | R3T6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R3T5A    | R374A   | R3T3A   | R3T2A          | RSTIA    | R3TCLNA     |
|                                        | <u>س</u>    | В      | R3BHCA        | R3BMCA       | R3BLCA     | R3B9A  | R3B8A   | R3B7A   | R3B6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R3B5A    | R3B4A   | R3B3.4  | R3B2A          | R3BIA    | R3BCLNA     |
|                                        |             | BK     | R3BKHC4       | R3BKMCA      | R3BKLC4    | R3BK9A | R3BK8A  | R3BK7.4 | R3BK6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R3BK5A   | R3BK4A  | R3BK3A  | R3BK2A         | R3BK1A   | R3BKCLNA    |
|                                        |             |        |               |              |            |        |         |         | 0015<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>11014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>10014<br>1 |          |         |         |                |          |             |
| ADDITIONAL DEPOSIT & CONDITION RATINGS | DEPO        | SIT &  | CONDITION     | ON RATII     | VGS        |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |
| PISTON CROWN                           | Ν̈́N        |        | CROV          | CROWNAD      |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |
| LINER                                  |             |        | LINERAD       | RAD          |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         | :              |          |             |
| RINGS                                  |             |        | RINGSAD       | SAD          |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |
|                                        |             |        |               |              |            |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |         |         |                |          |             |

FIG. A13.7 1K/1N Supplemental Piston Deposits (Groove Sides and Rings)

1K/1N

# FORM 5A REFEREE RATING

| TES        | EST IDENTIFICATION           | ATION    |                                   |               |            |            |                           |               |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
|------------|------------------------------|----------|-----------------------------------|---------------|------------|------------|---------------------------|---------------|-------------------|-------------|-----------------------------------|----------------|------------------|-------------|-----------------|-----------------------------------|-----------------|-------------|------------------|-------------|
| LAB        | 3:                           | LAB      |                                   |               | EOT D/     | OATE:      | I                         | <i>DTCOMP</i> | ۵                 | EN          | END TIME                          |                | EOT              | ЕОТТІМЕ     |                 | METHOD                            | D:              | V           | МЕТНОD           |             |
| STA        | STAND:                       | STAND    | ΔN                                |               | RUN#:      |            | 7                         | ENRUN         |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
| FOF        | FORMULATION/STAND CODE       | TAND C   | ODE:                              | FORM          | М          |            |                           |               |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
| OIL        | OILCODE/CMIR:                |          |                                   | OIIC          | OILCODE/CI | CMIR       |                           |               |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
| REI        | REFEREE RATING INFORMATION   | G INFO   | RMAT                              | NOI           |            |            |                           |               |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
| O<br>C     | COMPANY:                     | RRLAB    | 4B                                |               | RATIN      | NG NUMBER: |                           | RRNO          |                   | DA          | DATE RATED                        | ED:            | RRDATE           | ATE         |                 | RATER                             |                 | R           | RRINIT           |             |
| TO         | TOTAL PISTON RATINGS SUMMARY | RATING   | S SUMI                            | MARY          |            |            |                           |               |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
|            |                              | GROOVES  | VES                               |               |            |            |                           | LANDS         |                   |             |                                   |                |                  | UPPER       | 5               | UNDER                             |                 | PI          | PIN BORES        | S           |
|            | DEP.                         | N        | NO. 1                             | NO.           | 0.2        | NO.        | .3                        | NO.           | 1                 | NO. 2       | 2                                 | NO. 3          |                  | SKIRT       | C               | CROWN                             | FR              | FRONT       | REAR             | IR.         |
|            | FACTOR                       | A,%      | DEM.                              | A,%           | DEM.       | A,%        | DEM.                      | A,%           | DEM.              | A,%         | DEM.                              | A,% D          | DEM.             | A,% D       | DEM.            | A,% DE                            | DEM. A.         | A,% DEM.    | .M. A,%          | % DEM.      |
| C          | HC-1.0                       | RRGIHCA  | RRGIHCD RRG2HCA                   |               | RRG2HCD R  | RG3HC4     | RRG3HCD R                 | RRLIHCA       | RRLIHCD &R        | RRLZHCA     | RRL2HCD RR                        | REL3HCA RR     | RRL3HCD RRU      | RRUSHCA RRI | RRUSHCD RRUCHCA | 83                                | RRUCHCD RRPFHCA | 220         | RRPFHCD RRPRHCA  | CA RRPRHCD  |
| ζ 22       | MC-0.5                       | REGIMCA  | RRGIMCD                           |               |            | RG3MCA 1   | RRG3MCD                   |               |                   |             |                                   |                | 120              |             |                 |                                   |                 |             | 1                |             |
| М          | LC-25                        | RRGILCA  | RRGILCD RRG2LCA                   | RRG2LCA       | RRGZLCD    | RRG3LCA    | RRG3LCD RRLILCA           |               | RRLILCD RRLILCA   |             | RRL2LCD RR                        | RRL3LCA RR     | RRL3LCD RRL      | RRUSLCA RR  | RRUSLCD RRUCLCA |                                   | RRUCLCD RRPFLCA |             | RRPFICD RRPRICA  | A RRPRLCD   |
| 0          |                              |          |                                   |               |            |            |                           |               |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
| Z          | TOTAL                        | RGIACTOT | RGIACTOT RGIDCTOTHG2ACTOT RG2DCTO | GZACTOT       |            | G3ACTOT    | RG3ACTOT RG3DCTOTALIACTOT |               | RLIDCTOT/LL2ACTOT |             | RL2DCTOTRL3ACTOT RL3DCTOTRUSACTOT | ACTOT RES      | DCTOTRUS.        | ACTOT RUS   | SDCTOTAUCA      | RUSDCTOTAUCACTOT RUCDCTOTAPFACTOT | CTOTEPFAC       | CTOT RPFD   | RPFDCTOTAPRACTOT | OT RPRDCTOT |
|            |                              |          |                                   |               |            |            | 10 m                      |               |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
|            | 6-8                          | RRG1L9A  | RRG1L9D RRG2L9A                   | RRG2L9A       | RRG2L9D F  | RRG3L94    | RRG3L9D RRL1L9A           |               | RRLIL9D RI        | RRL2L9A I   | RRL2L9D RRL3L9A                   |                | RRL3L9D RRU      | RRUSV9A RR  | RRUSV9D RRUCV9A |                                   | RRUCV9D RRPFV9A |             | RRPFV9D RRPRV9A  | A RRPRV9D   |
|            | 7 - 7.9                      | RRG1L8A  | RRG1L8D RRG2L8A                   | RRG2L8A       | RRG2L8D    | RRG3L84    | RRG3L8D RRL1L8A           |               | RRLIL8D RRL2L8A   | $\vdash$    | RRL2L8D RRL3L8A                   | Г              | RRL3L8D RRUSV8A  |             | RRUSV8D RRUCV8A |                                   | RRUCV8D RRPFV8A |             | RRPFV8D RRPRV8A  | 84 RRPRV8D  |
|            | 6.9 - 9                      | RRG1L7A  | RRGILID RRG2L7A                   | RRG2L7A       | RRG2L7D    | RRG3L74    | RRG3L7D RRL1L7A           |               | RRLIL7D RI        | RRL2L7A I   | RRL2L7D RRL3L7A                   |                | RRL3L7D RRC      | RRUSV7A RR  | RRUSV7D RRUCV7A |                                   | RRUCV7D RRPFV7A |             | RRPFV7D RRPRV7A  | 74 RRPRV7D  |
| <u>٦</u> . | 5 - 5.9                      | RRGIL6A  | RRGIL6D RRG2L6A                   | RRG2L6A       | RRG2L6D    | RRG31.64   | RRG3L6D RRL1L6A           |               | RRIIL6D RI        | RRL 21.64 1 | RRL2L6D RRL3L6A                   |                | RRL3L6D RRU      | RRUSV6A RR  | RRUSV6D RRUCV6A |                                   | RRUCV6D RRPFV6A |             | RRPFV6D RRPRV64  | SA RRPRV6D  |
| ∢ (        | 4 - 4.9                      | RRGILSA  | RRGILSD                           | RRG2L5A       | RRG2LSD F  | RRG3L5A    | RRG3L5D R                 | RRLILSA       | RRLILSD RI        | RRL2L5A 1   | RRL2L5D RR                        | RRL3L5A RR     | RRL3L5D RRU      | RRUSV5A RR  | RRUSV5D CRU     | RUCVSA RRU                        | RRUCVSD RRPFVSA |             | RRPFVSD RRPRVSA  | SA RRPRYSD  |
| 0          | 3 - 3.9                      | RRGILAA  | RRG1L4D                           | RRG2L4A       | RRG2L4D    | RRG3L4A    | RRG3L4D R                 | RRL1L4A 1     | RRLIL4D RU        | RRL2L4A 1   | RRL2L4D RR                        | RRL3L4A RR     | RRL3L4D RRU      | RRUSV4A RR  | RRUSV4D RRU     | RRUCV4A RRU                       | RRUCV4D RRPFV4A |             | RRPFV4D RRPRV4A  | 1A RRPRV4D  |
| 'n         | 2 - 2.9                      | RRGIL3A  | RRG1L3D                           | RRG2L3A       | RRG2L3D    | RRG3L3A    | RRG3L3D R                 | RRL1L3A 1     | RRL1L3D R         | RRL2L3A 1   | RRL2L3D RR                        | RRL3L3A RR     | RRL3L3D RRU      | RRUSV3A RR  | RRUSV3D RRU     | RRUCV34 RRU                       | RRUCV3D RRPFV3A |             | RRPFV3D RRPRV3A  | 3A RRPRV3D  |
| Щ          | 1 - 1.9                      | RRG1L2A  | RRGIL2D                           | RRG2L2A       | RRGZLZD    | RRG3L2A    | RRG3L2D R                 | RRL1L2A 1     | RRLILZD RU        | RRL2L2A 1   | RRLZLZD RR                        | RRL3L2A RR     | RRL3L2D RRL      | RRUSV2A RR  | RRUSY2D RRU     | RRUCV2A RRU                       | RRUCVZD RRPFVZA | V2A RRPFV2D | TYZD RRPRVZA     | 2A RRPRV2D  |
| ~          | >0 - 0.9                     | RRGILIA  | RRGILID                           | RRG2L1A       | RRG2L1D    | RRG3L1A    | RRG3LID R                 | RRLILIA       | RRLILID RI        | RRL2L1A I   | RRLZLID RR                        | RRL3L1A RR     | RRL3LID RRU      | RRUSV1A RR  | RRUSVID RRU     | RRUCVIA RRUG                      | RRUCVID RRPFVIA |             | RRPFVID RRPRVIA  | 14 RRPRVID  |
|            | CLEAN                        | RGILCLA  | 0 4                               | RG2LCLA       | 0          | RG3LCLA    | 0                         | RLILCLA       | 0                 | RLZLCLA     | 0 <b>k</b> RI                     | RL3LCLA        | 0 PRU:           | RUSVCLA     | 0 ARUC          | RRUCYCLA                          | O PRPFYCLA      |             | O RRPRVCLA       | 0 77        |
|            | TOTAI                        | RGIALTOT | RGIDLTOTHG2ALTOT                  | GZALTOT       | RG2DLTOTI  | G3ALTOT    | RG3DLTOTELIALTOT          | 98            | RLIDLTOT REZALTOT | W           | RL2DLTOT RL3ALTOT                 | 833            | RL3DLTOTRUSALTOT |             | SDLTOTHUCA      | RUSDLTOTHUCALTOT RUCDLTOTHPFALTOT | LTOTT PFAL      | 333         | RPFDLTOTIPRALTOT | OT RPRDLTOT |
|            |                              |          |                                   |               |            |            |                           | 100           |                   |             |                                   |                |                  |             |                 |                                   |                 |             |                  |             |
| RAT        | RATING                       | RRGIUWD  | JWD                               | RRG2UWD       | JWD.       | RRG3UWD    | WD                        | RRLIUWD       |                   | RRL2UWD     |                                   | RRL3UWD        |                  | RRUSUWD     |                 | RRUCUWD                           |                 | RRPFUWD     |                  | RRPRUWD     |
| LOC        | LOCATION FACTOR              |          | 1.5                               | 1             | 1.5        | 25         | 2                         | 1             | -                 | 1           |                                   | 25             |                  | 50          |                 | 20                                |                 | 0           |                  | 0           |
| 2          | IND RATING                   | RRGIWD   | ИVD                               | RRG2WD        | WD         | RRG3WD     | $\Delta MD$               | RRLIWD        |                   | RRL2WD      | <i>a.</i>                         | RRL3WD         |                  | RRUSWD      |                 | RRUCWD                            |                 | RRPFWD      | RR               | RRPRWD      |
|            | TGF %                        |          |                                   | INT. GR. FILL | . FILL %   | ,,         |                           | WDK/WDN       | DN                |             | UNWE                              | UNWEIGHTED DEP | DEP.             | TE          | STLAE           | TEST LAB TLHC %                   | %               | TEST        | TEST LAB TLFC %  | FC %        |
|            | RRTGF                        |          |                                   | RRIGF         | r.         |            | R                         | RRWD          |                   |             | RRL                               | RRUWD          |                  |             | TLHC            |                                   |                 | 7.17        | TLFC             |             |
|            |                              |          |                                   |               |            | 1          |                           |               |                   |             |                                   |                |                  |             |                 |                                   | -               |             |                  |             |

FIG. A13.8 1K/1N Referee Rating

# 1K/1N FORM 6 OIL ANALYSIS AND RESULTS SUMMARY

| TEST IDENTIFICATION     | CATION           |                |           |             |          |        |
|-------------------------|------------------|----------------|-----------|-------------|----------|--------|
| LAB: LAB                | EOT DATE: DTCOMP | DTCOMP         | END TIME: | EOTTIME     | METHOD:  | METHOD |
| STAND: S                | STAND            | RUN NUMBER: EN | ENRUN     |             |          |        |
| FORMULATION/STAND CODE: | STAND CODE:      | FORM           |           |             |          |        |
| OILCODE/CMIR:           | OITCC            | OILCODE/CMIR   | •         |             |          |        |
| TEST FUEL:              | TEST             | TESTFUEL       |           | FUEL BATCH: | FUELBTID |        |
|                         |                  |                |           |             |          |        |

| OIL ANAL/ENG. HRS      | 3. HRS.                                | NE             | NEW/0                                             | 24                            | 4              | 2                                                                                                | 204             | 2                            | 252                |
|------------------------|----------------------------------------|----------------|---------------------------------------------------|-------------------------------|----------------|--------------------------------------------------------------------------------------------------|-----------------|------------------------------|--------------------|
| VISC @ 100°C           |                                        | V100HNEW       |                                                   | V100H024                      |                | V100H204                                                                                         |                 | V100H252                     |                    |
| TBN D4739              |                                        | TBN_HNEW       |                                                   | TBN_H024                      |                | TBN_H204                                                                                         |                 | TBN_H252                     |                    |
| WEAR METALS            |                                        | Fe/A1 FFWMHNEW | 41.WMHNFW                                         | FFWMH024                      | 41.WMH024      | FEWMH204                                                                                         | AI WMH204       | FFWMH252                     | AI WMH252          |
| TUTTINI NICT M         |                                        | C. C. SIWAHNEW | Τ.                                                |                               | CIMMAHO2A      | POCHPANIS                                                                                        | CLIMMIN         | CSCHIVAIS                    | CSCHWMIN           |
|                        | SI/Cu<br>Cr/Pb                         | Cr/Pb CRWMHNEW | PBWMHNEW                                          | #                             | PBWMH024       | CRWMH204                                                                                         | PBWMH204        | CRWMH252                     | PBWMH252           |
| FUEL DILUTION          |                                        |                |                                                   | FDILH024                      |                | FDILH204                                                                                         |                 | FDILH252                     |                    |
| BLOWBY (L/min)         | n)                                     |                |                                                   | BLBYH024                      |                | BLBYH204                                                                                         |                 | BLBYH252                     |                    |
| 24 HR. AVG. BS         | 24 HR. AVG. BSOC (g/kW-h) FOR HRS. END | R HRS. END     |                                                   | 0-252 HR. AVG. BSOC (g/kW-h): | BSOC (g/kW-h): | BSOC                                                                                             | EOT Oil Consu   | EOT Oil Consumption(g/kW-h): | EOTOC              |
| 24                     | 48                                     | 72             | 108                                               | 132                           | 156            | 180                                                                                              | 204             | 228                          | 252                |
| BSOCH024               | BSOCH048                               | BSOCH072       | BSOCH108                                          | BSOCH132                      | BSOCH156       | BSOCH180                                                                                         | BSOCH204        | BSOCH228                     | BSOCH252           |
| INSPECTION AND         | Ð                                      | RING GAP       | SIDE CL.                                          | RING                          | SCUFFED        | % BORE POLISH                                                                                    | H               | AVERAGE WEAR                 | AR                 |
| MEAS. SUMMARY          | RY                                     | INCR (mm)      | LOSS (mm)                                         | STUCK (1)                     | AREA % (2)     | (WITH GRID)                                                                                      |                 | STEP (mm)                    |                    |
| TOP RING               |                                        | RINGGTI        | LSCTOP                                            | STUCKTOP                      | SCUFFTOP       | 3<br>1<br>2<br>2<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1 |                 |                              |                    |
| INT. RING              |                                        | RINGGIII       | TSCIN11                                           | STUCKINI                      | SCUFFINI       |                                                                                                  |                 |                              |                    |
| OIL RING               |                                        | RINGGOI        | TIOOST                                            | STUCKOIL                      | SCUFFOIL       |                                                                                                  |                 |                              |                    |
| PISTON                 |                                        |                |                                                   | 3.0                           | SCUFFPIS       |                                                                                                  |                 |                              |                    |
| CYLINDER LINER         | ER                                     |                |                                                   |                               | SCUFFLIN       | BOREPOL                                                                                          |                 | AWEARST                      |                    |
| 4                      | 13 d 13 d 11 d 11                      | TGF %          | INT GR. F.%                                       | WDK/WDN                       | UN WT DEP      | T.L. HVY                                                                                         | T.L. HVY CARB % | T.L. FLAK                    | T.L. FLAKED CARB % |
| PISTON DEPOSIT SUMMARY | II SUMMARY                             | TGF            | IGF                                               | ИD                            | UWD            | TLHC                                                                                             |                 | TLFC                         |                    |
|                        |                                        |                | <b>U</b> . 100 (100 (100 (100 (100 (100 (100 (100 | UNWEIGHTED PISTON DEPOSITS    | STON DEPOSIT   | S                                                                                                |                 |                              |                    |
|                        | GROOVES                                |                |                                                   | LANDS                         |                | UPPER                                                                                            | UNDER           | PIN E                        | PIN BORES          |
| 1                      | 2                                      | 3              | 1                                                 | 2                             | 3              | SKIRT                                                                                            | CROWN           | FRONT                        | REAR               |
| GIUWD                  | $QM\Omega ZD$                          | СЗЛИД          | LIUWD                                             | L2UWD                         | L3UWD          | ампsп                                                                                            | ИСИИД           | PFUWD                        | PRUWD              |

FIG. A13.9 1K/1N Oil Analysis and Results Summary



# 1K/1N FORM 7 UNSCHEDULED DOWNTIME & MAINTENANCE SUMMARY

| LAB: <i>LAB</i> |               | EOT DA      | TE: DTCOMP | END TIME: | EOTTIME           | METHOD   | : METH | OD        |
|-----------------|---------------|-------------|------------|-----------|-------------------|----------|--------|-----------|
| STAND: S        | TAND          |             |            | RUN NUMB  | ER: ENRUN         |          |        |           |
| FORMULA'        | TION/STAN     | ND CODE: FO | ORM        |           |                   |          |        |           |
| OILCODE/        | CMIR: OIL     | CODE/CMIR   |            |           |                   |          |        |           |
| Number of       | f Downtime    | Occurrences | DWNOCR     |           |                   |          | 140 m  | 7.1 ·     |
| TEST<br>HOURS   | DATE          | DOWNTIME    |            |           | REASONS           |          |        |           |
| DOWNR001        | DDATR001      | DTIMR001    | DREAR001   |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               | TOTLDOWN    |            | τοται δο  | WNTIME (125 I     | HD MAY   | - M    |           |
|                 |               |             |            | TOTAL DO  | W 1 11 MIS (123 ) | III. WAA |        | 228 - 228 |
| Out-of-Lir      | mits Data and | d Comments  |            |           |                   |          |        |           |
| Numb            | er of Commo   | ent Lines   | ТОТСОМ     |           |                   |          |        |           |
| OCOMR001        |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |
|                 |               |             |            |           |                   |          |        |           |

(Rev. 5/94)

# 1K/1N

# FORM 8

# RING MEASUREMENTS

| LAB: LAB EOT DAT    | TE: DTCOMP        | END TIME: | EOTTIME | METHOD: | METHOD |
|---------------------|-------------------|-----------|---------|---------|--------|
| STAND: STAND        | RUN NUMBER: ENRUN |           |         |         | "      |
| FORMULATION/STAND   | CODE: FORM        |           |         |         |        |
| OILCODE/CMIR: OILCO | DDE/CMIR          |           |         |         |        |

| RING GAPS (mm) | TOP                     | INTERMEDIATE            | OIL              |
|----------------|-------------------------|-------------------------|------------------|
| SPECIFICATIONS | 0.724 <u>+</u> 0.076 mm | 0.673 <u>+</u> 0.076 mm | 0.572 ± 0.190 mm |
| PRE-TEST       | RINGGTE                 | RINGGI1E                | RINGGOE          |
| POST-TEST      | RINGGTO                 | RINGGI10                | RINGGOO          |
| INCREASE       | RINGGTI                 | RINGGIII                | RINGGOI          |

| RING | SSIDE CLEARANCE | A          | В        | С           | D        | AVG.            | MIN.    | SPECIFICATION           |
|------|-----------------|------------|----------|-------------|----------|-----------------|---------|-------------------------|
|      | PRE-TEST        | SIDETPEI   | SIDETPE2 | SIDETPE3    | SIDETPE4 | ISIDETPE        | SIDETPE |                         |
| ТОР  | POST-TEST       | SIDETPO1   | SIDETPO2 | SIDETPO3    | SIDETPO4 | SIDETPO         | SIDETPO | 0.193 <u>+</u> 0.032 mm |
|      | LSC             | LSCT1      | LSCT2    | LSCT3       | LSCT4    | LSCTOP          | ILSCT   |                         |
|      | PRE-TEST        | SIDEIPEI   | SIDE1PE2 | SIDE I PE 3 | SIDE1PE4 | <i>ASIDE1PE</i> | SIDEIPE |                         |
| INT. | POST-TEST       | SIDE IPO I | SIDE1PO2 | SIDE1PO3    | SIDE1PO4 | ISIDEIPO        | SIDE1PO | 0.090 <u>+</u> 0.020 mm |
|      | LSC             | LSCII      | LSCI2    | LSC13       | LSCI4    | LSCINT1         | ILSCINT |                         |
|      | PRE-TEST        | SIDEOPEI   | SIDEOPE2 | SIDEOPE3    | SIDEOPE4 | SIDEOPE         | SIDEOPE |                         |
| OIL  | POST-TEST       | SIDEOPOI   | IDEOPO2  | IDEOPO3     | SIDEOPO4 | SIDEOPO         | SIDEOPO | 0.073 ±0.016 mm         |
|      | LSC             | LSCO1      | LSCO2    | LSCO3       | LSCO4    | LSCOIL          | ILSCO   |                         |

Note 1-Write "stuck" in place of dimension when applicable.

FIG. A13.11 1K/1N Ring Measurements

Note 2—Write "<0.038 mm" for clearance when applicable.

Note 3—Write ">" before calculated decrease or average decrease values that incorporate a "<0.038 mm" in calculation.

Note 4-LSC: loss of side clearance.

Note 5—Min: intermediate and oil ring minimum side clearance is measured  $360^{\circ}$  around piston.



# 1K/1N FORM 9 LINER MEASUREMENTS

| LAB: LAB EOT DAT    | ΓΕ: <i>DTCOMP</i> | END TIME: | EOTTIME | METHOD: | METHOD |
|---------------------|-------------------|-----------|---------|---------|--------|
| STAND: STAND        | RUN NUMBER: ENRUN |           |         |         | •      |
| FORMULATION/STAND   | CODE: FORM        |           |         |         |        |
| OILCODE/CMIR: OILCO | ODE/CMIR          |           |         |         |        |

|                                       | LINER SURFACE FINISH | (MICROMETER)     | · · · · · · · · · · · · · · · · · · · |
|---------------------------------------|----------------------|------------------|---------------------------------------|
| DISTANCE<br>FROM TOP                  | TRANSVERSE           | LONGITUDINAL     | AVERAGE                               |
| 130 mm                                | BBLFINTI             | BBLFINL1         | BBLFINA I                             |
| 50 mm                                 | BBLFINT2             | BBLFINL2         | BBLFINA2                              |
| 25 mm                                 | BBLFINT3             | BBLFINL3         | BBLFINA3                              |
| · · · · · · · · · · · · · · · · · · · |                      | TOTAL<br>AVERAGE | BBLFIN                                |

| 1           | RE POLISH - GRID<br>ALUES FROM GRID) |
|-------------|--------------------------------------|
| THRUST      | BOREPT                               |
| ANTI-THRUST | BOREPAT                              |
| TOTAL       | BOREPOL                              |

|                                                                                                                      | LIN     | IER BORE MEASUF  | REMENT (mm)      |            |
|----------------------------------------------------------------------------------------------------------------------|---------|------------------|------------------|------------|
|                                                                                                                      | BEFOR   | E TEST - DIAMETE | R (DIAL BORE GAO | GE)        |
| BORE HEIGH                                                                                                           | TT .    | LONGITUDINAL     | 1                | ΓRANSVERSE |
| 230 mm                                                                                                               |         | BBLONG1          | 1                | BBTRANI    |
| 130 mm                                                                                                               |         | BBLONG2          | 1                | BBTRAN2    |
| 50 mm                                                                                                                |         | BBLONG3          | 1                | BBTRAN3    |
| 25 mm                                                                                                                |         | BBLONG4          | i                | BBTRAN4    |
| 15 mm                                                                                                                |         | BBLONG5          | 1                | BBTRAN5    |
|                                                                                                                      |         | AFTER TEST - (SU | RFACE PROFILE)   |            |
|                                                                                                                      | LONG    | ITUDINAL         | TRA              | NSVERSE    |
| de<br>Nacional de la companya de la compa | FRONT   | REAR             | Т                | AT         |
| WEAR STEP @ 15mm                                                                                                     | AWEARLF | AWEARLR          | AWEARTT          | AWEARTAT   |

FIG. A13.12 1K/1N Liner Measurements

1K/1N

# CHARACTERISTICS OF THE DATA ACQUISITION SYSTEM FORM 10

|                           |         |                              |           |                   | ( )     |        |
|---------------------------|---------|------------------------------|-----------|-------------------|---------|--------|
| LAB: LAB EOT DATE: DTCOMP | EOT DA  |                              | END TIME: | END TIME: EOTTIME | METHOD: | МЕТНОД |
| STAND: STAND              | 4ND     | RUN NUMBER: ENRUN            |           |                   |         |        |
| FORMULATIO                | N/STAND | FORMULATION/STAND CODE: FORM |           |                   |         |        |
| OILCODE/CMIR:             | Z: OILC | OILCODE/CMIR                 |           |                   |         |        |

| PARAMETER            | SENSING  | CALIBRATION | RECORD        | OBSERVATION       | RECORD           | LOG       | SYSTEM          |
|----------------------|----------|-------------|---------------|-------------------|------------------|-----------|-----------------|
| (1)                  | (2)      | (3)         | DEVICE<br>(4) | r REÇUENCI<br>(3) | rkeQuenci<br>(6) | FREQUENCY | KESPONSE<br>(8) |
| OPERATION CONDITIONS |          |             |               |                   |                  |           |                 |
| ENGINE SPEED (R\min) | RPMSENS  | RPMCALF     | RPMRECD       | RPMOBSF           | RPMRECF          | RPMLOGF   | RPMSYSR         |
| ENGINE POWER (kW)    | PWRSENS  | PWRCALF     | PWRRECD       | PWROBSF           | PWRRECF          | PWRLOGF   | PWRSYSR         |
| FUEL FLOW (g/min)    | FFLOSENS | FFLOCALF    | FFLORECD      | FFLOOBSF          | FFLORECF         | FFLOLOGF  | FFLOSYSR        |
| HUMIDITY (g/kg)      | HUMSENS  | HUMCALF     | HUMRECD       | ASBOWNH           | HUMRECF          | HUMLOGF   | HUMSYSR         |
| TEMPERATURES ("C) :  |          |             |               |                   |                  |           |                 |
| COOLANT OUT          | COTSENS  | COTCALF     | COTRECD       | COTOBSF           | COTRECF          | COTLOGF   | COTSYSR         |
| COOLANT IN           | CONSENS  | CONCALF     | CONRECD       | SSONOO            | CONRECF          | CONLOGF   | CONSYSR         |
| OIL TO BRG.          | OBRGSENS | OBRGCALF    | OBRGRECD      | OBRGOBSF          | OBRGRECF         | OBRGLOGF  | OBRGSYSR        |
| OIL COOLER IN        | OCOLSENS | OCOLCALF    | OCOLRECD      | SEGOTODO          | OCOLRECF         | OCOLLOGF  | OCOLSYSR        |
| INLET AIR            | AIRTSENS | AIRTCALF    | AIRTRECD      | AIRTOBSF          | AIRTRECF         | AIRTLOGF  | AIRTSYSR        |
| EXHAUST              | EXTSENS  | EXTCALF     | EXTRECD       | EXTOBSF           | EXTRECF          | EXTLOGF   | EXTSYSR         |
| FUEL                 | FUELSENS | FUELCALF    | FUELRECD      | 4SBOTAN4          | FUELRECF         | FUELLOGF  | FUELSYSR        |
| PRESSURES (kPa)      |          |             |               |                   | 10               |           |                 |
| OIL TO BRG.          | OBRPSENS | OBRPCALF    | OBRPRECD      | OBRPOBSF          | OBRPRECF         | OBRPLOGF  | OBRPSYSR        |
| OIL TO JET.          | OJETSENS | OJETCALF    | OJETRECD      | OJETOBSF          | OJETRECF         | OJETLOGF  | OJETSYSR        |
| INLET AIR            | AIRPSENS | AIRPCALF    | AIRPRECD      | AIRPOBSF          | AIRPRECF         | AIRPLOGF  | AIRPSYSR        |
| EXHAUST              | EXPSENS  | EXPCALF     | EXPRECD       | EXPOBSF           | EXPRECF          | EXPLOGF   | EXPSYSR         |
| FUEL @ FILTER HSG    | FFILSENS | FFILCALF    | FFILRECD      | FFILOBSF          | FFILRECF         | FFILLOGF  | FFILSYSR        |
| CRANKCASE VAC        | CCVSENS  | CCVCALF     | CCVRECD       | CCVOBSF           | CCVRECF          | CCVLOGF   | CCVSYSR         |
| FLOWS (L/min)        |          | 200         |               |                   |                  |           |                 |
| BLOWBY               | BLBYSENS | BLBYCALF    | BLBYRECD      | BLBYOBSF          | BLBYRECF         | BLBYLOGF  | BLBYSYSR        |
| COOLANT FLOW         | CFLWSENS | CFLWCALF    | CFLWRECD      | CFLWOBSF          | CFLWRECF         | CFLWLOGF  | CFLWSYSR        |

LEGEND:

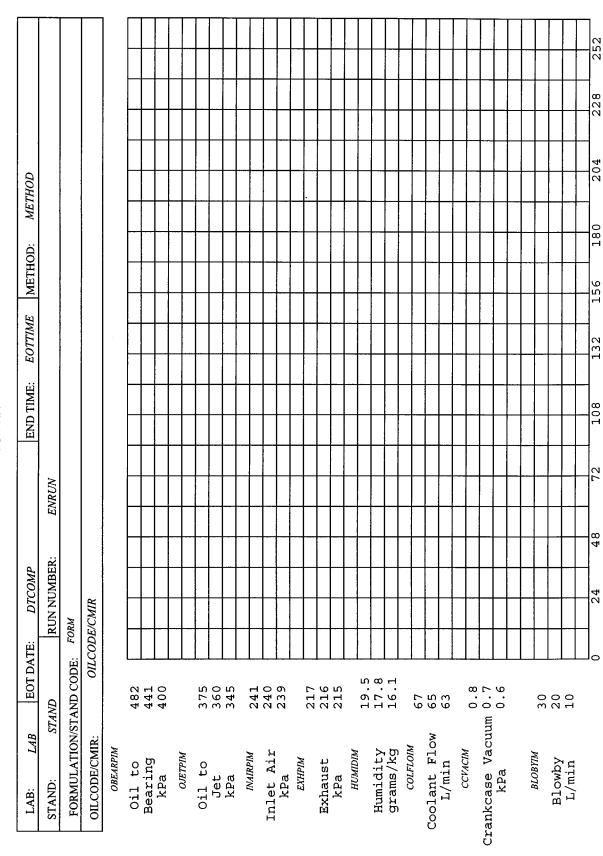
(1) OPERATING PARAMETER
(2) THE TYPE OF DEVICE USED TO MEASURE TEMPERATURE, PRESSURE OR FLOW
(3) FREQUENCY AT WHICH THE MEASUREMENT SYSTEM IS CALIBRATED
(4) THE TYPE OF DEVICE WHERE DATA IS RECORDED
1G. HANDING SHEET
DL. ALTOMATIC DATA LOGGER
SC. STRIP FLART RECORDER
CM. COMPUTER, USING MANIAL DATA ENTRY
CD. COMPUTER, USING MANIAL DATA ENTRY

(5) DATA AREA OBSERVED BUT ONLY RECORDED IF OFF SPEC.

(6) DATA ARE RECORDED BUT ARE NOT RETAINED AT EOT

(7) DATA ARE LOGGED AS PREMANENT RECORD, NOTE SPECIFY IF:

SS. - SNAPSHOT TAKEN AT SPECIFIED FREQUENCY


AGX AVERAGE OF Y DATA POINTS AT SPECIFIED FREQUENCY

(8) TIME FOR THE OUTPUT TO REACH 63.2% OF FINAL VALUE FOR STEP CHANGE AT INPUT

1K/1N FORM 11

HG. A13.14 1K/1N Engine Operating Conditions (Form 11)

1K/1N F**ORM 12** 



HOURS FIG. A13.15 1K/1N Engine Operating Conditions (Form 12)

1K/1N FORM 13 OIL CONSUMPTION PLOT

| LAB:   LAB   EOT DAT     STAND:   STAND     FORMULATION/STAND CODE:     OILCODE/CMIR:   OILCO     Oil |                                          | RUN NUMBER: FORM NDE/CMIR | ENRUN                | END TIME: | EOTTIME                                 | METHOD: METHOD | HOD |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|----------------------|-----------|-----------------------------------------|----------------|-----|--|
|                                                                                                       | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 84                        | 27<br>48<br>90<br>90 |           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                |     |  |

HOURS FIG. A13.16 1K/1N Oil Consumption Plot

OCPIM



# 1K/1N Form 14 PISTON, RING AND LINER PHOTOGRAPHS

| LAB: LAB E    | OT DAT  | E: <i>DTCOMP</i> |       | END TIME: | EOTTIME | METHOD: | METHOD |
|---------------|---------|------------------|-------|-----------|---------|---------|--------|
| STAND: STAND  | )       | RUN NUMBER:      | ENRUN |           |         |         |        |
| FORMULATION/S | STAND C | ODE: FORM        |       |           |         |         |        |
| OILCODE/CMIR: | OILCO   | DE/CMIR          |       |           |         |         |        |

PRLIM

 $No{\tt TE}\ 1\\ \hbox{$-$Refer to Appendix $X3.2$ for example of photo layout.}$  FIG. A13.17 1K/1N Piston, Ring and Liner Photographs

# 1K/1N FORM 15 SEVERITY ADJUSTMENT HISTORY

| LAB: LAB      | EOT DAT    | TE: DTCOMP  |       | END TIME: | EOTTIME | METHOD: | METHOD |  |
|---------------|------------|-------------|-------|-----------|---------|---------|--------|--|
| STAND: STA    | V <i>D</i> | RUN NUMBER: | ENRUN |           |         |         |        |  |
| FORMULATION   | /STAND (   | CODE: FORM  |       |           |         |         |        |  |
| OILCODE/CMIR: | OILCO      | DDE/CMIR    | -     |           |         |         | ***    |  |

| USAG     | E DATES  | WDI      | K/WDN    | TO       | GF %     | TRANSFOR | MED TLHC % |
|----------|----------|----------|----------|----------|----------|----------|------------|
| START    | TIME     | Zi       | S.A.     | Zi       | S.A.     | Zi       | S.A.       |
| DTSTR001 | DTTMR001 | WDZIR001 | WDSAR001 | TGZIR001 | TGSAR001 | TLZIR001 | TLSAR001   |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          | 1        |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
| ······   |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          | 1        |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          | -          |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          |          |          |          |          |            |
|          |          |          | -        |          |          |          |            |
|          |          |          |          |          |          |          |            |

FIG. A13.18 1K/1N Severity Adjustment History



## 1K/1N Form 16 TMC CONTROL CHART ANALYSIS

| LAB: LAB      | EOT DAT  | TE: DTCOMP  |       | END TIME: | EOTTIME | METHOD: | METHOD |
|---------------|----------|-------------|-------|-----------|---------|---------|--------|
| STAND: STAN   | ID       | RUN NUMBER: | ENRUN |           |         |         | _      |
| FORMULATION   | /STAND ( | CODE: FORM  | -     |           |         |         |        |
| OILCODE/CMIR: | OILC     | ODE/CMIR    |       |           |         |         |        |

ССНІМ

Note 1—Refer to Appendix X3.3 for example of control chart analysis FIG. A13.19 1K/1N TMC Control Chart Analysis

## 1K/1N Form 17 FUEL BATCH ANALYSIS

| LAB: LAB      | EOT DATE: | DTCOMP     |       | END TIME: | EOTTIME | METHOD: | METHOD |
|---------------|-----------|------------|-------|-----------|---------|---------|--------|
| STAND: STAN   | ID R      | UN NUMBER: | ENRUN |           |         |         |        |
| FORMULATION   | /STAND CO | DE: FORM   |       |           |         |         |        |
| OILCODE/CMIR: | OILCOI    | DE/CMIR    |       |           |         |         |        |

FUELIM

Note 1—Refer to Appendix X3.4 for examples of appropriate fuel batch analysis pages. FIG. A13.20 1K/1N Fuel Batch Analysis

## **A14. DATA DICTIONARY**

A14.1 The data dictionary and repeating field specifications are provided as Fig. A14.1 and Fig. A14.2.

7-jan-2002

# Data Dictionary

|          | ,        | lest  | Field     | Field  | Decimal | Data |                     | <u></u>                                                   |
|----------|----------|-------|-----------|--------|---------|------|---------------------|-----------------------------------------------------------|
| Sequence |          |       | Name      |        |         |      | <u>Units/Format</u> | Description                                               |
| ocquence | 101111 2 | 11 CG | Hame      | Lengen | 3120    | 1750 | Offics/ Format      | <u>peaci ipcion</u>                                       |
| 10       | 0        | 1K1N  | VERSION   | 8      | 0       | С    | YYYYMMDD            | 1K1N VERSION 20020107 BETA                                |
|          |          |       |           |        |         |      | TITIMMUU            |                                                           |
| 20       | 0        | 1K1N  | METHOD    | 2      | 0       | C    |                     | METHOD                                                    |
| 30       | 0        | 1K1N  | TSTSPON1  | 40     | 0       | С    |                     | CONDUCTED FOR, FIRST LINE                                 |
| 40       | 0        | 1K1N  | TSTSPON2  | 40     | 0       | C    |                     | CONDUCTED FOR, SECOND LINE                                |
| 50       | 0        | 1K1N  | LABVALID  | 1      | 0       |      | V, I OR N           | TEST LAB VALIDATION                                       |
| 60       | 0        | 1K1N  | STAND     | 5      | 0       | С    |                     | STAND                                                     |
| 70       | 0        | 1K1N  | ENRUN     | 4      | 0       | С    |                     | ENGINE RUN                                                |
| 80       | 0        | 1K1N  | EOTTIME   | 5      | 0       | С    | HH:MM               | END OF TEST TIME                                          |
| 90       | 0        | 1K1N  | DTCOMP    | 8      | 0       | C    | YYYYMMDD            | COMPLETED DATE                                            |
| 100      | 0        | 1K1N  | OILCODE   | 38     | 0       | С    |                     | OIL CODE                                                  |
| 110      | 0        | 1K1N  | CMIR      | 6      | 0       | С    |                     | CMIR                                                      |
| 120      | 0        | 1K1N  | FORM      | 38     | 0       | С    |                     | FORMULATION/STAND CODE                                    |
| 130      | 0        | 1K1N  | ALTCODE1  | 15     | 0       | С    |                     | ALTERNATE OIL CODE 1                                      |
| 140      | 0        | 1K1N  | ALTCODE2  | 15     | 0       | С    |                     | ALTERNATE OIL CODE 2                                      |
| 150      | 0        | 1K1N  | ALTCODE3  |        | 0       | c    |                     | ALTERNATE OIL CODE 3                                      |
| 160      | Ö        | 1K1N  | OPVALID   | 8      | 0       | C    |                     | OPERATIONAL VALIDITY HAS/HAS NOT                          |
| 170      | 0        | 1K1N  | SUBLAB    | 40     | 0       | C    |                     | SUBMITTED BY: TESTING LABORATORY                          |
| 180      | 0        | 1K1N  |           |        | 0       | C    |                     |                                                           |
|          |          |       | SUBSIGIM  |        |         |      |                     | SUBMITTED BY: SIGNATURE IMAGE                             |
| 190      | 0        | 1K1N  | SUBNAME   | 40     | 0       | С    |                     | SUBMITTED BY: SIGNATURE TYPED NAME                        |
| 200      | 0        | 1K1N  | SUBTITLE  |        | 0       | С    |                     | SUBMITTED BY: TITLE                                       |
| 210      | 1        | 1K1N  | LAB       | 2      | 0       | С    |                     | LAB CODE                                                  |
| 220      | 1        | 1K1N  | DTSTRT    | 8      | 0       | С    | YYYYMMDD            | STARTING DATE                                             |
| 230      | 1        | 1K1N  | TESTLEN   | 5      | 0       | Z    | HOURS               | TOTAL TEST LENGTH                                         |
| 240      | 1        | 1K1N  | IND       | 6      | 0       | С    |                     | TMC OIL CODE                                              |
| 250      | 1        | 1K1N  | LABOCODE  | 20     | 0       | С    |                     | LABORATORY INTERNAL OIL CODE                              |
| 260      | 1        | 1K1N  | WD        | 7      | 1       | N    | DEMERITS            | WEIGHTED TOTAL DEMERITS UNADJUSTED LAB RATING             |
| 270      | 1        | 1K1N  | TGF       | 4      | 0       | N    | %                   | TOP GROOVE FILLING UNADJUSTED LAB RATING                  |
| 280      | 1        | 1K1N  | TLHC      | 4      | 0       | N    | %                   | T.L. HVY. CARBON                                          |
| 290      | 1        | 1K1N  | TTLHC     | 7      | 3       | N    | TRANS UNITS         | TRANSFORMED TOP LAND HEAVY CARBON                         |
| 300      | 1        | 1K1N  | BSOC      | 5      | 2       | N    | g/kW-h              | UNADJUSTED LAB RATING BSOC                                |
| 310      | 1        | 1K1N  | EOTOC     | 5      | 2       | N    | g/kW-h              | UNADJUSTED LAB RATING EOTOC                               |
| 320      | 1        | 1K1N  | DATECF    | 8      | 0       |      | YYYYMMDD            | INDUSTRY CORRECTION DATE                                  |
| 330      | 1        | 1K1N  | WDCF      | 7      | 1       | N    | DEMERITS            | INDUSTRY CORRECTION TOTAL WEIGHTED DEMERITS               |
| 340      | 1        | 1K1N  | TGFCF     | 4      | 0       |      | %                   | INDUSTRY CORRECTION TOP GROOVE FILLING                    |
| 350      | 1        | 1K1N  | TLHCCF    | 4      | 0       |      | %                   | INDUSTRY CORRECTION TL HEAVY CARBON                       |
| 360      | 1        | 1K1N  | TTLHCCF   | 7      | 3       |      | TRANS UNITS         | INDUSTRY CORRECTION TRANSFORMED TOP LAND HEAVY CARBON     |
| 370      | 1        |       |           |        |         |      |                     |                                                           |
| 380      |          | 1K1N  | BSOCCF    | 5<br>5 | 2       | N    |                     | INDUSTRY CORRECTION BSOC                                  |
|          | 1        | 1K1N  | EOTOCCF   | -      | 2       |      | g/kW-h              | INDUSTRY CORRECTION ECTOC                                 |
| 390      | 1        | 1K1N  |           | 7      | 1       |      | DEMERITS            | CORRECTED WEIGHTED TOTAL DEMERITS                         |
| 400      | 1        | 1K1N  | TGFCOR    | 4      | 0       |      | %                   | CORRECTED TOP GROOVE FILLING                              |
| 410      | 1        | 1K1N  | TLHCCOR   | 4      | 0       | N    | %                   | CORRECTED TL HEAVY CARBON                                 |
| 420      | 1        | 1K1N  | TTLHCCOR  |        | 3       | N    | TRANS UNITS         | CORRECTED TRANSFORMED TOP LAND HEAVY CARBON               |
| 430      | 1        | 1K1N  | BSOCCOR   | 5      | 2       | N    | g/kW-h              | CORRECTED BSOC                                            |
| 440      | 1        | 1K1N  | EOTOCCOR  | 5      | 2       | N    | g/kW-h              | CORRECTED EOTOC                                           |
| 450      | 1        | 1K1N  | DATESA    | 8      | 0       | С    | YYYYMMDD            | LAB SEVERITY ADJUSTMENT DATE                              |
| 460      | 1        | 1K1N  | WDSA      | 7      | 1       | N    | DEMERITS            | LAB SEVERITY ADJUSTMENT WEIGHTED TOTAL DEMERITS           |
| 470      | 1        | 1K1N  | TGFSA     | 4      | 0       | N    | %                   | LAB SEVERITY ADJUSTMENT TOP GROOVE FILLING                |
| 480      | 1        | 1K1N  | TLHCSA    | 4      | 0       | N    | %                   | LAB SEVERITY ADJUSTMENT TL HEAVY CARBON                   |
| 490      | 1        | 1K1N  | TTLHCSA   | 7      | 3       |      | TRANS UNITS         | LAB SEVERITY ADJUSTMENT TRANSFORMED TOP LAND HEAVY CARBON |
| 500      | 1        | 1K1N  | BSOCSA    | 5      | 2       |      | g/kW-h              | LAB SEVERITY ADJUSTMENT BSOC                              |
| 510      | 1        | 1K1N  | EOTOCSA   | 5      | 2       |      | g/kW-h              | LAB SEVERITY ADJUSTMENT EOTOC                             |
| 520      | 1        | 1K1N  | WDFNL     | 7      | 1       |      | DEMERITS            | FINAL WEIGHTED TOTAL DEMERITS                             |
| 530      | 1        | 1K1N  | TGFFNL    | 4      | 0       |      | %                   | FINAL TOP GROOVE FILLING                                  |
| 750      | '        | IK IN | I GI I NL | -      | v       | r4   | 70                  | THAT FOR GROOTE FILETING                                  |

FIG. A14.1 Data Dictionary

7-jan-2002

Report: ASTM Data Dictionary

|                    |      | Test         | Field            | Field  | Decimal | Data   | •                                         | •                                                    |
|--------------------|------|--------------|------------------|--------|---------|--------|-------------------------------------------|------------------------------------------------------|
| Sequence           | Form | Area         | Name             | Length | Size    | Туре   | Units/Format                              | Description                                          |
|                    |      |              |                  |        |         |        |                                           |                                                      |
| 540                | 1    | 1K1N         | TLHCFNL          | 4      | 0       | N      | %                                         | FINAL TL HEAVY CARBON                                |
| 550                | 1    | 1K1N         | TTLHCFNL         |        | 3       | N      | TRANS UNITS                               | FINAL TRANSFORMED TOP LAND HEAVY CARBON              |
| 560                | 1    | 1K1N         | BSOCFNL          | 5      | 2       | N      | g/kW-h                                    | FINAL BSOC                                           |
| 570                | 1    | 1K1N         | EOTOCFNL         |        | 2       | N      | g/kW-h                                    | FINAL EOTOC                                          |
| 580                | 1    | 1K1N         | EFFDATE          | 8      | 0       | С      | YYYYMMDD                                  | TEST TARGET EFFECTIVE DATE                           |
| 590                | 1    | 1K1N         | WDM              | 7      | 1       | N      | DEMERITS                                  | TEST TARGET MEAN WEIGHTED TOTAL DEMERITS             |
| 600                | 1    | 1K1N         | TGFM             | 6      | 1       | N      | %                                         | TEST TARGET MEAN TOP GROOVE FILLING                  |
| 610                | 1    | 1K1N         | TTLHCM           | 7      | 3       |        | TRANS UNITS                               | TEST TARGET MEAN TRANSFORMED TOP LAND HEAVY CARBON   |
| 620                | 1    | 1K1N         | BSOCM            | 5      | 2       | N      | g/kW-h                                    | TEST TARGET MEAN BSOC                                |
| 630                | 1    | 1K1N         | EOTOCM           | 5      | 2       | N<br>  | g/kW-h                                    | TEST TARGET MEAN EOTOC                               |
| 640                | 1    | 1K1N         | WDS              | 7      | 1       | N<br>  | DEMERITS                                  | TEST TARGET STD WEIGHTED TOTAL DEMERITS              |
| 650                | 1    | 1K1N         | TGFS             | 6      | 1       | N      | %<br>************************************ | TEST TARGET STD TOP GROOVE FILLING                   |
| 660                | 1    | 1K1N         | TTLHCS           | 5      | 1       | N      | TRANS UNITS                               | TEST TARGET STD TRANSFORMED TOP LAND HEAVY CARBON    |
| 670                | 1    | 1K1N         | BSOCS            | 5      | 2       | N      | g/kW-h                                    | TEST TARGET STD BSOC                                 |
| 680                | 1    | 1K1N         | EOTOCS           | 5      | 2       | N      | g/kW-h                                    | TEST TARGET STD EOTOC                                |
| 685                | 1    | 1K1N         | LDESC            | 40     | 0       | C      | VVVVMMDD                                  | LIMIT DESCRIPTION                                    |
| 690<br><b>7</b> 00 | 1    | 1K1N         | DTCEFF           | 8      | 0       |        | YYYYMMDD                                  | LIMIT REFECTIVE DATE                                 |
| 700<br>710         | 1    | 1K1N         | WDPL             | 7      | 1       | N      | DEMERITS                                  | LIMIT WEIGHTED TOTAL DEMERITS                        |
| 710                | 1    | 1K1N<br>1K1N | TGFPL            | 6<br>6 | 1<br>1  | N<br>N | %                                         | LIMIT TOP GROOVE FILLING LIMIT TOP LAND HEAVY CARBON |
| 720<br>730         | 1.   | 1K1N         | TLHCPL<br>BSOCPL | 5      | 2       |        |                                           | LIMIT BSOC                                           |
| 740                | 1    | 1K1N         | EOTOCPL          | 5      | 2       | N<br>N | g/kW-h<br>g/kW-h                          | LIMIT BOOC                                           |
| 750                | 1    | 1K1N         | RRLAB            | 2      | 0       | C      | 9/ KW-11                                  | REFEREE LAB CODE                                     |
| 760                | 1    | 1K1N         | RRWD             | 7      | 1       | N      | DEMERITS                                  | REFEREE RATING WEIGHTED TOTAL DEMERITS               |
| 770                | 1    | 1K1N         | RRTGF            | 4      | Ö       | N      | %                                         | REFEREE RATING TOP GROOVE FILLING                    |
| 780                | 1    | 1K1N         | LSCTOP           | 6      | 3       | N      | mm                                        | TOP RING SIDE CLEARANCE LSC                          |
| 790                | 1    | 1K1N         | LSCINT1          | 6      | 3       | N      | mm                                        | INT. 1 RING SIDE CLEARANCE LSC                       |
| 800                | 1    | 1K1N         | LSCOIL           | 6      | 3       | N      | mm                                        | OIL RING SIDE CLEARANCE LSC                          |
| 810                | 1    | 1K1N         | RINGGTI          | 6      | 3       | N      | mm                                        | TOP RING END GAP INCREASE                            |
| 820                | 1    | 1K1N         | RINGGI1I         | _      | 3       | N      | mm                                        | INTERMEDIATE 1 RING END GAP INCREASE                 |
| 830                | 1    | 1K1N         | RINGGOI          | 6      | 3       | N      | mm                                        | OIL RING END GAP INCREASE                            |
| 840                | 1    | 1K1N         | STUCKTOP         | _      | 0       | C      |                                           | IS THE TOP RING STUCK? YES OR NO!!                   |
| 850                | 1    | 1K1N         | STUCKIN1         |        | 0       | С      |                                           | IS THE INT. 1 RING STUCK? YES OR NO!!                |
| 860                | 1    | 1K1N         | STUCKOIL         |        | 0       | C      |                                           | IS THE OIL RING STUCK? YES OR NO!!                   |
| 870                | 1    | 1K1N         | SCUFFTOR         |        | 0       | N      | %                                         | SCUFFED AREA TOP                                     |
| 880                | 1    | 1K1N         | SCUFFIN1         |        | 0       | N      | %                                         | SCUFFED AREA INT. 1                                  |
| 890                | 1    | 1K1N         | SCUFFOIL         | . 4    | 0       | N      | %                                         | SCUFFED AREA OIL                                     |
| 900                | 1    | 1K1N         | SCUFFPIS         | 5 4    | 0       | N      | %                                         | SCUFFED AREA PISTON                                  |
| 910                | 1    | 1K1N         | SCUFFLIN         | 1 4    | 0       | N      | %                                         | SCUFFED AREA LINER                                   |
| 920                | 1    | 1K1N         | AWEARST          | 6      | 3       | N      | mm                                        | AVERAGE WEAR STEP LINER                              |
| 930                | 1    | 1K1N         | BOREPOL          | 6      | 1       | N      | %                                         | LINER BORE POLISH                                    |
| 940                | 2    | 1K1N         | IRPM             | 7      | 1       | N      | r/min                                     | MIN ENGINE SPEED                                     |
| 950                | 2    | 1K1N         | XRPM             | 7      | 1       | N      | r/min                                     | MAX ENGINE SPEED                                     |
| 960                | 2    | 1K1N         | ARPM             | 7      | 1       | N      | r/min                                     | AVG ENGINE SPEED                                     |
| 970                | 2    | 1K1N         | IPWR             | 6      | 1       | N      | kW                                        | MIN ENGINE POWER                                     |
| 980                | 2    | 1K1N         | XPWR             | 6      | 1       | N      | kW                                        | MAX ENGINE POWER                                     |
| 990                | 2    | 1K1N         | APWR             | 6      | 1       | N      | k₩                                        | AVG ENGINE POWER                                     |
| 1000               | 2    | 1K1N         | IFFLO            | 6      | 1       | N      | g/min                                     | MIN FUEL FLOW                                        |
| 1010               | 2    | 1K1N         | XFFLO            | 6      | 1       | N      | g/min                                     | MAX FUEL FLOW                                        |
| 1020               | 2    | 1K1N         | AFFLO            | 6      | 1       | N      | g/min                                     | AVG FUEL FLOW                                        |
| 1030               | 2    | 1K1N         | IHUMID           | 5      | 1       | N      | g/kg                                      | MIN HUMIDITY                                         |
| 1040               | 2    | 1K1N         | XHUMID           | 5      | 1       | N      | g/kg                                      | MAX HUMIDITY                                         |
| 1050               | 2    | 1K1N         | AHUMID           | 5      | 1       | N      | g/kg                                      | AVG HUMIDITY                                         |
| 1060               | 2    | 1K1N         | ICOLOUT          | 5      | 1       | N      | °C                                        | MIN COOLANT OUT                                      |

FIG. A14.1 Data Dictionary (continued)

- 2-

| 7- Jan-200 | 12          |             |             |               |             |      | Report: ASIM L      | Data Dictionary                      |
|------------|-------------|-------------|-------------|---------------|-------------|------|---------------------|--------------------------------------|
|            |             | Test        | Field       | Field         | Decimal     | Data |                     |                                      |
| Sequence   | <u>Form</u> | <u>Area</u> | <u>Name</u> | <u>Length</u> | <u>Size</u> | Type | <u>Units/Format</u> | <u>Description</u>                   |
| 1070       | 2           | 1V1N        | VCOL OUT    | 5             | 1           |      | °C                  | MAY COOLANT OUT                      |
|            | 2           | 1K1N        | XCOLOUT     | 5             | 1           | N    | °C                  | MAX COOLANT OUT                      |
| 1080       |             | 1K1N        | ACOLOUT     |               |             | N    |                     | AVG COOLANT OUT                      |
| 1090       | 2           | 1K1N        | ICOLIN      | 5             | 1           | N    | °C                  | MIN COOLANT IN                       |
| 1100       | 2           | 1K1N        | XCOLIN      | 5             | 1           | N    | °C                  | MAX COOLANT IN                       |
| 1110       | 2           | 1K1N        | ACOLIN      | 5             | 1           | N    | °C                  | AVG COOLANT IN                       |
| 1120       | 2           | 1K1N        | ICOLDT      | 5             | 1           | N    | °C                  | MIN COOLANT DELTA                    |
| 1130       | 2           | 1K1N        | XCOLDT      | 5             | 1           | N    | °C                  | MAX COOLANT DELTA                    |
| 1140       | 2           | 1K1N        | ACOLDT      | 5             | 1           | N    | °C                  | AVG COOLANT DELTA                    |
| 1150       | 2           | 1K1N        | IOBRGTMP    | 6             | 1           | N    | °C                  | MIN OIL TO BEARING TEMPERATURE       |
| 1160       | 2           | 1K1N        | XOBRGTMP    | 6             | 1           | N    | °C                  | MAX OIL TO BEARING TEMPERATURE       |
| 1170       | 2           | 1K1N        | AOBRGTMP    | 6             | 1           | N    | °C                  | AVG OIL TO BEARING TEMPERATURE       |
| 1180       | 2           | 1K1N        | IOCOOLIN    | 6             | 1           | N    | °C                  | MIN OIL COOLER IN TEMPERATURE        |
| 1190       | 2           | 1K1N        | XOCOOLIN    | 6             | 1           | N    | °C                  | MAX OIL COOLER IN TEMPERATURE        |
| 1200       | 2           | 1K1N        | AOCOOLIN    | 6             | 1           | N    | °C                  | AVG OIL COOLER IN TEMPERATURE        |
| 1210       | 2           | 1K1N        | IINAIRT     | 6             | 1           | N    | °C                  | MIN INLET AIR TEMPERATURE            |
| 1220       | 2           | 1K1N        | XINAIRT     | 6             | 1           | N    | °C                  | MAX INLET AIR TEMPERATURE            |
| 1230       | 2           | 1K1N        | AINAIRT     | 6             | 1           | N    | °C                  | AVG INLET AIR TEMPERATURE            |
| 1240       | 2           | 1K1N        | I EXHTMP    | 6             | 1           | N    | °C                  | MIN EXHAUST TEMPERATURE              |
| 1250       | 2           | 1K1N        | XEXHTMP     | 6             | 1           | N    | °C                  | MAX EXHAUST TEMPERATURE              |
| 1260       | 2           | 1K1N        | AEXHTMP     | 6             | 1           | N    | °C                  | AVG EXHAUST TEMPERATURE              |
| 1270       | 2           | 1K1N        | I FUELTMP   |               | 1           | N    | °C                  | MINIMUM FUEL & INJECTOR HOUSING TEMP |
| 1280       | 2           | 1K1N        | XFUELTMP    |               | 1           | N    | °C                  | MAXIMUM FUEL & INJECTOR HOUSING TEMP |
| 1290       | 2           | 1K1N        | AFUELTMP    |               | 1           | N    | °C                  | AVERAGE FUEL @ INJECTOR HOUSING TEMP |
| 1300       | 2           | 1K1N        | 10BRGPR     | 6             | 1           | N    | kPa                 | MIN OIL TO BEARING PRESSURE          |
| 1310       | 2           | 1K1N        | XOBRGPR     | 6             | 1           | N.   | kPa                 | MAX OIL TO BEARING PRESSURE          |
| 1320       | 2           | 1K1N        | AOBRGPR     | 6             | 1           | N    | kPa                 | AVG OIL TO BEARING PRESSURE          |
| 1330       | 2           | 1K1N        | IOJETPR     | 6             | 1           | N    | kPa                 | MIN OIL TO JET PRESSURE              |
| 1340       | 2           | 1K1N        | XOJETPR     | 6             | 1           | N    | kPa                 | MAX OIL TO JET PRESSURE              |
| 1350       | 2           |             |             |               | 1           |      |                     |                                      |
|            | 2           | 1K1N        | AOJETPR     | 6             | 1           | N    | kPa                 | AVG OIL TO JET PRESSURE              |
| 1360       | 2           | 1K1N        | IINAIRP     | 6             | 1           | N    | kPa                 | MIN INLET AIR PRESSURE               |
| 1370       | 2           | 1K1N        | XINAIRP     | 6             | 1           | N    | kPa                 | MAX INLET AIR PRESSURE               |
| 1380       |             | 1K1N        | AINAIRP     | 6             |             | N    | kPa                 | AVG INLET AIR PRESSURE               |
| 1390       | 2           | 1K1N        | IEBP        | 6             | 1           | N    | kPa                 | MIN EXHAUST PRESSURE                 |
| 1400       | 2           | 1K1N        | XEBP        | 6             | 1           | N    | kPa                 | MAX EXHAUST PRESSURE                 |
| 1410       | 2           | 1K1N        | AEBP        | 6             | 1           | N    | kPa                 | AVG EXHAUST PRESSURE                 |
| 1420       | 2           | 1K1N        | IFUELPR     | 6             | 1           | N    | kPa                 | MIN FUEL & FILTER HOUSING PRESSURE   |
| 1430       | 2           | 1K1N        | XFUELPR     | 6             | 1           | N    | kPa                 | MAX FUEL @ FILTER HOUSING PRESSURE   |
| 1440       | 2           | 1K1N        | AFUELPR     | 6             | 1           | N    | kPa                 | AVG FUEL & FILTER HOUSING PRESSURE   |
| 1450       | 2           | 1K1N        | ICCV        | 5             | 2           | N    | kPa                 | MIN CRANKCASE VACUUM PRESSURE        |
| 1460       | 2           | 1K1N        | XCCV        | 5             | 2           | N    | kPa                 | MAX CRANKCASE VACUUM PRESSURE        |
| 1470       | 2           | 1K1N        | ACCV        | 5             | 2           | N    | kPa                 | AVG CRANKCASE VACUUM PRESSURE        |
| 1480       | 2           | 1K1N        | I JUGPR     | 6             | 1           | N    | kPa                 | MIN COOLANT JUG PRESSURE             |
| 1490       | 2           | 1K1N        | XJUGPR      | 6             | 1           | N    | kPa                 | MAX COOLANT JUG PRESSURE             |
| 1500       | 2           | 1K1N        | AJUGPR      | 6             | 1           | N    | kPa                 | AVG COOLANT JUG PRESSURE             |
| 1510       | 2           | 1K1N        | IBLOBY      | 6             | 1           | N    | L/min               | MIN BLOWBY                           |
| 1520       | 2           | 1K1N        | XBLOBY      | 6             | 1           | N    | L/min               | MAX BLOWBY                           |
| 1530       | 2           | 1K1N        | ABLOBY      | 6             | 1           | N    | L/min               | AVG BLOWBY                           |
| 1540       | 2           | 1K1N        | ICOLFLO     | 7             | 1           | N    | L/min               | MIN COOLANT FLOW                     |
| 1550       | 2           | 1K1N        | XCOLFLO     | 7             | 1           | N    | L/min               | MAX COOLANT FLOW                     |
| 1560       | 2           | 1K1N        | ACOLFLO     | 7             | 1           | N    | L/min               | AVG COOLANT FLOW                     |
| 1570       | 2           | 1K1N        | AFR24       | 6             | 1           | N    |                     | AIR/FUEL RATIO - 24 HOUR             |
| 1580       | 2           | 1K1N        | AFR252      | 6             | 1           | N    |                     | AIR/FUEL RATIO - 252 HOUR            |
| 1590       | 2           | 1K1N        | PISTONC     | L 6           | 3           | N    | mm                  | PISTON/HEAD CLEAR ASSEM. MEASUREMENT |
| 1600       | 2           | 1K1N        | INVALOPI    | N 7           | 1           | N    | ° ATC               | INTAKE VALVE OPEN                    |
|            |             |             |             |               |             |      |                     |                                      |

- 3 -

FIG. A14.1 Data Dictionary (continued)

7-jan-2002

Report: ASTM Data Dictionary

|              |        | Test         | Field       | Field  | Decimal | Data  |                     |                                                                                       |
|--------------|--------|--------------|-------------|--------|---------|-------|---------------------|---------------------------------------------------------------------------------------|
| Sequence     | Form / | Area         | <u>Name</u> | Length | Size    | Туре  | <u>Units/Format</u> | Description                                                                           |
|              |        |              |             |        |         |       |                     |                                                                                       |
| 1610         | 2      | 1K1N         | FUELTIM     | 7      | 1       | N     | ° BTC               | FUEL TIMING                                                                           |
| 1620         | 2      | 1K1N         | LINERPN     | 12     | 0       | С     |                     | LINER PART NUMBER                                                                     |
| 1630         | 2      | 1K1N         | LINERSN     | 12     | 0       | С     |                     | LINER SERIAL NUMBER                                                                   |
| 1640         | 2      | 1K1N         | LINERDC     | 12     | 0       | С     |                     | LINER DATE CODE                                                                       |
| 1650         | 2      | 1K1N         | LINERIC     | 12     | 0       | С     |                     | LINER INSPECTION CODE                                                                 |
| 1660         | 2      | 1K1N         | RINGPN      | 12     | 0       | C     |                     | RING SET PART NUMBER                                                                  |
| 1670         | 2      | 1K1N         | RINGDC      | 12     | 0       | С     |                     | RING SET DATE CODE                                                                    |
| 1680         | 2      | 1K1N         | RINGIC      | 12     | 0       | С     |                     | RING SET INSPECTION CODE                                                              |
| 1690         | 2      | 1K1N         | PISTPN      | 12     | 0       | С     |                     | PISTON PART NUMBER                                                                    |
| 1700         | 2      | 1K1N         | PISTSN      | 12     | 0       | С     |                     | PISTON SERIAL NUMBER                                                                  |
| 1710         | 2      | 1K1N         | PISTDC      | 12     | 0       | C     |                     | PISTON DATE CODE                                                                      |
| 1720         | 2      | 1K1N         | PISTIC      | 12     | 0       | C     |                     | PISTON INSPECTION CODE                                                                |
| 1730         | 3      | 1K1N         | RPMOUT      | 6      | 1       | N     | %                   | OFFSET & DEV SPEED TEST % OUT                                                         |
| 1740         | 3      | 1K1N         | RPMOFF      | 6      | 1       | N     | %                   | OFFSET & DEV SPEED TEST % OFF                                                         |
| 1750         | 3      | 1K1N         | FFLOOUT     | 6      | 1       | N     | %                   | OFFSET & DEV FUEL FLOW TEST % OUT                                                     |
| 1760         | 3      | 1K1N         | FFLOOFF     | 6      | 1       | N     | %                   | OFFSET & DEV FUEL FLOW TEST % OFF                                                     |
| 1770         | 3      | 1K1N         | HUMOUT      | 6      | 1       | N     | %                   | OFFSET & DEV HUMIDITY TEST % OUT                                                      |
| 1780         | 3      | 1K1N         | HUMOFF      | 6      | 1       | N.    | %                   | OFFSET & DEV HUMIDITY TEST % OFF                                                      |
| 1790         | 3      | 1K1N         | COLFOUT     | 6      | 1       | N     | %                   | OFFSET & DEV COOLANT FLOW TEST % OUT                                                  |
| 1800         | 3      | 1K1N         | COLFOFF     | 6      | 1       | N     | %                   | OFFSET & DEV COOLANT FLOW TEST % OFF                                                  |
| 1810         | 3      | 1K1N         | COTOUT      | 6      | 1       | N     | %                   | OFFSET & DEV COOLANT OUT TEST % OUT                                                   |
| 1820         | 3      | 1K1N         | COTOFF      | 6      | 1       | N     | %                   | OFFSET & DEV COOLANT OUT TEST % OFF                                                   |
| 1830         | 3      | 1K1N         | OBRGOUT     | 6      | 1       | N     | %                   | OFFSET & DEV OIL TO BEARING TEST % OUT                                                |
| 1840         | 3      | 1K1N         |             | 6      | 1       | N     | %                   | OFFSET & DEV OIL TO BEARING TEST % OFF                                                |
| 1850         | 3      | 1K1N         | OBRGOFF     | _      | 1       |       | %                   | OFFSET & DEV INTAKE AIR TEMP TEST % OUT                                               |
| 1860         | 3      | 1K1N         | AIRTOUT     | 6<br>6 | 1       | N     | %                   | OFFSET & DEV INTAKE AIR TEMP TEST % OFF                                               |
| 1870         | 3      |              | AIRTOFF     | _      |         | N     | %                   |                                                                                       |
|              | 3      | 1K1N<br>1K1N | FINTOUT     | 6      | 1<br>1  | N-    | %                   | FUEL TEMPERATURE AT INJECTOR HOUSING % OUT FUEL TEMPERATURE AT INJECTOR HOUSING % OFF |
| 1880<br>1890 | 3      |              | FIHTOFF     | 6      | 1       | N     | %                   |                                                                                       |
|              | 3      | 1K1N         | OJETOUT     | 6      |         | N     |                     | OFFSET & DEV OIL JET TEST % OUT                                                       |
| 1900         | 3      | 1K1N         | OJETOFF     | 6      | 1       | N     | %                   | OFFSET & DEV OIL JET TEST % OFF                                                       |
| 1910         | 3      | 1K1N         | AIRPOUT     | 6      | 1       | N     | %<br>%              | OFFSET & DEV INLET AIR PRESSURE TEST % OUT                                            |
| 1920<br>1930 | 3      | 1K1N         | AIRPOFF     | 6<br>6 | 1<br>1  | N     | %                   | OFFSET & DEV INLET AIR PRESSURE TEST % OFF                                            |
|              | 3      | 1K1N         | EXPOUT      |        |         | N     |                     | OFFSET & DEV EXHAUST PRESSURE TEST % OUT                                              |
| 1940         | 3      | 1K1N         | EXPOFF      | 6      | 1       | N     | %                   | OFFSET & DEV EXHAUST PRESSURE TEST % OFF                                              |
| 1950         | 3      | 1K1N         | FFILOUT     | 6      | 1       | N     | %                   | OFFSET & DEV FUEL AT FILTER HOUSING PRESSURE TEST % OUT                               |
| 1960         | 3      | 1K1N         | FFILOFF     | 6      | 1       | N     | %                   | OFFSET & DEV FUEL AT FILTER HOUSING PRESSURE TEST % OFF                               |
| 1970         |        | 1K1N         | CCVOUT      | 6      | 1       | N     | %                   | OFFSET & DEV CRANKCASE VACUUM PRESSURE TEST % OUT                                     |
| 1980         | 3      | 1K1N         | CCVOFF      | 6      | 1<br>n  | N     | %                   | OFFSET & DEV CRANKCASE VACUUM PRESSURE TEST % OFF                                     |
| 1990         | 4      | 1K1N         | TESTFUEL    |        |         | ·     |                     | TEST FUEL                                                                             |
| 2000         | 4      | 1K1N         | FUELBTIC    | _      | 0       | C     | VVVVIII00           | FUEL BATCH ID NUMBER                                                                  |
| 2010         | 4      | 1K1N         | DTRATE      | 8      | 0       | C     | YYYYMMDD            | RATING DATE                                                                           |
| 2020         | 4      | 1K1N         | RNO         | 10     | 0       | C     |                     | RATING NUMBER                                                                         |
| 2030         | 4      | 1K1N         | RINIT       | 3      | 0       | C     | WWW.                | RATERS INITIALS                                                                       |
| 2040         | 4      | 1K1N         | LRDTCOM     |        | 0       | C     | YYYYMMDD            | LAST STAND REFERENCE DATE COMPLETED                                                   |
| 2050         | 4      | 1K1N         | LRENRUN     | 4      | 0       | C     |                     | LAST STAND REFERENCE RUN NUMBER                                                       |
| 2060         | 4      | 1K1N         | LIND        | 6      | 0       | C     |                     | LAST STAND REFERENCE OIL CODE                                                         |
| 2070         | 4      | 1K1N         | LRWD        | 6      | 1       | N     | DEMERITS            | LAST STAND REFERENCE TOTAL WEIGHTED DEMERITS                                          |
| 2080         | 4      | 1K1N         | LRTGF       | 4      | 0       | N     | %                   | LAST STAND REFERENCE TOP GROOVE FILLING                                               |
| 2090         | 4      | 1K1N         | LRTLHC      | 4      | 0       | N     |                     | LAST STAND REFERENCE TL HEAVY CARBON                                                  |
| 2100         | 4      | 1K1N         | LRTTLHC     |        | 3       |       | TRANS UNITS         | LAST STAND REFERENCE TRANSFORMED TL HEAVY CARBON                                      |
| 2110         | 4      | 1K1N         | LRBSOC      | 5      | 2       | N<br> | g/kW-h              | LAST STAND REFERENCE BSOC                                                             |
| 2120         | 4      | 1K1N         | LREOTOC     |        | 2       | N<br> | g/kW-h              | LAST STAND REFERENCE ECTOC                                                            |
| 2130         | 4      | 1K1N         | LRAWD       | 6      | 1       |       | DEMERITS            | LAST STAND REFERENCE INDUSTRY AVG WOK                                                 |
| 2140         | 4      | 1K1N         | LRATGF      | 5      | 1       | N     | %                   | LAST STAND REFERENCE INDUSTRY AVG TGF                                                 |

FIG. A14.1 Data Dictionary (continued)

| / - Jan-200 | 32   | T    | F2-1-4   | F2.14  | D       |      | Report: ASIM I      | Data Dictionary                                |
|-------------|------|------|----------|--------|---------|------|---------------------|------------------------------------------------|
| Comioneo    | Form | Test | Field    |        | Decimal |      | Unita/Earmat        | Description                                    |
| Sequence    | rom  | Aica | Name     | Length | 3126    | Туре | <u>Units/Format</u> | <u>bescription</u>                             |
| 2150        | 4    | 1K1N | LRATTLHC | 7      | 3       | N    | TRANS UNITS         | LAST STAND REF. INDUSTRY AVG. TRANSFORMED TLHC |
| 2160        | 4    | 1K1N | LRABSOC  | 5      | 2       | N    | g/kW-h              | LAST STAND REFERENCE INDUSTRY AVG BSOC         |
| 2170        | 4    | 1K1N | LRAEOTOC | 5      | 2       | N    | g/kW-h              | LAST STAND REFERENCE INDUSTRY AVG EOTOC        |
| 2180        | 4    | 1K1N | LRSWD    | 6      | 1       | N    | DEMERITS            | LAST STAND REFERENCE INDUSTRY STD WDK          |
| 2190        | 4    | 1K1N | LRSTGF   | 6      | 1       | N    | %                   | LAST STAND REFERENCE INDUSTRY STD TGF          |
| 2200        | 4    | 1K1N | LRSTTLHC | 7      | 3       | N    | TRANS UNITS         | LAST STAND REF. INDUSTRY STD. TRANSFORMED TLHC |
| 2210        | 4    | 1K1N | LRSBSOC  | 5      | 2       | N    | g/kW-h              | LAST STAND REFERENCE INDUSTRY STD. BSOC        |
| 2220        | 4    | 1K1N | LRSEOTOC | 5      | 2       | N    | g/kW-h              | LAST STAND REFERENCE INDUSTRY STD EOTOC        |
| 2230        | 4    | 1K1N | G1HCA    | 4      | 0       | N    | % AREA              | GROOVE #1 HC-1.0 CARBON AREA PERCENT           |
| 2240        | 4    | 1K1N | G1HCD    | 7      | 2       | N    | DEMERITS            | GROOVE #1 HC-1.0 CARBON DEMERITS               |
| 2250        | 4    | 1K1N | G2HCA    | 4      | 0       | N    | % AREA              | GROOVE #2 HC-1.0 CARBON AREA PERCENT           |
| 2260        | 4    | 1K1N | G2HCD    | 7      | 2       | N    | DEMERITS            | GROOVE #2 HC-1.0 CARBON DEMERITS               |
| 2270        | 4    | 1K1N | G3HCA    | 4      | 0       | N    | % AREA              | GROOVE #3 HC-1.0 CARBON AREA PERCENT           |
| 2280        | 4    | 1K1N | G3HCD    | 7      | 2       | N    | DEMERITS            | GROOVE #3 HC-1.0 CARBON DEMERITS               |
| 2290        | 4    | 1K1N | L1HCA    | 4      | 0       | N    | % AREA              | LAND #1 HC-1.0 CARBON AREA PERCENT             |
| 2300        | 4    | 1K1N | L1HCD    | 7      | 2       | N    | DEMERITS            | LAND #1 HC-1.0 CARBON DEMERITS                 |
| 2310        | 4    | 1K1N | L2HCA    | 4      | 0       | N    | % AREA              | LAND #2 HC-1.0 CARBON AREA PERCENT             |
| 2320        | 4    | 1K1N | L2HCD    | 7      | 2       | N    | DEMERITS            | LAND #2 HC-1.0 CARBON DEMERITS                 |
| 2330        | 4    | 1K1N | L3HCA    | 4      | 0       | N    | % AREA              | LAND #3 HC-1.0 CARBON AREA PERCENT             |
| 2340        | 4    | 1K1N | L3HCD    | 7      | 2       | N    | DEMERITS            | LAND #3 HC-1.0 CARBON DEMERITS                 |
| 2350        | 4    | 1K1N | USHCA    | 4      | 0       | N    | % AREA              | UPPER SKIRT HC-1.0 CARBON AREA PERCENT         |
| 2360        | 4    | 1K1N | USHCD    | 7      | 2       | N    | DEMERITS            | UPPER SKIRT HC-1.0 CARBON DEMERITS             |
| 2370        | 4    | 1K1N | UCHCA    | 4      | 0       | N    | % AREA              | UNDER CROWN HC-1.0 CARBON AREA PERCENT         |
| 2380        | 4    | 1K1N | UCHCD    | 7      | 2       | N    | DEMERITS            | UNDER CROWN HC-1.0 CARBON DEMERITS             |
| 2390        | 4    | 1K1N | PFHCA    | 4      | 0       | N.   | % AREA              | PIN BORE FRONT HC-1.0 CARBON AREA PERCENT      |
| 2400        | 4    | 1K1N | PFHCD    | 7      | 2       | N    | DEMERITS            | PIN BORE FRONT HC-1.0 CARBON DEMERITS          |
| 2410        | 4    | 1K1N | PRHCA    | 4      | 0       | N    | % AREA              | PIN BORE REAR HC-1.0 CARBON AREA PERCENT       |
| 2420        | 4    | 1K1N | PRHCD    | 7      | 2       | N    | DEMERITS            | PIN BORE REAR HC-1.0 CARBON DEMERITS           |
| 2430        | 4    | 1K1N | G1MCA    | 4      | 0       | N    | % AREA              | GROOVE #1 MC-1.0 CARBON AREA PERCENT           |
| 2440        | 4    | 1K1N | G1MCD    | 7      | 2       | N    | DEMERITS            | GROOVE #1 MC-1.0 CARBON DEMERITS               |
| 2450        | 4    | 1K1N | G3MCA    | 4      | 0       | N    | % AREA              | GROOVE #3 MC-1.0 CARBON AREA PERCENT           |
| 2460        | 4    | 1K1N | G3MCD    | 7      | 2       | N    | DEMERITS            | GROOVE #3 MC-1.0 CARBON DEMERITS               |
| 2470        | 4    | 1K1N | G1LCA    | 4      | 0       | N    | % AREA              | GROOVE #1 LC-1.0 CARBON AREA PERCENT           |
| 2480        | 4    | 1K1N | G1LCD    | 7      | 2       | N    | DEMERITS            | GROOVE #1 LC-1.0 CARBON DEMERITS               |
| 2490        | 4    | 1K1N | G2LCA    | 4      | 0       | N    | % AREA              | GROOVE #2 LC-1.0 CARBON AREA PERCENT           |
| 2500        | 4    | 1K1N | G2LCD    | 7      | 2       | N    | DEMERITS            | GROOVE #2 LC-1.0 CARBON DEMERITS               |
| 2510        | 4    | 1K1N | G3LCA    | 4      | 0       | N    | % AREA              | GROOVE #3 LC-1.0 CARBON AREA PERCENT           |
| 2520        | 4    | 1K1N | G3LCD    | 7      | 2       | N    | DEMERITS            | GROOVE #3 LC-1.0 CARBON DEMERITS               |
| 2530        | 4    | 1K1N | L1LCA    | 4      | 0       | N    | % AREA              | LAND #1 LC-1.0 CARBON AREA PERCENT             |
| 2540        | 4    | 1K1N | L1LCD    | 7      | 2       | N    | DEMERITS            | LAND #1 LC-1.0 CARBON DEMERITS                 |
| 2550        | 4    | 1K1N | L2LCA    | 4      | 0       | N    | % AREA              | LAND #2 LC-1.0 CARBON AREA PERCENT             |
| 2560        | 4    | 1K1N | L2LCD    | 7      | 2       | N    | DEMERITS            | LAND #2 LC-1.0 CARBON DEMERITS                 |
| 2570        | 4    | 1K1N | L3LCA    | 4      | 0       | N    | % AREA              | LAND #3 LC-1.0 CARBON AREA PERCENT             |
| 2580        | 4    | 1K1N | L3LCD    | 7      | 2       | N    | DEMERITS            | LAND #3 LC-1.0 CARBON DEMERITS                 |
| 2590        | 4    | 1K1N | USLCA    | 4      | 0       | N    | % AREA              | UPPER SKIRT LC-1.0 CARBON AREA PERCENT         |
| 2600        | 4    | 1K1N | USLCD    | 7      | 2       | N    | DEMERITS            | UPPER SKIRT LC-1.0 CARBON DEMERITS             |
| 2610        | 4    | 1K1N | UCLCA    | 4      | 0       | N    | % AREA              | UNDER CROWN LC-1.0 CARBON AREA PERCENT         |
| 2620        | 4    | 1K1N | UCLCD    | 7      | 2       | N    | DEMERITS            | UNDER CROWN LC-1.0 CARBON DEMERITS             |
| 2630        | 4    | 1K1N | PFLCA    | 4      | 0       | N.   | % AREA              | PISTON BORE FRONT LC-1.0 CARBON AREA PERCENT   |
| 2640        | 4    | 1K1N | PFLCD    | 7      | 2       | N    | DEMERITS            | PISTON BORE FRONT LC-1.0 CARBON DEMERITS       |
| 2650        | 4    | 1K1N | PRLCA    | 4      | 0       | N    | % AREA              | PISTON BORE REAR LC-1.0 CARBON AREA PERCENT    |
| 2660        | 4    | 1K1N | PRLCD    | 7      | 2       | N    | DEMERITS            | PISTON BORE REAR LC-1.0 CARBON DEMERITS        |
| 2670        | 4    | 1K1N | G1ACTOT  | 4      | 0       | N    | % AREA              | TOTAL GROOVE #1 CARBON AREA PERCENT            |
| 2680        | 4    | 1K1N | G1DCTOT  | 7      | 2       | N    | DEMERITS            | TOTAL GROOVE #1 CARBON DEMERITS                |
|             |      |      | _        |        |         |      |                     |                                                |

- 5 - FIG. A14.1 Data Dictionary (continued)

83

| 7- jan-200 | )2          |       |                |               |             |             | Report: ASTM Da     | ata Dictionary                           |
|------------|-------------|-------|----------------|---------------|-------------|-------------|---------------------|------------------------------------------|
|            |             | Test  | Field          | Field         | Decimal     | Data        |                     |                                          |
| Sequence   | <u>Form</u> | Area  | Name           | <u>Length</u> | <u>Size</u> | <u>Type</u> | <u>Units/Format</u> | <u>Description</u>                       |
| 2400       | ,           | 11/11 | COACTOT        | ,             | 0           |             | ° ADEA              | TOTAL CROOVE #3 CARROW AREA REDCENT      |
| 2690       | 4           | 1K1N  | G2ACTOT        | 4             | 0           |             | % AREA              | TOTAL GROOVE #2 CARBON AREA PERCENT      |
| 2700       | 4           | 1K1N  | G2DCTOT        | 7             | 2           | N           | DEMERITS            | TOTAL GROOVE #2 CARBON DEMERITS          |
| 2710       | 4           | 1K1N  | G3ACTOT        | 4             | 0           | N           | % AREA              | TOTAL GROOVE #3 CARBON AREA PERCENT      |
| 2720       | 4           | 1K1N  | G3DCTOT        | 7             | 2           | N           | DEMERITS            | TOTAL GROOVE #3 CARBON DEMERITS          |
| 2730       | 4           | 1K1N  | L1ACTOT        | 4             | 0           | N           | % AREA              | TOTAL LAND #1 CARBON AREA PERCENT        |
| 2740       | 4           | 1K1N  | L1DCTOT        | 7             | 2           | N           | DEMERITS            | TOTAL LAND #1 CARBON DEMERITS            |
| 2750       | 4           | 1K1N  | L2ACTOT        | 4             | 0           | N           | % AREA              | TOTAL LAND #2 CARBON AREA PERCENT        |
| 2760       | 4           | 1K1N  | L2DCTOT        | 7             | 2           | N           | DEMERITS            | TOTAL LAND #2 CARBON DEMERITS            |
| 2770       | 4           | 1K1N  | L3ACTOT        | 4             | 0           | N           | % AREA              | TOTAL LAND #3 CARBON AREA PERCENT        |
| 2780       | 4           | 1K1N  | L3DCTOT        | 7             | 2           | N           | DEMERITS            | TOTAL LAND #3 CARBON DEMERITS            |
| 2790       | 4           | 1K1N  | USACTOT        | 4             | 0           | N           | % AREA              | TOTAL UPPER SKIRT CARBON AREA PERCENT    |
| 2800       | 4           | 1K1N  | USDCTOT        | 7             | 2           | N           | DEMERITS            | TOTAL UPPER SKIRT CARBON DEMERITS        |
| 2810       | 4           | 1K1N  | UCACTOT        | 4             | 0           | N           | % AREA              | TOTAL UNDER CROWN CARBON AREA PERCENT    |
| 2820       | 4           | 1K1N  | UCDCTOT        | 7             | 2           | N           | DEMERITS            | TOTAL UNDER CROWN CARBON DEMERITS        |
| 2830       | 4           | 1K1N  | PFACTOT        | 4             | 0           | N           | % AREA              | TOTAL PIN BORE FRONT CARBON AREA PERCENT |
| 2840       | 4           | 1K1N  | PFDCTOT        | 7             | 2           | N           | DEMERITS            | TOTAL PIN BORE FRONT CARBON DEMERITS     |
| 2850       | 4           | 1K1N  | PRACTOT        | 4             | 0           | N           | % AREA              | TOTAL PIN BORE REAR CARBON AREA PERCENT  |
| 2860       | 4           | 1K1N  | PRDCTOT        | 7             | 2           | N.          | DEMERITS            | TOTAL PIN BORE REAR CARBON DEMERITS      |
| 2870       | 4           | 1K1N  | G1L9A          | 4             | 0           | N           | % AREA              | GROOVE #1 8-9 LACQUER AREA PERCENT       |
| 2880       | 4           | 1K1N  | G1L9D          | 7             | 2           | N           | DEMERITS            | GROOVE #1 8-9 LACQUER DEMERITS           |
| 2890       | 4           | 1K1N  | G2L9A          | 4             | 0           | N.          | % AREA              | GROOVE #2 8-9 LACQUER AREA PERCENT       |
| 2900       | 4           | 1K1N  | G2L9A<br>G2L9D | 7             | 2           | N           | DEMERITS            | GROOVE #2 8-9 LACQUER DEMERITS           |
| 2910       | 4           | 1K1N  | GZL9D<br>G3L9A | 4             | 0           | N           | % AREA              | GROOVE #3 8-9 LACQUER AREA PERCENT       |
| 2920       | 4           | 1K1N  | G3L9D          | 7             | 2           |             | DEMERITS            | GROOVE #3 8-9 LACQUER DEMERITS           |
|            |             |       |                | 4             | 0           | N           |                     |                                          |
| 2930       | 4           | 1K1N  | L1L9A          |               |             | N<br>N      | % AREA              | LAND #1 8-9 LACQUER AREA PERCENT         |
| 2940       | 4           | 1K1N  | L1L9D          | 7             | 2           | N<br>N      | DEMERITS            | LAND #1 8-9 LACQUER DEMERITS             |
| 2950       | 4           | 1K1N  | L2L9A          | 4             | 0           | N<br>N      | % AREA              | LAND #2 8-9 LACQUER AREA PERCENT         |
| 2960       | 4           | 1K1N  | L2L9D          | 7             | 2           | N           | DEMERITS            | LAND #2 8-9 LACQUER DEMERITS             |
| 2970       | 4           | 1K1N  | L3L9A          | 4             | 0           | N<br>       | % AREA              | LAND #3 8-9 LACQUER AREA PERCENT         |
| 2980       | 4           | 1K1N  | L3L9D          | 7             | 2           | N           | DEMERITS            | LAND #3 8-9 LACQUER DEMERITS             |
| 2990       | 4           | 1K1N  | USV9A          | 4             | 0           | N           | % AREA              | UPPER SKIRT 8-9 LACQUER AREA PERCENT     |
| 3000       | 4           | 1K1N  | USV9D          | 7             | 2           | N           | DEMERITS            | UPPER SKIRT 8-9 LACQUER DEMERITS         |
| 3010       | 4           | 1K1N  | UCV9A          | 4             | 0           | Ni<br>      | % AREA              | UNDER CROWN 8-9 LACQUER AREA PERCENT     |
| 3020       | 4           | 1K1N  | UCV9D          | 7             | 2           | N           | DEMERITS            | UNDER CROWN 8-9 LACQUER DEMERITS         |
| 3030       | 4           | 1K1N  | PFV9A          | 4             | 0           | N           | % AREA              | PIN BORE FRONT 8-9 LACQUER AREA PERCENT  |
| 3040       | 4           | 1K1N  | PFV9D          | 7             | 2           | N           | DEMERITS            | PIN BORE FRONT 8-9 LACQUER DEMERITS      |
| 3050       | 4           | 1K1N  | PRV9A          | 4             | 0           | N           | % AREA              | PIN BORE REAR 8-9 LACQUER AREA PERCENT   |
| 3060       | 4           | 1K1N  | PRV9D          | 7             | 2           | N           | DEMERITS            | PIN BORE REAR 8-9 LACQUER DEMERITS       |
| 3070       | 4           | 1K1N  | G1L8A          | 4             | 0           | N           | % AREA              | GROOVE #1 7-7.9 LACQUER AREA PERCENT     |
| 3080       | 4           | 1K1N  | G1L8D          | 7             | 2           | N           | DEMERITS            | GROOVE #1 7-7.9 LACQUER DEMERITS         |
| 3090       | 4           | 1K1N  | G2L8A          | 4             | 0           | N           | % AREA              | GROOVE #2 7-7.9 LACQUER AREA PERCENT     |
| 3100       | 4           | 1K1N  | G2L8D          | 7             | 2           | N           | DEMERITS            | GROOVE #2 7-7.9 LACQUER DEMERITS         |
| 3110       | 4           | 1K1N  | G3L8A          | 4             | 0           | N           | % AREA              | GROOVE #3 7-7.9 LACQUER AREA PERCENT     |
| 3120       | 4           | 1K1N  | G3L8D          | 7             | 2           | N           | DEMERITS            | GROOVE #3 7-7.9 LACQUER DEMERITS         |
| 3130       | 4           | 1K1N  | L1L8A          | 4             | 0           | N           | % AREA              | LAND #1 7-7.9 LACQUER AREA PERCENT       |
| 3140       | 4           | 1K1N  | L1L8D          | 7             | 2           | N           | DEMERITS            | LAND #1 7-7.9 LACQUER DEMERITS           |
| 3150       | 4           | 1K1N  | L2L8A          | 4             | 0           | N           | % AREA              | LAND #2 7-7.9 LACQUER AREA PERCENT       |
| 3160       | 4           | 1K1N  | L2L8D          | 7             | 2           | N           | DEMERITS            | LAND #2 7-7.9 LACQUER DEMERITS           |
| 3170       | 4           | 1K1N  | L3L8A          | 4             | 0           | N           | % AREA              | LAND #3 7-7.9 LACQUER AREA PERCENT       |
| 3180       | 4           | 1K1N  | L3L8D          | 7             | 2           | N           | DEMERITS            | LAND #3 7-7.9 LACQUER DEMERITS           |
| 3190       | 4           | 1K1N  | USV8A          | 4             | 0           | N           | % AREA              | UPPER SKIRT 7-7.9 LACQUER AREA PERCENT   |
| 3200       | 4           | 1K1N  | USV8D          | 7             | 2           | N           | DEMERITS            | UPPER SKIRT 7-7.9 LACQUER DEMERITS       |
| 3210       | 4           | 1K1N  | UCV8A          | 4             | 0           | N           | % AREA              | UNDER CROWN 7-7.9 LACQUER AREA PERCENT   |
| 3220       | 4           | 1K1N  | UCV8D          | 7             | 2           | N           | DEMERITS            | UNDER CROWN 7-7.9 LACQUER DEMERITS       |

- 6 -

FIG. A14.1 Data Dictionary (continued)

| 7 - Jan - 201 | JZ       |      |                |        |         |        | keport: ASIM        | Data Dictionary                                                           |
|---------------|----------|------|----------------|--------|---------|--------|---------------------|---------------------------------------------------------------------------|
| 0             | <b>.</b> | Test | Field          |        | Decimal |        | No. 24 - 15         | Binki                                                                     |
| Sequence      | FORM     | Area | Name           | Length | Size    | Туре   | <u>Units/Format</u> | Description                                                               |
| 3230          | 4        | 1K1N | PFV8A          | 4      | 0       | N      | % AREA              | PIN BORE FRONT 7-7.9 LACQUER AREA PERCENT                                 |
| 3240          | 4        | 1K1N | PFV8D          | 7      | 2       | N      | DEMERITS            | PIN BORE FRONT 7-7.9 LACQUER DEMERITS                                     |
| 3250          | 4        | 1K1N | PRV8A          | 4      | 0       | N      | % AREA              | PIN BORE REAR 7-7.9 LACQUER AREA PERCENT                                  |
| 3260          | 4        | 1K1N | PRV8D          | 7      | 2       | N      | DEMERITS            | PIN BORE REAR 7-7.9 LACQUER DEMERITS                                      |
| 3270          | 4        | 1K1N | G1L7A          | 4      | 0       | N      | % AREA              | GROOVE #1 6-6.9 LACQUER AREA PERCENT                                      |
| 3280          | 4        | 1K1N | G1L7D          | 7      | 2       | N      | DEMERITS            | GROOVE #1 6-6.9 LACQUER DEMERITS                                          |
| 3290          | 4        | 1K1N | G2L7A          | 4      | 0       | N      | % AREA              | GROOVE #2 6-6.9 LACQUER AREA PERCENT                                      |
| 3300          | 4        | 1K1N | G2L7D          | 7      | 2       | N      | DEMERITS            | GROOVE #2 6-6.9 LACQUER DEMERITS                                          |
| 3310          | 4        | 1K1N | GZL7D<br>G3L7A | 4      | 0       | N      | % AREA              | GROOVE #3 6-6.9 LACQUER AREA PERCENT                                      |
| 3320          | 4        | 1K1N | G3L7D          | 7      | 2       | N      | DEMERITS            | GROOVE #3 6-6.9 LACQUER DEMERITS                                          |
| 3330          | 4        | 1K1N | L1L7A          | 4      | 0       | N      | % AREA              | LAND #1 6-6.9 LACQUER AREA PERCENT                                        |
| 3340          | 4        | 1K1N | L1L7D          | 7      | 2       | N      | DEMERITS            | LAND #1 6-6.9 LACQUER DEMERITS                                            |
| 3350          | 4        | 1K1N | L2L7A          | 4      | 0       | N      | % AREA              | LAND #2 6-6.9 LACQUER AREA PERCENT                                        |
| 3360          | 4        | 1K1N | LZL7D          | 7      | 2       | N      | DEMERITS            | LAND #2 6-6.9 LACQUER DEMERITS                                            |
| 3370          | 4        | 1K1N | LZL70          | 4      | 0       | N      | % AREA              | LAND #3 6-6.9 LACQUER AREA PERCENT                                        |
| 3380          | 4        | 1K1N | L3L7D          | 7      | 2       | N      | DEMERITS            | LAND #3 6-6.9 LACQUER DEMERITS                                            |
| 3390          | 4        | 1K1N | USV7A          | 4      | 0       | N      | % AREA              | UPPER SKIRT 6-6.9 LACQUER AREA PERCENT                                    |
| 3400          | 4        | 1K1N | USV7D          | 7      | 2       | N      | DEMERITS            | UPPER SKIRT 6-6.9 LACQUER DEMERITS                                        |
|               |          | 1K1N | UCV7A          | 4      | 0       |        |                     |                                                                           |
| 3410<br>3430  | 4        |      |                |        |         | N      | % AREA<br>DEMERITS  | UNDER CROWN 6-6.9 LACQUER AREA PERCENT UNDER CROWN 6-6.9 LACQUER DEMERITS |
| 3420          | 4        | 1K1N | UCV7D          | 7<br>4 | 2<br>0  | N      |                     |                                                                           |
| 3430          | 4        | 1K1N | PFV7A          |        |         | N<br>N | % AREA              | PIN BORE FRONT 6-6.9 LACQUER AREA PERCENT                                 |
| 3440          | 4        | 1K1N | PFV7D          | 7      | 2       | N<br>N | DEMERITS            | PIN BORE FRONT 6-6.9 LACQUER DEMERITS                                     |
| 3450<br>3460  | 4        | 1K1N | PRV7A          | 4      | 0       | N      | % AREA              | PIN BORE REAR 6-6.9 LACQUER AREA PERCENT                                  |
| 3460<br>3470  | 4        | 1K1N | PRV7D          | 7      | 2       | N      | DEMERITS            | PIN BORE REAR 6-6.9 LACQUER DEMERITS                                      |
| 3470          | 4        | 1K1N | G1L6A          | 4      | 0       | N      | % AREA              | GROOVE #1 5-5.9 LACQUER AREA PERCENT                                      |
| 3480          | 4        | 1K1N | G1L6D          | 7      | 2       | N.     | DEMERITS            | GROOVE #1 5-5.9 LACQUER DEMERITS                                          |
| 3490<br>3500  | 4        | 1K1N | G2L6A          | 4      | 0       | N      | % AREA              | GROOVE #2 5-5.9 LACQUER AREA PERCENT                                      |
| 3500<br>3510  | 4        | 1K1N | G2L6D          | 7      | 2       | N      | DEMERITS            | GROOVE #2 5-5.9 LACQUER DEMERITS                                          |
| 3510<br>3520  | 4        | 1K1N | G3L6A          | 4      | 0       | N      | % AREA              | GROOVE #3 5-5.9 LACQUER AREA PERCENT                                      |
| 3520<br>3520  | 4        | 1K1N | G3L6D          | 7      | 2       | N      | DEMERITS            | GROOVE #3 5-5.9 LACQUER DEMERITS                                          |
| 3530<br>3540  | 4        | 1K1N | L1L6A          | 4      | 0       | N      | % AREA              | LAND #1 5-5.9 LACQUER AREA PERCENT                                        |
| 3540<br>3550  | 4        | 1K1N | L1L6D          | 7      | 2       | N      | DEMERITS            | LAND #1 5-5.9 LACQUER DEMERITS                                            |
| 3550<br>3540  | 4        | 1K1N | L2L6A          | 4      | 0       | N      | % AREA              | LAND #2 5-5.9 LACQUER AREA PERCENT                                        |
| 3560<br>3570  | 4        | 1K1N | L2L6D          | 7      | 2       | N      | DEMERITS            | LAND #2 5-5.9 LACQUER DEMERITS                                            |
| 3570<br>3590  | 4        | 1K1N | L3L6A          | 4      | 0       | N      | % AREA              | LAND #3 5-5.9 LACQUER AREA PERCENT LAND #3 5-5.9 LACQUER DEMERITS         |
| 3580<br>3500  | 4        | 1K1N | L3L6D          | 7      | 2       | N      | DEMERITS            |                                                                           |
| 3590<br>3600  | 4        | 1K1N | USV6A          | 4      | 0       | N<br>N | % AREA              | UPPER SKIRT 5-5.9 LACQUER AREA PERCENT                                    |
|               |          | 1K1N | USV6D          | 7      | 2       | N      | DEMERITS            | UPPER SKIRT 5-5.9 LACQUER DEMERITS                                        |
| 3610<br>3630  | 4        | 1K1N | UCV6A          | 4      | 0       | N      | % AREA              | UNDER CROWN 5-5.9 LACQUER AREA PERCENT                                    |
| 3620<br>3670  | 4        | 1K1N | UCV6D          | 7      | 2       | N      | DEMERITS            | UNDER CROWN 5-5.9 LACQUER DEMERITS                                        |
| 3630          | 4        | 1K1N | PFV6A          | 4      | 0       | N<br>  | % AREA              | PISTON BORE FRONT 5-5.9 LACQUER AREA PERCENT                              |
| 3640          | 4        | 1K1N | PFV6D          | 7      | 2       | N      | DEMERITS            | PISTON BORE FRONT 5-5.9 LACQUER DEMERITS                                  |
| 3650<br>3650  | 4        | 1K1N | PRV6A          | 4      | 0       | N      | % AREA              | PISTON BORE REAR 5-5.9 LACQUER AREA PERCENT                               |
| 3660<br>3470  | 4        | 1K1N | PRV6D          | 7      | 2       | N      | DEMERITS            | PISTON BORE REAR 5-5.9 LACQUER DEMERITS                                   |
| 3670          | 4        | 1K1N | G1L5A          | 4      | 0       | N.     | % AREA              | GROOVE #1 4-4.9 LACQUER AREA PERCENT                                      |
| 3680          | 4        | 1K1N | G1L5D          | 7      | 2       | N      | DEMERITS            | GROOVE #1 4-4.9 LACQUER DEMERITS                                          |
| 3690<br>3700  | 4        | 1K1N | G2L5A          | 4      | 0       | N      | % AREA              | GROOVE #2 4-4.9 LACQUER AREA PERCENT                                      |
| 3700          | 4        | 1K1N | G2L5D          | 7      | 2       | N      | DEMERITS            | GROOVE #2 4-4.9 LACQUER DEMERITS                                          |
| 3710<br>3730  | 4        | 1K1N | G3L5A          | 4      | 0       | N      | % AREA              | GROOVE #3 4-4.9 LACQUER AREA PERCENT                                      |
| 3720          | 4        | 1K1N | G3L5D          | 7      | 2       | N      | DEMERITS            | GROOVE #3 4-4.9 LACQUER DEMERITS                                          |
| 3730<br>3740  | 4        | 1K1N | L1L5A          | 4      | 0       | N      | % AREA              | GROOVE #3 4-4.9 LACQUER AREA PERCENT                                      |
| 3740<br>3750  | 4        | 1K1N | L1L5D          | 7      | 2       | N      | DEMERITS            | LAND #1 4-4.9 LACQUER DEMERITS                                            |
| 3750<br>3760  | 4        | 1K1N | L2L5A          | 4      | 0       | N      | % AREA              | LAND #2 4-4.9 LACQUER AREA PERCENT                                        |
| 3760          | 4        | 1K1N | L2L5D          | 7      | 2       | N      | DEMERITS            | LAND #2 4-4.9 LACQUER DEMERITS                                            |

FIG. A14.1 Data Dictionary (continued)

- 7-

85

|              |        | est          | Field          | Field  | Decimal | Data   |                    | ,                                         |
|--------------|--------|--------------|----------------|--------|---------|--------|--------------------|-------------------------------------------|
| Sequence     | Form A | rea          | Name           | Length |         |        | Units/Format       | Description                               |
|              |        |              |                |        |         |        |                    |                                           |
| 3770         | 4      | 1K1N         | L3L5A          | 4      | 0       | N      | % AREA             | LAND #3 4-4.9 LACQUER AREA PERCENT        |
| 3780         | 4      | 1K1N         | L3L5D          | 7      | 2       | N      | DEMERITS           | LAND #3 4-4.9 LACQUER DEMERITS            |
| 3790         | 4      | 1K1N         | USV5A          | 4      | 0       | N      | % AREA             | UPPER SKIRT 4-4.9 LACQUER AREA PERCENT    |
| 3800         | 4      | 1K1N         | USV5D          | 7      | 2       | N      | DEMERITS           | UPPER SKIRT 4-4.9 LACQUER DEMERITS        |
| 3810         | 4      | 1K1N         | UCV5A          | 4      | 0       | N      | % AREA             | UNDER CROWN 4-4.9 LACQUER AREA PERCENT    |
| 3820         | 4      | 1K1N         | UCV5D          | 7      | 2       | N      | DEMERITS           | UNDER CROWN 4-4.9 LACQUER DEMERITS        |
| 3830         | 4      | 1K1N         | PFV5A          | 4      | 0       | N      | % AREA             | PIN BORE FRONT 4-4.9 LACQUER AREA PERCENT |
| 3840         | 4      | 1K1N         | PFV5D          | 7      | 2       | N      | DEMERITS           | PIN BORE FRONT 4-4.9 LACQUER DEMERITS     |
| 3850         | 4      | 1K1N         | PRV5A          | 4      | 0       | N      | % AREA             | PIN BORE REAR 4-4.9 LACQUER AREA PERCENT  |
| 3860         | 4      | 1K1N         | PRV5D          | 7      | 2       | N      | DEMERITS           | PIN BORE REAR 4-4.9 LACQUER DEMERITS      |
| 3870         | 4      | 1K1N         | G1L4A          | 4      | 0       | N      | % AREA             | GROOVE #1 3-3.9 LACQUER AREA PERCENT      |
| 3880         | 4      | 1K1N         | G1L4D          | 7      | 2       | N      | DEMERITS           | GROOVE #1 3-3.9 LACQUER DEMERITS          |
| 3890         | 4      | 1K1N         | G2L4A          | 4      | 0       | N      | % AREA             | GROOVE #2 3-3.9 LACQUER AREA PERCENT      |
| 3900         | 4      | 1K1N         | G2L4D          | 7      | 2       | N      | DEMERITS           | GROOVE #2 3-3.9 LACQUER DEMERITS          |
| 3910         | 4      | 1K1N         | G3L4A          | 4      | 0       | N      | % AREA             | GROOVE #3 3-3.9 LACQUER AREA PERCENT      |
| 3920         | 4      | 1K1N         | G3L4D          | 7      | 2       | N      | DEMERITS           | GROOVE #3 3-3.9 LACQUER DEMERITS          |
| 3930         | 4      | 1K1N         | L1L4A          | 4      | 0       | N      | % AREA             | LAND #1 3-3.9 LACQUER AREA PERCENT        |
| 3940         | 4      | 1K1N         | L1L4D          | 7      | 2       | N      | DEMERITS           | LAND #1 3-3.9 LACQUER DEMERITS            |
| 3950         | 4      | 1K1N         | L2L4A          | 4      | 0       | N:     | % AREA             | LAND #2 3-3.9 LACQUER AREA PERCENT        |
| 3960         | 4      | 1K1N         | L2L4D          | 7      | 2       | N      | DEMERITS           | LAND #2 3-3.9 LACQUER DEMERITS            |
| 3970         | 4      | 1K1N         | L3L4A          | 4      | 0       | N      | % AREA             | LAND #3 3-3.9 LACQUER AREA PERCENT        |
| 3980         | 4      | 1K1N         | L3L4D          | 7      | 2       | N.     | DEMERITS           | LAND #3 3-3.9 LACQUER DEMERITS            |
| 3990         | 4      | 1K1N         | USV4A          | 4      | 0       | N.     | % AREA             | UPPER SKIRT 3-3.9 LACQUER AREA PERCENT    |
| 4000         | 4      | 1K1N         | USV4D          | 7      | 2       | N      | DEMERITS           | UPPER SKIRT 3-3.9 LACQUER DEMERITS        |
| 4010         | 4      | 1K1N         | UCV4A          | 4      | 0       | N N    | % AREA             | UNDER CROWN 3-3.9 LACQUER AREA PERCENT    |
| 4020         | 4      | 1K1N         | UCV4D          | 7      | 2       | N.     | DEMERITS           | UNDER CROWN 3-3.9 LACQUER DEMERITS        |
| 4030         | 4      | 1K1N         | PFV4A          | 4      | 0       | N      | % AREA             | PIN BORE FRONT 3-3.9 LACQUER AREA PERCENT |
| 4040         | 4      | 1K1N         | PFV4D          | 7      | 2       | N      | DEMERITS           | PIN BORE FRONT 3-3.9 LACQUER DEMERITS     |
| 4050         | 4      | 1K1N         | PRV4A          | 4      | 0       | N.     | % AREA             | PIN BORE REAR 3-3.9 LACQUER AREA PERCENT  |
| 4060         | 4      | 1K1N         | PRV4D          | 7      | 2       | N      | DEMERITS           | PIN BORE REAR 3-3.9 LACQUER DEMERITS      |
| 4070         | 4      | 1K1N         | G1L3A          | 4      | 0       | N      | % AREA             | GROOVE #1 2-2.9 LACQUER AREA PERCENT      |
| 4080         | 4      | 1K1N         | G1L3D          | 7      | 2       | N      | DEMERITS           | GROOVE #1 2-2.9 LACQUER DEMERITS          |
| 4090         | 4      | 1K1N         | G2L3A          | 4      | 0       | N      | % AREA             | GROOVE #2 2-2.9 LACQUER AREA PERCENT      |
| 4100         | 4      | 1K1N         | G2L3D          | 7      | 2       | N      | DEMERITS           | GROOVE #2 2-2.9 LACQUER DEMERITS          |
| 4110         | 4      | 1K1N         | GZL3D<br>G3L3A | 4      | 0       | N      | % AREA             | GROOVE #3 2-2.9 LACQUER AREA PERCENT      |
| 4120         | 4      | 1K1N         | G3L3D          | 7      | 2       | N      | DEMERITS           | GROOVE #3 2-2.9 LACQUER DEMERITS          |
| 4130         | 4      | 1K1N         | L1L3A          | 4      | 0       | N      | % AREA             | LAND #1 2-2.9 LACQUER AREA PERCENT        |
| 4140         | 4      | 1K1N         | L1L3D          | 7      | 2       |        | DEMERITS           | LAND #1 2-2.9 LACQUER DEMERITS            |
| 4150         | 4      | 1K1N         | L2L3A          | 4      | 0       |        | % AREA             | LAND #2 2-2.9 LACQUER AREA PERCENT        |
| 4160         | 4      | 1K1N         | L2L3D          | 7      | 2       | N      | DEMERITS           | LAND #2 2-2.9 LACQUER DEMERITS            |
| 4170         | 4      | 1K1N         | L3L3A          | 4      | 0       | N      | % AREA             | LAND #3 2-2.9 LACQUER AREA PERCENT        |
| 4180         | 4      | 1K1N         | L3L3D          | 7      | 2       | N      | DEMERITS           | LAND #3 2-2.9 LACQUER DEMERITS            |
| 4190         | 4      | 1K1N         | USV3A          | 4      | 0       | N      | % AREA             | UPPER SKIRT 2-2.9 LACQUER AREA PERCENT    |
| 4200         | 4      | 1K1N         | U\$V3D         | 7      | 2       | N      | DEMERITS           | UPPER SKIRT 2-2.9 LACQUER DEMERITS        |
| 4210         | 4      | 1K1N         | UCV3A          | 4      | 0       | N      | % AREA             | UNDER CROWN 2-2.9 LACQUER AREA PERCENT    |
| 4220         | 4      | 1K1N         | UCV3D          | 7      | 2       | N<br>N | DEMERITS           | UNDER CROWN 2-2.9 LACQUER DEMERITS        |
| 4230         | 4      | 1K1N         | PFV3A          | 4      | 0       | N      | % AREA             | PIN BORE FRONT 2-2.9 LACQUER AREA PERCENT |
| 4240         | 4      | 1K1N         | PFV3D          | 7      | 2       |        |                    | PIN BORE FRONT 2-2.9 LACQUER DEMERITS     |
|              | 4      |              |                |        | 0       | N      | DEMERITS<br>9 ADEA | PIN BORE REAR 2-2.9 LACQUER AREA PERCENT  |
| 4250<br>4260 | 4      | 1K1N<br>1K1N | PRV3A          | 4<br>7 | 2       | N      | % AREA             | PIN BORE REAR 2-2.9 LACQUER DEMERITS      |
| 4260<br>4270 |        | 1K1N         | PRV3D          | 4      | 0       | N<br>N | DEMERITS<br>% ADEA | GROOVE #1 1-1.9 LACQUER AREA PERCENT      |
| 4270<br>4280 | 4      |              | G1L2A          | 7      |         | N<br>M | % AREA             | GROOVE #1 1-1.9 LACQUER DEMERITS          |
|              |        | 1K1N         | G1L2D          |        | 2<br>0  | N<br>M | DEMERITS<br>% ADEA |                                           |
| 4290<br>4300 | 4      | 1K1N         | G2L2A          | 4      |         | N      | % AREA             | GROOVE #2 1-1.9 LACQUER AREA PERCENT      |
| 4300         | 4      | 1K1N         | G2L2D          | 7      | 2       | N      | DEMERITS           | GROOVE #2 1-1.9 LACQUER DEMERITS          |

- 8 -

FIG. A14.1 Data Dictionary (continued)

| 7 Juli 200       |          | · oo+            | Field              | Field  | Dooimal         | Doto     | Report: Aoin Da    | ta Dietronal y                                                            |
|------------------|----------|------------------|--------------------|--------|-----------------|----------|--------------------|---------------------------------------------------------------------------|
| Sequence         |          | est<br>Area      | Name               |        | Decimal<br>Size |          | Units/Format       | Description                                                               |
| <u>ocquerioc</u> | 101111 / | <del>11 CU</del> | <u>ivanic</u>      | cengen | 5120            | 1700     | orres, rormae      | <u> </u>                                                                  |
| 4310             | 4        | 1K1N             | G3L2A              | 4      | 0               | N        | % AREA             | GROOVE #3 1-1.9 LACQUER AREA PERCENT                                      |
| 4320             | 4        | 1K1N             | G3L2D              | 7      | 2               | N        | DEMERITS           | GROOVE #3 1-1.9 LACQUER DEMERITS                                          |
| 4330             | 4        | 1K1N             | L1L2A              | 4      | 0               | N        | % AREA             | LAND #1 1-1.9 LACQUER AREA PERCENT                                        |
| 4340             | 4        | 1K1N             | L1L2D              | 7      | 2               | N        | DEMERITS           | LAND #1 1-1.9 LACQUER DEMERITS                                            |
| 4350             | 4        | 1K1N             | L2L2A              | 4      | 0               | N        | % AREA             | LAND #2 1-1.9 LACQUER AREA PERCENT                                        |
| 4360             | 4        | 1K1N             | L2L2D              | 7      | 2               | N        | DEMERITS           | LAND #2 1-1.9 LACQUER DEMERITS                                            |
| 4370             | 4        | 1K1N             | L3L2A              | 4      | 0               | N        | % AREA             | LAND #3 1-1.9 LACQUER AREA PERCENT                                        |
| 4380             | 4        | 1K1N             | L3L2D              | 7      | 2               | N        | DEMERITS           | LAND #3 1-1.9 LACQUER DEMERITS                                            |
| 4390             | 4        | 1K1N             | USV2A              | 4      | 0               | N        | % AREA             | UPPER SKIRT 1-1.9 LACQUER AREA PERCENT                                    |
| 4400             | 4        | 1K1N             | USV2D              | 7      | 2               | N        | DEMERITS           | UPPER SKIRT 1-1.9 LACQUER DEMERITS                                        |
| 4410             | 4        | 1K1N             | UCV2A              | 4      | 0               | N        | % AREA             | UNDER CROWN 1-1.9 LACQUER AREA PERCENT                                    |
| 4420             | 4        | 1K1N             | UCV2D              | 7      | 2               | N        | DEMERITS           | UNDER CROWN 1-1.9 LACQUER DEMERITS                                        |
| 4430             | 4        | 1K1N             | PFV2A              | 4      | 0               | N        | % AREA             | PIN BORE FRONT 1-1.9 LACQUER AREA PERCENT                                 |
| 4440             | 4        | 1K1N             | PFV2D              | 7      | 2               | N        | DEMERITS           | PIN BORE FRONT 1-1.9 LACQUER DEMERITS                                     |
| 4450             | 4        | 1K1N             | PRV2A              | 4      | 0               | N        | % AREA             | PIN BORE REAR 1-1.9 LACQUER AREA PERCENT                                  |
| 4460             | 4        | 1K1N             | PRV2D              | 7      | 2               | N        | DEMERITS           | PIN BORE REAR 1-1.9 LACQUER DEMERITS                                      |
| 4470             | 4        | 1K1N             | G1L1A              | 4      | 0               | N        | % AREA             | GROOVE #1 0-0.9 LACQUER AREA PERCENT                                      |
| 4480             | 4        | 1K1N             | G1L1D              | 7      | 2               | N        | DEMERITS           | GROOVE #1 0-0.9 LACQUER DEMERITS                                          |
| 4490             | 4        | 1K1N             | G2L1A              | 4      | 0               | N        | % AREA             | GROOVE #2 0-0.9 LACQUER AREA PERCENT                                      |
| 4500             | 4        | 1K1N             | G2L1D              | 7      | 2               | N        | DEMERITS           | GROOVE #2 0-0.9 LACQUER DEMERITS                                          |
| 4510             | 4        | 1K1N             | G3L1A              | 4      | 0               | N        | % AREA             | GROOVE #3 0-0.9 LACQUER AREA PERCENT                                      |
| 4520             | 4        | 1K1N             | G3L1D              | 7      | 2               | N        | DEMERITS           | GROOVE #3 0-0.9 LACQUER DEMERITS                                          |
| 4530             | 4        | 1K1N             | L1L1A              | 4      | 0               | N        | % AREA             | LAND #1 0-0.9 LACQUER AREA PERCENT                                        |
| 4540             | 4        | 1K1N             | L1L1D              | 7      | 2               | N        | DEMERITS           | LAND #1 0-0.9 LACQUER DEMERITS                                            |
| 4550             | 4        | 1K1N             | L2L1A              | 4      | 0               | N        | % AREA             | LAND #2 0-0.9 LACQUER AREA PERCENT                                        |
| 4560             | 4        | 1K1N             | L2L1D              | 7      | 2               | N        | DEMERITS           | LAND #2 0-0.9 LACQUER DEMERITS                                            |
| 4570             | 4        | 1K1N             | L3L1A              | 4      | 0               | N        | % AREA             | LAND #3 0-0.9 LACQUER AREA PERCENT                                        |
| 4580             | 4        | 1K1N             | L3L1D              | 7      | 2               | N        | DEMERITS           | LAND #3 0-0.9 LACQUER DEMERITS                                            |
| 4590             | 4        | 1K1N             | USV1A              | 4      | 0               | N        | % AREA             | UPPER SKIRT 0-0.9 LACQUER AREA PERCENT                                    |
| 4600             | 4        | 1K1N             | USV1D              | 7      | 2               | N        | DEMERITS           | UPPER SKIRT 0-0.9 LACQUER DEMERITS                                        |
| 4610             | 4        | 1K1N             | UCV1A              | 4      | 0               | N        | % AREA             | UNDER CROWN 0-0.9 LACQUER AREA PERCENT                                    |
| 4620             | 4        | 1K1N             | UCV1D              | 7      | 2               | N<br>    | DEMERITS           | UNDER CROWN 0-0.9 LACQUER DEMERITS                                        |
| 4630             | 4        | 1K1N             | PFV1A              | 4      | 0               | N        | % AREA             | PIN BORE FRONT 0-0.9 LACQUER AREA PERCENT                                 |
| 4640             | 4        | 1K1N             | PFV1D              | 7      | 2               | N        | DEMERITS           | PIN BORE FRONT 0-0.9 LACQUER DEMERITS                                     |
| 4650             | 4        | 1K1N             | PRV1A              | 4      | 0               | N        | % AREA             | PIN BORE REAR 0-0.9 LACQUER AREA PERCENT                                  |
| 4660<br>4670     | 4        | 1K1N             | PRV1D              | 7      | 2               | N        | DEMERITS<br>* ADEA | PIN BORE REAR 0-0.9 LACQUER DEMERITS                                      |
| 4670<br>4680     | 4        | 1K1N<br>1K1N     | G1LCLNA<br>G2LCLNA | 4      | 0<br>0          | Ni<br>Ni | % AREA<br>% AREA   | GROOVE #1 CLEAN LACQUER AREA PERCENT GROOVE #2 CLEAN LACQUER AREA PERCENT |
| 4690             | 4        | 1K1N             | GZLCLNA<br>G3LCLNA | 4      | 0               | N        | % AREA             | GROOVE #3 CLEAN LACQUER AREA PERCENT                                      |
| 4700             | 4        | 1K1N             | L1LCLNA            | 4      | 0               | N        | % AREA             | LAND #1 CLEAN LACQUER AREA PERCENT                                        |
| 4710             | 4        | 1K1N             | L2LCLNA            | 4      | Ö               | N        | % AREA             | LAND #2 CLEAN LACQUER AREA PERCENT                                        |
| 4720             | 4        | 1K1N             | LZLCLNA            | 4      | 0               | N        | % AREA             | LAND #3 CLEAN LACQUER AREA PERCENT                                        |
| 4730             | 4        | 1K1N             | USVCLNA            | 4      | 0               | N        | % AREA             | UPPER SKIRT CLEAN LACQUER AREA PERCENT                                    |
| 4740             | 4        | 1K1N             | UCVCLNA            | 4      | 0               | N        | % AREA             | UNDER CROWN CLEAN LACQUER AREA PERCENT                                    |
| 4750             | 4        | 1K1N             | PFVCLNA            | 4      | 0               | N        | % AREA             | PIN BORE FRONT CLEAN LACQUER AREA PERCENT                                 |
| 4760             | 4        | 1K1N             | PRVCLNA            | 4      | 0               | N        | % AREA             | PIN BORE REAR CLEAN LACQUER AREA PERCENT                                  |
| 4770             | 4        | 1K1N             | G1ALTOT            | 4      | 0               | N        | % AREA             | TOTAL GROOVE #1 LACQUER AREA PERCENT                                      |
| 4780             | 4        | 1K1N             | G1DLTOT            | 7      | 2               | N        | DEMERITS           | TOTAL GROOVE #1 LACQUER DEMERITS                                          |
| 4790             | 4        | 1K1N             | G2ALTOT            | 4      | 0               | N        | % AREA             | TOTAL GROOVE #2 LACQUER AREA PERCENT                                      |
| 4800             | 4        | 1K1N             | G2DLTOT            | 7      | 2               | N        | DEMERITS           | TOTAL GROOVE #2 LACQUER DEMERITS                                          |
| 4810             | 4        | 1K1N             | <b>G3ALTOT</b>     | 4      | 0               | N        | % AREA             | TOTAL GROOVE #3 LACQUER AREA PERCENT                                      |
| 4820             | 4        | 1K1N             | G3DLTOT            | 7      | 2               | N        | DEMERITS           | TOTAL GROOVE #3 LACQUER DEMERITS                                          |
| 4830             | 4        | 1K1N             | L1ALTOT            | 4      | 0               | N        | % AREA             | TOTAL LAND #1 LACQUER AREA PERCENT                                        |
| 4840             | 4        | 1K1N             | L1DLTOT            | 7      | 2               | N        | DEMERITS           | TOTAL LAND #1 LACQUER DEMERITS                                            |
|                  |          |                  |                    |        |                 |          |                    |                                                                           |

FIG. A14.1 Data Dictionary (continued)

87

| 1 Juli 200   | , <u>L</u> | Tank | riald           | r: . l .d | Danimal |        | Report. Aoth bu | rea Diecional y                           |
|--------------|------------|------|-----------------|-----------|---------|--------|-----------------|-------------------------------------------|
| Comuonoo     | Eanm       | Test | Field           |           | Decimal |        | Units/Format    | Description                               |
| Sequence     | FOITH      | Area | <u>Name</u>     | cengtii   | 312e    | туре   | Offics/ Format  | Description                               |
| 4850         | 4          | 1K1N | L2ALTOT         | 4         | 0       | N      | % AREA          | TOTAL LAND #2 LACQUER AREA PERCENT        |
| 4860         | 4          | 1K1N | L2DLTOT         | 7         | 2       | N      | DEMERITS        | TOTAL LAND #2 LACQUER DEMERITS            |
| 4870         | 4          | 1K1N | L3ALTOT         | 4         | 0       | N      | % AREA          | TOTAL LAND #3 LACQUER AREA PERCENT        |
| 4880         | 4          | 1K1N | L3DLTOT         | 7         | 2       | N      | DEMERITS        | TOTAL LAND #3 LACQUER DEMERITS            |
| 4890         | 4          | 1K1N | USALTOT         | 4         | 0       | N      | % AREA          | TOTAL UPPER SKIRT LACQUER AREA PERCENT    |
| 4900         | 4          | 1K1N | USDLTOT         | 7         | 2       | N      | DEMERITS        | TOTAL UPPER SKIRT LACQUER DEMERITS        |
| 4910         | 4          | 1K1N | UCALTOT         | 4         | 0       | N      | % AREA          | TOTAL UNDER CROWN LACQUER AREA PERCENT    |
| 4920         | 4          | 1K1N | UCDLTOT         | 7         | 2       | N      | DEMERITS        | TOTAL UNDER CROWN LACQUER DEMERITS        |
| 4930         | 4          | 1K1N | PFALTOT         | 4         | 0       | N      | % AREA          | TOTAL PIN BORE FRONT LACQUER AREA PERCENT |
| 4940         | 4          | 1K1N | PFDLTOT         | 7         | 2       | N      | DEMERITS        | TOTAL PIN BORE FRONT LACQUER DEMERITS     |
| 4950         | 4          | 1K1N | PRALTOT         | 4         | 0       | N      | % AREA          | TOTAL PIN BORE REAR LACQUER AREA PERCENT  |
| 4960         | 4          | 1K1N | PRDLTOT         | 7         | 2       | N      | DEMERITS        | TOTAL PIN BORE REAR LACQUER DEMERITS      |
| 4970         | 4          | 1K1N | G1UWD           | 7         | 2       | N      | DEMERITS        | GROOVE 1 UNWEIGHTED DEMERITS              |
| 4980         | 4          | 1K1N | G2UWD           | 7         | 2       | N      | DEMERITS        | GROOVE 2 UNWEIGHTED DEMERITS              |
| 4990         | 4          | 1K1N | G3UWD           | 7         | 2       | N      | DEMERITS        | GROOVE 3 UNWEIGHTED DEMERITS              |
| 5000         | 4          | 1K1N | L1UWD           | 7         | 2       | N      | DEMERITS        | LAND 1 UNWEIGHTED DEMERITS                |
| 5010         | 4          | 1K1N | L2UWD           | 7         | 2       | N      | DEMERITS        | LAND 2 UNWEIGHTED DEMERITS                |
| 5020         | 4          | 1K1N | L3UWD           | 7         | 2       | N      | DEMERITS        | LAND 3 UNWEIGHTED DEMERITS                |
| 5030         | 4          | 1K1N | USUWD           | 7         | 2       | N      | DEMERITS        | UPPER SKIRT UNWEIGHTED DEMERITS           |
| 5040         | 4          | 1K1N | UCUWD           | 7         | 2       | N      | DEMERITS        | UNDER CROWN UNWEIGHTED DEMERITS           |
| 5050         | 4          | 1K1N | PFUWD           | 7         | 2       | N      | DEMERITS        | PIN BORE FRONT UNWEIGHTED DEMERITS        |
| 5060         | 4          | 1K1N | PRUWD           | 7         | 2       | N      | DEMERITS        | PIN BORE REAR UNWEIGHTED DEMERITS         |
| 5070         | 4          | 1K1N | G1WD            | 7         | 2       | N      | DEMERITS        | GROOVE 1 WEIGHTED DEMERITS                |
| 5080         | 4          | 1K1N | G2WD            | 7         | 2       | N      | DEMERITS        | GROOVE 2 WEIGHTED DEMERITS                |
| 5090         | 4          | 1K1N | G3WD            | 7         | 2       | N      | DEMERITS        | GROOVE 3 WEIGHTED DEMERITS                |
| 5100         | 4          | 1K1N | L1WD            | 7         | 2       | N      | DEMERITS        | LAND 1 WEIGHTED DEMERITS                  |
| 5110         | 4          | 1K1N | L2WD            | 7         | 2       | N      | DEMERITS        | LAND 2 WEIGHTED DEMERITS                  |
| 5120         | 4          | 1K1N | L3WD            | 7         | 2       | N      | DEMERITS        | LAND 3 WEIGHTED DEMERITS                  |
| 5130         | 4          | 1K1N | USWD            | 7         | 2       | N      | DEMERITS        | UPPER SKIRT WEIGHTED DEMERITS             |
| 5140         | 4          | 1K1N | UCWD            | 7         | 2       | N      | DEMERITS        | UNDER CROWN WEIGHTED DEMERITS             |
| 5150         | 4          | 1K1N | PFWD            | 7         | 2       | N      | DEMERITS        | PIN BORE FRONT WEIGHTED DEMERITS          |
| 5160         | 4          | 1K1N | PRWD            | 7         | 2       | N      | DEMERITS        | PIN BORE REAR WEIGHTED DEMERITS           |
| 5170         | 4          | 1K1N | IGF             | 4         | 0       | N      | %               | INT. GROOVE FILL                          |
| 5180         | 4          | 1K1N | UWD             | 7         | 1       | N      | DEMERITS        | UNWEIGHTED TOTAL DEMERITS                 |
| 5190         | 4          | 1K1N | TLFC            | 4         | 0       | N      | %               | T.L. FLAKED CARBON                        |
| 5200         | 4a         | 1K1N | RATEWSIM        |           | 0       | С      |                 | PISTON RATING WORKSHEET PLOT IMAGE        |
| 5210         | 5          | 1K1N | G1THCA          | 4         | 0       | N      | % AREA          | TOP GROOVE 1 HEAVY CARBON                 |
| 5220         | 5          | 1K1N | G1TMCA          | 4         | 0       | N      | % AREA          | TOP GROOVE 1 MEDIUM CARBON                |
| 5230         | 5          | 1K1N | GITLCA          | 4         | 0       | N      | % AREA          | TOP GROOVE 1 LIGHT CARBON                 |
| 5240         | 5          | 1K1N | G1T9A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 9 - 8                |
| 5250         | 5          | 1K1N | G1T8A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 7.9 - 7              |
| 5260         | 5          | 1K1N | G1T7A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 6.9 - 6              |
| 5270         | 5          | 1K1N | G1T6A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 5.9 - 5              |
| 5280         | 5          | 1K1N | G1T5A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 4.9 - 4              |
| 5290<br>5200 | 5          | 1K1N | G1T4A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 3.9 - 3              |
| 5300<br>5310 | 5          | 1K1N | G1T3A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 2.9 - 2              |
| 5310<br>5330 | 5          | 1K1N | G1T2A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 1.9 - 1              |
| 5320         | 5          | 1K1N | G1T1A           | 4         | 0       | N      | % AREA          | TOP GROOVE 1 DEPOSIT 0.9 - 0              |
| 5330<br>5340 | 5          | 1K1N | G1TCLNA         | 4         | 0       | N<br>N | % AREA          | TOP GROOVE 1 DEPOSIT CLEAN                |
| 5340<br>5350 | 5<br>5     | 1K1N | G1BHCA          | 4         | 0<br>0  | N      | % AREA          | BOTTOM GROOVE 1 HEAVY CARBON              |
| 5350<br>5360 |            | 1K1N | G1BMCA          |           |         | N      | % AREA          | BOTTOM GROOVE 1 LIGHT CARBON              |
| 5360<br>5370 | 5          | 1K1N | G1BLCA<br>G1BOA | 4         | 0       | N      | % AREA          | BOTTOM GROOVE 1 DEPOSIT 9 - 8             |
| 5370<br>5380 | 5          | 1K1N | G189A           | 4         | 0       | N<br>N | % AREA          | BOTTOM GROOVE 1 DEPOSIT 7 9 - 8           |
| 5380         | 5          | 1K1N | G1B8A           | 4         | 0       | N      | % AREA          | BOTTOM GROOVE 1 DEPOSIT 7.9 - 7           |

- 10 -

FIG. A14.1 Data Dictionary (continued)

| 7 Juli 200      | _           | T 4          | er at a         | F2 - 1 -1     | B 1     |             | Report: Norm bu     | ta Dictionary                                               |
|-----------------|-------------|--------------|-----------------|---------------|---------|-------------|---------------------|-------------------------------------------------------------|
|                 |             | Test         | Field           |               | Decimal |             |                     | B                                                           |
| <u>Sequence</u> | <u>FORM</u> | Area         | <u>Name</u>     | <u>Length</u> | Size    | <u>туре</u> | <u>Units/Format</u> | Description                                                 |
| 5390            | _           | 11/11/       | C1074           | 4             | 0       | M           | ♥ ADCA              | BOTTOM GROOVE 1 DEPOSIT 6.9 - 6                             |
|                 | 5           | 1K1N         | G187A           |               |         | N           | % AREA              |                                                             |
| 5400            | 5           | 1K1N         | G1B6A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 1 DEPOSIT 5.9 - 5                             |
| 5410            | 5           | 1K1N         | G1B5A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 1 DEPOSIT 4.9 - 4                             |
| 5420            | 5           | 1K1N         | G1B4A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 1 DEPOSIT 3.9 - 3                             |
| 5430            | 5           | 1K1N         | G1B3A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 1 DEPOSIT 2.9 - 2                             |
| 5440            | 5           | 1K1N         | G1B2A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 1 DEPOSIT 1.9 - 1                             |
| 5450            | 5           | 1K1N         | G1B1A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 1 DEPOSIT 0.9 - 0                             |
| 5460            | 5           | 1K1N         | G1BCLNA         | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 1 DEPOSIT CLEAN                               |
| 5470            | 5           | 1K1N         | G2THCA          | 4             | 0       | N           | % AREA              | TOP GROOVE 2 HEAVY CARBON                                   |
| 5480            | 5           | 1K1N         | G2TMCA          | 4             | 0       | N           | % AREA              | TOP GROOVE 2 MEDIUM CARBON                                  |
| 5490            | 5           | 1K1N         | G2TLCA          | 4             | 0       | N           | % AREA              | TOP GROOVE 2 LIGHT CARBON                                   |
| 5500            | 5           | 1K1N         | G2T9A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 9 - 8                                  |
| 5510            | 5           | 1K1N         | G2T8A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 7.9 - 7                                |
| 5520            | 5           | 1K1N         | G2T7A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 6.9 - 6                                |
| 5530            | 5           | 1K1N         | G2T6A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 5.9 - 5                                |
| 5540            | 5           | 1K1N         | G2T5A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 4.9 - 4                                |
| 5550            | 5           | 1K1N         | G2T4A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 3.9 - 3                                |
| 5560            | 5           | 1K1N         | G2T3A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 2.9 - 2                                |
| 5570            | 5           | 1K1N         | G2T2A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 1.9 - 1                                |
| 5580            | 5           | 1K1N         | G2T1A           | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT 0.9 - 0                                |
| 5590            | 5           | 1K1N         | G2TCLNA         | 4             | 0       | N           | % AREA              | TOP GROOVE 2 DEPOSIT CLEAN                                  |
| 5600            | 5           | 1K1N         | G2BHCA          | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 HEAVY CARBON                                |
| 5610            | 5           | 1K1N         | G2BMCA          | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 MEDIUM CARBON                               |
| 5620            | 5           | 1K1N         | G2BLCA          | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 LIGHT CARBON                                |
| 5630            | 5           | 1K1N         | G2B9A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 9 - 8                               |
| 5640            | 5           | 1K1N         | G2B8A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 7.9 - 7                             |
| 5650            | 5           | 1K1N         | G2B7A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 6.9 - 6                             |
| 5660            | 5           | 1K1N         | G2B6A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 5.9 - 5                             |
| 5670            | 5           | 1K1N         | G2B5A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 4.9 - 4                             |
| 5680            | 5           | 1K1N         | G2B4A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 3.9 - 3                             |
| 5690            | 5           | 1K1N         | G2B3A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 2.9 - 2                             |
| 5700            | 5           | 1K1N         | G2B2A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 1.9 - 1                             |
| 5710            | 5           | 1K1N         | G2B1A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT 0.9 - 0                             |
| 5720            | 5           | 1K1N         | G2BCLNA         | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 2 DEPOSIT CLEAN                               |
| 5730            | 5           | 1K1N         | G3THCA          | 4             | 0       | N           | % AREA              | TOP GROOVE 3 HEAVY CARBON                                   |
| 5740            | 5           | 1K1N         | G3TMCA          | 4             | 0       | N           | % AREA              | TOP GROOVE 3 MEDIUM CARBON                                  |
| 5750            | 5           | 1K1N         | G3TLCA          | 4             | 0       | N           | % AREA              | TOP GROOVE 3 LIGHT CARBON                                   |
| 5760            | 5           | 1K1N         | G3T9A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 9 - 8                                  |
| 5770            | 5           | 1K1N         | G3T8A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 7.9 - 7                                |
| 5780            | 5           | 1K1N         | G3T7A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 6.9 - 6                                |
| 5790            | 5           | 1K1N         | G3T6A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 5.9 - 5                                |
| 5800            | 5           | 1K1N         | G3T5A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 4.9 - 4                                |
| 5810            | 5           | 1K1N         | G3T4A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 3.9 - 3                                |
| 5820            | 5           | 1K1N         | G3T3A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 2.9 - 2                                |
| 5830            | 5           | 1K1N         | G3T2A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 1.9 - 1                                |
| 5840            | 5           | 1K1N         | G3T1A           | 4             | 0       | N           | % AREA              | TOP GROOVE 3 DEPOSIT 0.9 - 0                                |
| 5850            | 5           | 1K1N         | G3TCLNA         | 4             | 0       | Ñ           | % AREA              | TOP GROOVE 3 DEPOSIT CLEAN                                  |
| 5860            | 5           | 1K1N         | G3BHCA          | 4             | 0       | N.          | % AREA              | BOTTOM GROOVE 3 HEAVY CARBON                                |
| 5870            | 5           | 1K1N         | G3BMCA          | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 3 MEDIUM CARBON                               |
| 5880            | 5           | 1K1N         |                 | 4             | 0       | N           |                     | BOTTOM GROOVE 3 HEDIOM CARBON                               |
| 5890            | 5           |              | G3BLCA<br>G3B9A | 4             | 0       | N<br>N      | % AREA              | BOTTOM GROOVE 3 LIGHT CARBON  BOTTOM GROOVE 3 DEPOSIT 9 - 8 |
| 5900<br>5900    | 5           | 1K1N<br>1K1N | G3B8A           | 4             | 0       |             | % AREA              | BOTTOM GROOVE 3 DEPOSIT 7.9 - 7                             |
|                 |             |              |                 |               |         | N           | % AREA              |                                                             |
| 5910<br>5020    | 5           | 1K1N         | G3B7A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 3 DEPOSIT 6.9 - 6                             |
| 5920            | 5           | 1K1N         | G3B6A           | 4             | 0       | N           | % AREA              | BOTTOM GROOVE 3 DEPOSIT 5.9 - 5                             |

- 11 -

FIG. A14.1 Data Dictionary (continued)

| 7- jan-200   | )2          |             |             |               |         |      | R        | eport: ASTM        | Data Dictionary                 |
|--------------|-------------|-------------|-------------|---------------|---------|------|----------|--------------------|---------------------------------|
|              |             | Test        | Field       | Field         | Decimal | Data |          |                    |                                 |
| Sequence     | <u>Form</u> | <u>Area</u> | <u>Name</u> | <u>Length</u> | Size    | Type | <u>U</u> | <u>nits/Format</u> | <u>Description</u>              |
| E070         | -           | 1 V 1 N     | C70E4       | ,             | 0       |      | 0,       | ADEA               | POTTOM CROOME 7 DEDOCAT / O /   |
| 5930         | 5           | 1K1N        | G3B5A       | 4             | 0       | N    |          | AREA               | BOTTOM GROOVE 3 DEPOSIT 4.9 - 4 |
| 5940<br>5050 | 5           | 1K1N        | G3B4A       | 4             | 0       | N    |          | AREA               | BOTTOM GROOVE 3 DEPOSIT 3.9 - 3 |
| 5950         | 5           | 1K1N        | G3B3A       | 4             | 0       | N    |          | AREA               | BOTTOM GROOVE 3 DEPOSIT 2.9 - 2 |
| 5960         | 5           | 1K1N        | G3B2A       | 4             | 0       | N    |          | AREA               | BOTTOM GROOVE 3 DEPOSIT 1.9 - 1 |
| 5970         | 5           | 1K1N        | G3B1A       | 4             | 0       | N    |          | AREA               | BOTTOM GROOVE 3 DEPOSIT 0.9 - 0 |
| 5980         | 5           | 1K1N        | G3BCLNA     | 4             | 0       | N    |          | AREA               | BOTTOM GROOVE 3 DEPOSIT CLEAN   |
| 5990         | 5           | 1K1N        | R1THCA      | 4             | 0       | N    |          | AREA               | TOP RING 1 HEAVY CARBON         |
| 6000         | 5           | 1K1N        | R1TMCA      | 4             | 0       | N    |          | AREA               | TOP RING 1 MEDIUM CARBON        |
| 6010         | 5           | 1K1N        | R1TLCA      | 4             | 0       | N    |          | 6 AREA             | TOP RING 1 LITE CARBON          |
| 6020         | 5           | 1K1N        | R1T9A       | 4             | 0       | N    |          | & AREA             | TOP RING 1 DEPOSIT 9 - 8        |
| 6030         | 5           | 1K1N        | R1T8A       | 4             | 0       | N    | X        | 6 AREA             | TOP RING 1 DEPOSIT 7.9 - 7      |
| 6040         | 5           | 1K1N        | R1T7A       | 4             | 0       | N    | 2        | & AREA             | TOP RING 1 DEPOSIT 6.9 - 6      |
| 6050         | 5           | 1K1N        | R1T6A       | 4             | 0       | N    | 2        | 6 AREA             | TOP RING 1 DEPOSIT 5.9 - 5      |
| 6060         | 5           | 1K1N        | R1T5A       | 4             | 0       | N    | 2        | 6 AREA             | TOP RING 1 DEPOSIT 4.9 - 4      |
| 6070         | 5           | 1K1N        | R1T4A       | 4             | 0       | N    | 2        | & AREA             | TOP RING 1 DEPOSIT 3.9 - 3      |
| 6080         | 5           | 1K1N        | R1T3A       | 4             | 0       | N    | 2        | 6 AREA             | TOP RING 1 DEPOSIT 2.9 - 2      |
| 6090         | 5           | 1K1N        | R1T2A       | 4             | 0       | N    | 9        | 6 AREA             | TOP RING 1 DEPOSIT 1.9 - 1      |
| 6100         | 5           | 1K1N        | R1T1A       | 4             | 0       | N    | 9        | & AREA             | TOP RING 1 DEPOSIT 0.9 -0       |
| 6110         | 5           | 1K1N        | R1TCLNA     | 4             | 0       | N    | 9        | & AREA             | TOP RING 1 DEPOSIT CLEAN        |
| 6120         | 5           | 1K1N        | R1BHCA      | 4             | 0       | N    | ,        | % AREA             | BOTTOM RING 1 HEAVY CARBON      |
| 6130         | 5           | 1K1N        | R1BMCA      | 4             | 0       | N    | 9        | % AREA             | BOTTOM RING 1 MEDIUM CARBON     |
| 6140         | 5           | 1K1N        | R1BLCA      | 4             | 0       | N    | 9        | % AREA             | BOTTOM RING 1 LITE CARBON       |
| 6150         | 5           | 1K1N        | R1B9A       | 4             | 0       | N    |          | % AREA             | BOTTOM RING 1 DEPOSIT 9 - 8     |
| 6160         | 5           | 1K1N        | R1B8A       | 4             | 0       | N    |          | % AREA             | BOTTOM RING 1 DEPOSIT 7.9 - 7   |
| 6170         | 5           | 1K1N        | R1B7A       | 4             | 0       | N    |          | % AREA             | BOTTOM RING 1 DEPOSIT 6.9 - 6   |
| 6180         | 5           | 1K1N        | R1B6A       | 4             | 0       | N    |          | % AREA             | BOTTOM RING 1 DEPOSIT 5.9 - 5   |
| 6190         | 5           | 1K1N        | R1B5A       | 4             | Ō       | N.   |          | % AREA             | BOTTOM RING 1 DEPOSIT 4.9 - 4   |
| 6200         | 5           | 1K1N        | R1B4A       | 4             | 0       | N.   |          | % AREA             | BOTTOM RING 1 DEPOSIT 3.9 - 3   |
| 6210         | 5           | 1K1N        | R1B3A       | 4             | 0       | N    |          | % AREA             | BOTTOM RING 1 DEPOSIT 2.9 - 2   |
| 6220         | 5           | 1K1N        | R1B2A       | 4             | 0       | N.   |          | % AREA             | BOTTOM RING 1 DEPOSIT 1.9 - 1   |
| 6230         | 5           | 1K1N        | R1B1A       | 4             | 0       | N    |          | % AREA             | BOTTOM RING 1 DEPOSIT 0.9 - 0   |
| 6240         | 5           | 1K1N        | R1BCLNA     | 4             | 0       | N    |          | % AREA             | BOTTOM RING 1 DEPOSIT CLEAN     |
| 6250         | 5           | 1K1N        | R1BKHCA     | 4             | 0       | N    |          | % AREA             | BACK RING 1 HEAVY CARBON        |
|              | 5           |             | R1BKMCA     | 4             | 0       |      |          |                    | BACK RING 1 MEDIUM CARBON       |
| 6260<br>6270 | 5           | 1K1N        | R1BKLCA     |               | 0       | N    |          | % AREA             |                                 |
|              |             | 1K1N        |             | 4             |         | N    |          | % AREA             | BACK RING 1 LITE CARBON         |
| 6280         | 5           | 1K1N        | R1BK9A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 9 - 8       |
| 6290         | 5           | 1K1N        | R1BK8A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 7.9 - 7     |
| 6300         | 5           | 1K1N        | R1BK7A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 6.9 - 6     |
| 6310         | 5           | 1K1N        | R1BK6A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 5.9 - 5     |
| 6320         | 5           | 1K1N        | R1BK5A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 4.9 - 4     |
| 6330         | 5           | 1K1N        | R1BK4A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 3.9 - 3     |
| 6340         | 5           | 1K1N        | R1BK3A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 2.9 - 2     |
| 6350         | 5           | 1K1N        | R1BK2A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 1.9 - 1     |
| 6360         | 5           | 1K1N        | R1BK1A      | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT 0.9 - 0     |
| 6370         | 5           | 1K1N        | R1BKCLNA    | 4             | 0       | N    |          | % AREA             | BACK RING 1 DEPOSIT CLEAN       |
| 6380         | 5           | 1K1N        | R2THCA      | 4             | 0       | N    |          | % AREA             | TOP RING 2 HEAVY CARBON         |
| 6390         | 5           | 1K1N        | R2TMCA      | 4             | 0       | N    |          | % AREA             | TOP RING 2 MEDIUM CARBON        |
| 6400         | 5           | 1K1N        | R2TLCA      | 4             | 0       | N    |          | % AREA             | TOP RING 2 LITE CARBON          |
| 6410         | 5           | 1K1N        | R2T9A       | 4             | 0       | N    |          | % AREA             | TOP RING 2 DEPOSIT 9 - 8        |
| 6420         | 5           | 1K1N        | R2T8A       | 4             | 0       | N    |          | % AREA             | TOP RING 2 DEPOSIT 7.9 - 7      |
| 6430         | 5           | 1K1N        | R2T7A       | 4             | 0       | N    |          | % AREA             | TOP RING 2 DEPOSIT 6.9 - 6      |
| 6440         | 5           | 1K1N        | R2T6A       | 4             | 0       | N    |          | % AREA             | TOP RING 2 DEPOSIT 5.9 - 5      |
| 6450         | 5           | 1K1N        | R2T5A       | 4             | 0       | N    |          | % AREA             | TOP RING 2 DEPOSIT 4.9 - 4      |
| 6460         | 5           | 1K1N        | R2T4A       | 4             | 0       | N    |          | % AREA             | TOP RING 2 DEPOSIT 3.9 - 3      |
|              |             |             |             |               |         |      |          |                    |                                 |

- 12 -

FIG. A14.1 Data Dictionary (continued)

| 7- 3011-200 |        | Toot        | riold       | Field  | Dogimal | Data | Report. Asim b      | ata Dictionary                |
|-------------|--------|-------------|-------------|--------|---------|------|---------------------|-------------------------------|
| Camuanaa    |        | Test        | Field       |        | Decimal |      | Unite/Formet        | Description                   |
| Sequence    | FORM ! | <u>Area</u> | <u>Name</u> | Length | Size    | Туре | <u>Units/Format</u> | Description                   |
| 6470        | 5      | 1K1N        | R2T3A       | 4      | 0       | N    | % AREA              | TOP RING 2 DEPOSIT 2.9 - 2    |
| 6480        | 5      | 1K1N        | R2T2A       | 4      | 0       | N N  | % AREA              | TOP RING 2 DEPOSIT 1.9 - 1    |
| 6490        | 5      |             |             | 4      | 0       |      | % AREA              |                               |
|             |        | 1K1N        | R2T1A       |        |         | N    |                     | TOP RING 2 DEPOSIT 0.9 - 0    |
| 6500        | 5      | 1K1N        | R2TCLNA     | 4      | 0       | N    | % AREA              | TOP RING 2 DEPOSIT CLEAN      |
| 6510        | 5      | 1K1N        | R2BHCA      | 4      | 0       | N    | % AREA              | BOTTOM RING 2 HEAVY CARBON    |
| 6520        | 5      | 1K1N        | R2BMCA      | 4      | 0       | N    | % AREA              | BOTTOM RING 2 MEDIUM CARBON   |
| 6530        | 5      | 1K1N        | R2BLCA      | 4      | 0       | N    | % AREA              | BOTTOM RING 2 LITE CARBON     |
| 6540        | 5      | 1K1N        | R2B9A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 9 - 8   |
| 6550        | 5      | 1K1N        | R2B8A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 7.9 - 7 |
| 6560        | 5      | 1K1N        | R2B7A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 6.9 - 6 |
| 6570        | 5      | 1K1N        | R2B6A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 5.9 - 5 |
| 6580        | 5      | 1K1N        | R2B5A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 4.9 - 4 |
| 6590        | 5      | 1K1N        | R2B4A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 3.9 - 3 |
| 6600        | 5      | 1K1N        | R2B3A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 2.9 - 2 |
| 6610        | 5      | 1K1N        | R2B2A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 1.9 - 1 |
| 6620        | 5      | 1K1N        | R2B1A       | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT 0.9 - 0 |
| 6630        | 5      | 1K1N        | R2BCLNA     | 4      | 0       | N    | % AREA              | BOTTOM RING 2 DEPOSIT CLEAN   |
| 6640        | 5      | 1K1N        | R2BKHCA     | 4      | 0       | N    | % AREA              | BACK RING 2 HEAVY CARBON      |
| 6650        | 5      | 1K1N        | R2BKMCA     | 4      | 0       | N    | % AREA              | BACK RING 2 MEDIUM CARBON     |
| 6660        | 5      | 1K1N        | R2BKLCA     | 4      | 0       | N    | % AREA              | BACK RING 2 LITE CARBON       |
| 6670        | 5      | 1K1N        | R2BK9A      | 4      | 0       | N    | % AREA              | BACK RING 2 DEPOSIT 9 - 8     |
| 6680        | 5      | 1K1N        | R2BK8A      | 4      | 0       | N    | % AREA              | BACK RING 2 DEPOSIT 7.9 - 7   |
| 6690        | 5      | 1K1N        | R2BK7A      | 4      | Ŏ       | N    | % AREA              | BACK RING 2 DEPOSIT 6.9 - 6   |
| 6700        | 5      | 1K1N        | R2BK6A      | 4      | 0       | N    | % AREA              | BACK RING 2 DEPOSIT 5.9 - 5   |
| 6710        | 5      | 1K1N        | R2BK5A      | 4      | 0       | N    | % AREA              | BACK RING 2 DEPOSIT 4.9 - 4   |
|             | 5      |             |             | 4      | 0       |      |                     |                               |
| 6720        |        | 1K1N        | R2BK4A      |        |         | N    | % AREA              | BACK RING 2 DEPOSIT 3.9 - 3   |
| 6730        | 5      | 1K1N        | R2BK3A      | 4      | 0       | N    | % AREA              | BACK RING 2 DEPOSIT 2.9 - 2   |
| 6740        | 5      | 1K1N        | R2BK2A      | 4      | 0       | N    | % AREA              | BACK RING 2 DEPOSIT 1.9 - 1   |
| 6750        | 5      | 1K1N        | R2BK1A      | 4      | 0       | N    | % AREA              | BACK RING 2 DEPOSIT 0.9 - 0   |
| 6760        | 5      | 1K1N        | R2BKCLNA    | 4      | 0       | N    | % AREA              | BACK RING 2 DEPOSIT CLEAN     |
| 6770        | 5      | 1K1N        | R3THCA      | 4      | 0       | N    | % AREA              | TOP RING 3 HEAVY CARBON       |
| 6780        | 5      | 1K1N        | R3TMCA      | 4      | 0       | N    | % AREA              | TOP RING 3 MEDIUM CARBON      |
| 6790        | 5      | 1K1N        | R3TLCA      | 4      | 0       | N    | % AREA              | TOP RING 3 LITE CARBON        |
| 6800        | 5      | 1K1N        | R3T9A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 9 - 8      |
| 6810        | 5      | 1K1N        | R3T8A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 7.9 - 7    |
| 6820        | 5      | 1K1N        | R3T7A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 6.9 - 6    |
| 6830        | 5      | 1K1N        | R3T6A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 5.9 - 5    |
| 6840        | 5      | 1K1N        | R3T5A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 4.9 - 4    |
| 6850        | 5      | 1K1N        | R3T4A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 3.9 - 3    |
| 6860        | 5      | 1K1N        | R3T3A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 2.9 - 2    |
| 6870        | 5      | 1K1N        | R3T2A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 1.9 - 1    |
| 6880        | 5      | 1K1N        | R3T1A       | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT 0.9 - 0    |
| 6890        | 5      | 1K1N        | R3TCLNA     | 4      | 0       | N    | % AREA              | TOP RING 3 DEPOSIT CLEAN      |
| 6900        | 5      | 1K1N        | R3BHCA      | 4      | 0       | N    | % AREA              | BOTTOM RING 3 HEAVY CARBON    |
| 6910        | 5      | 1K1N        | R3BMCA      | 4      | 0       | N    | % AREA              | BOTTOM RING 3 MEDIUM CARBON   |
| 6920        | 5      | 1K1N        | R3BLCA      | 4      | 0       | N    | % AREA              | BOTTOM RING 3 LITE CARBON     |
| 6930        | 5      | 1K1N        | R3B9A       | 4      | 0       | N    | % AREA              | BOTTOM RING 3 DEPOSIT 9 - 8   |
| 6940        | 5      | 1K1N        | R3B8A       | 4      | 0       | N    | % AREA              | BOTTOM RING 3 DEPOSIT 7.9 - 7 |
| 6950        | 5      | 1K1N        | R3B7A       | 4      | 0       | N    | % AREA              | BOTTOM RING 3 DEPOSIT 6.9 - 6 |
| 6960        | 5      | 1K1N        | R3B6A       | 4      | 0       | N    | % AREA              | BOTTOM RING 3 DEPOSIT 5.9 - 5 |
| 6970        | 5      | 1K1N        | R3B5A       | 4      | 0       | N    | % AREA              | BOTTOM RING 3 DEPOSIT 4.9 - 4 |
| 6980        | 5      |             |             | 4      | 0       |      |                     | BOTTOM RING 3 DEPOSIT 4.9 - 4 |
|             |        | 1K1N        | R3B4A       |        |         | N    | % AREA              |                               |
| 6990        | 5      | 1K1N        | R3B3A       | 4      | 0       | N    | % AREA              | BOTTOM RING 3 DEPOSIT 2.9 - 2 |
| 7000        | 5      | 1K1N        | R3B2A       | 4      | 0       | N    | % AREA              | BOTTOM RING 3 DEPOSIT 1.9 - 1 |

- 13 -

FIG. A14.1 Data Dictionary (continued)

| 7 3411 200   | <i></i> | Toot   | Field    | Eigla  | Decimal | Da+c  | Report. ASTR Da     | ica procronal y                                     |
|--------------|---------|--------|----------|--------|---------|-------|---------------------|-----------------------------------------------------|
| Comuonoo     | Form    | Test   |          |        |         |       | Unite/Format        | Description                                         |
| Sequence     | FOITI   | Area   | Name     | Length | Size    | туре  | <u>Units/Format</u> | Description                                         |
| 7010         | _       | 41/411 | 07014    | ,      | 0       |       | 9/ ADEA             | DOTTON DING 7 DEDOCT 0 0 0                          |
| 7010         | 5       | 1K1N   | R3B1A    | 4      | 0       |       | % AREA              | BOTTOM RING 3 DEPOSIT 0.9 - 0                       |
| 7020         | 5       | 1K1N   | R3BCLNA  | 4      | 0       |       | % AREA              | BOTTOM RING 3 DEPOSIT CLEAN                         |
| 7030         | 5       | 1K1N   | R3BKHCA  | 4      | 0       | N     | % AREA              | BACK RING 3 HEAVYCARBON                             |
| 7040         | 5       | 1K1N   | R3BKMCA  | 4      | 0       | N     | % AREA              | BACK RING 3 MEDIUM CARBON                           |
| 7050         | 5       | 1K1N   | R3BKLCA  | 4      | 0       | N     | % AREA              | BACK RING 3 LITE CARBON                             |
| 7060         | 5       | 1K1N   | R3BK9A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 9 - 8                           |
| 7070         | 5       | 1K1N   | R3BK8A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 7.9 - 7                         |
| 7080         | 5       | 1K1N   | R3BK7A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 6.9 - 6                         |
| 7090         | 5       | 1K1N   | R3BK6A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 5.9 - 5                         |
| 7100         | 5       | 1K1N   | R3BK5A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 4.9 - 4                         |
| 7110         | 5       | 1K1N   | R3BK4A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 3.9 - 3                         |
| 7120         | 5       | 1K1N   | R3BK3A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 2.9 - 2                         |
| 7130         | 5       | 1K1N   | R3BK2A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 1.9 - 1                         |
| 7140         | 5       | 1K1N   | R3BK1A   | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT 0.9 - 0                         |
| 7150         | 5       | 1K1N   | R3BKCLNA | 4      | 0       | N     | % AREA              | BACK RING 3 DEPOSIT CLEAN                           |
| 7160         | 5       | 1K1N   | CROWNAD  | 70     | 0       | С     |                     | ADDITIONAL DEPOSIT & CONDITION RATINGS PISTON CROWN |
| 7170         | 5       | 1K1N   | LINERAD  | 70     | 0       | С     |                     | ADDITIONAL DEPOSIT & CONDITION RATINGS LINER        |
| 7180         | 5       | 1K1N   | RINGSAD  | 70     | 0       | С     |                     | ADDITIONAL DEPOSIT & CONDITION RATINGS RINGS        |
| 7190         | 5a      | 1K1N   | RRNO     | 10     | 0       | С     |                     | REFEREE RATING NUMBER                               |
| 7200         | 5a      | 1K1N   | RRDATE   | 8      | 0       |       | YYYYMMDD            | REFEREE RATING DATE                                 |
| 7210         | 5a      | 1K1N   | RRINIT   | 3      | 0       | С     |                     | REFEREE RATING INITIALS                             |
| 7220         | 5a      | 1K1N   | RRG1HCA  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #1 HC-1.0 CARBON AREA PERCENT        |
| 7230         | 5a      | 1K1N   |          | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #1 HC-1.0 CARBON DEMERITS            |
|              |         |        | RRG1HCD  |        |         |       |                     |                                                     |
| 7240         | 5a      | 1K1N   | RRG2HCA  | 4      | 0       |       | % AREA              | REFEREE GROOVE #2 HC-1.0 CARBON AREA PERCENT        |
| 7250         | 5a      | 1K1N   | RRG2HCD  | 7      | 2       | N<br> | DEMERITS            | REFEREE GROOVE #2 HC-1.0 CARBON DEMERITS            |
| 7260         | 5a      | 1K1N   | RRG3HCA  | 4      | 0       |       | % AREA              | REFEREE GROOVE #3 HC-1.0 CARBON AREA PERCENT        |
| 7270         | 5a<br>- | 1K1N   | RRG3HCD  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #3 HC-1.0 CARBON DEMERITS            |
| 7280         | 5a      | 1K1N   | RRL1HCA  | 4      | 0       |       | % AREA              | REFEREE LAND #1 HC-1.0 CARBON AREA PERCENT          |
| 7290         | 5a      | 1K1N   | RRL1HCD  | 7      | 2       |       | DEMERITS            | REFEREE LAND #1 HC-1.0 CARBON DEMERITS              |
| 7300         | 5a      | 1K1N   | RRL2HCA  | 4      | 0       | N     | % AREA              | REFEREE LAND #2 HC-1.0 CARBON AREA PERCENT          |
| 7310         | 5a      | 1K1N   | RRL2HCD  | 7      | 2       | N     | DEMERITS            | REFEREE LAND #2 HC-1.0 CARBON DEMERITS              |
| 7320         | 5a      | 1K1N   | RRL3HCA  | 4      | 0       | N     | % AREA              | REFEREE LAND #3 HC-1.0 CARBON AREA PERCENT          |
| 7330         | 5a      | 1K1N   | RRL3HCD  | 7      | 2       | N     | DEMERITS            | REFEREE LAND #3 HC-1.0 CARBON DEMERITS              |
| 7340         | 5a      | 1K1N   | RRUSHCA  | 4      | 0       | N     | % AREA              | REFEREE RATING UPPER SKIRT HC-1.0 CARBON AREA %     |
| 7350         | 5a      | 1K1N   | RRUSHCD  | 7      | 2       | N     | DEMERITS            | REFEREE RATING UPPER SKIRT HC-1.0 CARBON DEMERITS   |
| 7360         | 5a      | 1K1N   | RRUCHCA  | 4      | 0       | N     | % AREA              | REFEREE RATING UNDER CROWN HC-1.0 CARBON AREA %     |
| 7370         | 5a      | 1K1N   | RRUCHCD  | 7      | 2       | N     | DEMERITS            | REFEREE RATING UNDER CROWN HC-1.0 CARBON DEMERITS   |
| 7380         | 5a      | 1K1N   | RRPFHCA  | 4      | 0       | N     | % AREA              | REFEREE RATING PIN BORE FRONT HC-1.0 CARBON AREA %  |
| 7390         | 5a      | 1K1N   | RRPFHCD  | 7      | 2       | N     | DEMERITS            | REF. RATING PIN BORE FRONT HC-1.0 CARBON DEMERITS   |
| 7400         | 5a      | 1K1N   | RRPRHCA  | 4      | 0       | N     | % AREA              | REFEREE RATING PIN BORE REAR HC-1.0 CARBON AREA %   |
| 7410         | 5a      | 1K1N   | RRPRHCD  | 7      | 2       | N     | DEMERITS            | REF. RATING PIN BORE REAR HC-1.0 CARBON DEMERITS    |
| 7420         | 5a      | 1K1N   | RRG1MCA  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #1 MC-1.0 CARBON AREA PERCENT        |
| 7430         | 5a      | 1K1N   | RRG1MCD  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #1 MC-1.0 CARBON DEMERITS            |
| 7440         | 5a      | 1K1N   | RRG3MCA  | 4      | 0       |       | % AREA              | REFEREE GROOVE #3 MC-1.0 CARBON AREA PERCENT        |
| 7450         | 5a      | 1K1N   | RRG3MCD  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #3 MC-1.0 CARBON DEMERITS            |
| 7460         | 5a      | 1K1N   | RRG1LCA  | 4      | 0       |       | % AREA              | REFEREE GROOVE #1 LC-1.0 CARBON AREA PERCENT        |
| 7470         | 5a      | 1K1N   | RRG1LCD  | 7      | 2       | N.    | DEMERITS            | REFEREE GROOVE #1 LC-1.0 CARBON DEMERITS            |
| 7470         | 5a      | 1K1N   | RRG2LCA  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #2 LC-1.0 CARBON AREA PERCENT        |
|              |         |        |          |        |         |       |                     |                                                     |
| 7490<br>7500 | 5a      | 1K1N   | RRG2LCD  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #2 LC-1.0 CARBON DEMERITS            |
| 7500         | 5a      | 1K1N   | RRG3LCA  | 4      | 0       |       | % AREA              | REFEREE GROOVE #3 LC-1.0 CARBON AREA PERCENT        |
| 7510         | 5a      | 1K1N   | RRG3LCD  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #3 LC-1.0 CARBON DEMERITS            |
| 7520         | 5a<br>- | 1K1N   | RRL1LCA  | 4      | 0       | N     | % AREA              | REFEREE LAND #1 LC-1.0 CARBON AREA PERCENT          |
| 7530         | 5a      | 1K1N   | RRL1LCD  | 7      | 2       | N     | DEMERITS            | REFEREE LAND #1 LC-1.0 CARBON DEMERITS              |
| 7540         | 5a      | 1K1N   | RRL2LCA  | 4      | 0       | N     | % AREA              | REFEREE LAND #2 LC-1.0 CARBON AREA PERCENT          |

- 14 -

FIG. A14.1 Data Dictionary (continued)



| 7 3011 200 | ,_          | Tach        | اسلمة       | F; = 1 -1 | Decimal |      | Report. Asim be              | aca processially                                     |
|------------|-------------|-------------|-------------|-----------|---------|------|------------------------------|------------------------------------------------------|
| _          | _           | Test        | Field<br>   |           | Decimal |      |                              |                                                      |
| Sequence   | <u>Form</u> | <u>Area</u> | <u>Name</u> | Length    | Size    | Туре | <u>Units</u> / <u>Format</u> | Description                                          |
|            | _           |             |             | _         | _       |      |                              |                                                      |
| 7550       | 5a<br>-     | 1K1N        | RRL2LCD     | 7         | 2       |      | DEMERITS                     | REFEREE LAND #2 LC-1.0 CARBON DEMERITS               |
| 7560       | 5a          | 1K1N        | RRL3LCA     | 4         | 0       |      | % AREA                       | REFEREE LAND #3 LC-1.0 CARBON AREA PERCENT           |
| 7570       | 5a          | 1K1N        | RRL3LCD     | 7         | 2       | N    | DEMERITS                     | REFEREE LAND #3 LC-1.0 CARBON DEMERITS               |
| 7580       | 5a          | 1K1N        | RRUSLCA     | 4         | 0       | N    | % AREA                       | REFEREE RATING UPPER SKIRT LC-1.0 CARBON AREA %      |
| 7590       | 5a          | 1K1N        | RRUSLCD     | 7         | 2       | N    | DEMERITS                     | REFEREE RATING UPPER SKIRT LC-1.0 CARBON DEMERITS    |
| 7600       | 5a          | 1K1N        | RRUCLCA     | 4         | 0       | N    | % AREA                       | REFEREE RATING UNDER CROWN LC-1.0 CARBON AREA %      |
| 7610       | 5a          | 1K1N        | RRUCLCD     | 7         | 2       | N    | DEMERITS                     | REFEREE RATING UNDER CROWN LC-1.0 CARBON DEMERITS    |
| 7620       | 5a          | 1K1N        | RRPFLCA     | 4         | 0       | N    | % AREA                       | REF. RATING PISTON BORE FRONT LC-1.0 CARBON AREA %   |
| 7630       | 5a          | 1K1N        | RRPFLCD     | 7         | 2       | N    | DEMERITS                     | REF. RATING PISTON BORE FRONTLC-1.0 CARBON DEMERIT   |
| 7640       | 5a          | 1K1N        | RRPRLCA     | 4         | 0       | N    | % AREA                       | REF. RATING PISTON BORE REAR LC-1.0 CARBON AREA %    |
| 7650       | 5a          | 1K1N        | RRPRLCD     | 7         | 2       | N    | DEMERITS                     | REF. RATING PISTON BORE REAR LC-1.0 CARBON DEMERIT   |
| 7660       | 5a          | 1K1N        | RG1ACTOT    | 4         | 0       | N    | % AREA                       | REFEREE TOTAL GROOVE #1 CARBON AREA PERCENT          |
| 7670       | 5a          | 1K1N        | RG1DCTOT    | 7         | 2       | N    | DEMERITS                     | REFEREE TOTAL GROOVE #1 CARBON DEMERITS              |
| 7680       | 5a          | 1K1N        | RG2ACTOT    |           | 0       |      | % AREA                       | REFEREE TOTAL GROOVE #2 CARBON AREA PERCENT          |
| 7690       | 5a          | 1K1N        | RG2DCTOT    |           | 2       |      | DEMERITS                     | REFEREE TOTAL GROOVE #2 CARBON DEMERITS              |
| 7700       | 5a          | 1K1N        | RG3ACTOT    | 4         | 0       |      | % AREA                       | REFEREE TOTAL GROOVE #3 CARBON AREA PERCENT          |
| 7710       | 5a          | 1K1N        | RG3DCTOT    |           | 2       |      | DEMERITS                     | REFEREE TOTAL GROOVE #3 CARBON DEMERITS              |
| 7720       | 5a          | 1K1N        | RL1ACTOT    | 4         | 0       |      | % AREA                       | REFEREE TOTAL LAND #1 CARBON AREA PERCENT            |
| 7730       | 5a          | 1K1N        | RL1DCTOT    | 7         | 2       |      | DEMERITS                     | REFEREE TOTAL LAND #1 CARBON DEMERITS                |
| 7740       |             | 1K1N        |             | 4         | 0       |      |                              | REFEREE TOTAL LAND #2 CARBON AREA PERCENT            |
|            | 5a          |             | RL2ACTOT    |           |         |      | % AREA                       |                                                      |
| 7750       | 5a          | 1K1N        | RL2DCTOT    | 7         | 2       |      | DEMERITS                     | REFEREE TOTAL LAND #2 CARBON DEMERITS                |
| 7760       | 5a          | 1K1N        | RL3ACTOT    | 4         | 0       |      | % AREA                       | REFEREE TOTAL LAND #3 CARBON AREA PERCENT            |
| 7770       | 5a<br>-     | 1K1N        | RL3DCTOT    | 7         | 2       |      | DEMERITS                     | REFEREE TOTAL LAND #3 CARBON DEMERITS                |
| 7780       | 5a          | 1K1N        | RUSACTOT    | 4         | 0       |      | % AREA                       | REFEREE RATING TOTAL UPPER SKIRT CARBON AREA PERCENT |
| 7790       | 5a          | 1K1N        | RUSDCTOT    | 7         | 2       |      | DEMERITS                     | REFEREE RATING TOTAL UPPER SKIRT CARBON DEMERITS     |
| 7800       | 5a          | 1K1N        | RUCACTOT    | 4         | 0       | N    | % AREA                       | REFEREE RATING TOTAL UNDER CROWN CARBON AREA PERCENT |
| 7810       | 5a          | 1K1N        | RUCDCTOT    | 7         | 2       | N    | DEMERITS                     | REFEREE RATING TOTAL UNDER CROWN CARBON DEMERITS     |
| 7820       | 5a          | 1K1N        | RPFACTOT    | 4         | 0       | N    | % AREA                       | REFEREE RATING TOTAL PIN BORE FRONT CARBON AREA %    |
| 7830       | 5a          | 1K1N        | RPFDCTOT    | 7         | 2       | N    | DEMERITS                     | REF. RATING TOTAL PIN BORE FRONT CARBON DEMERITS     |
| 7840       | 5a          | 1K1N        | RPRACTOT    | 4         | 0       | N    | % AREA                       | REF. RATING TOTAL PIN BORE REAR CARBON AREA PERCENT  |
| 7850       | 5a          | 1K1N        | RPRDCTOT    | 7         | 2       | N    | DEMERITS                     | REF. RATING TOTAL PIN BORE REAR CARBON DEMERITS      |
| 7860       | 5a          | 1K1N        | RRG1L9A     | 4         | 0       | N    | % AREA                       | REFEREE GROOVE #1 8-9 LACQUER AREA PERCENT           |
| 7870       | 5a          | 1K1N        | RRG1L9D     | 7         | 2       | N    | DEMERITS                     | REFEREE GROOVE #1 8-9 LACQUER DEMERITS               |
| 7880       | 5a          | 1K1N        | RRG2L9A     | 4         | 0       | N    | % AREA                       | REFEREE GROOVE #2 8-9 LACQUER AREA PERCENT           |
| 7890       | 5a          | 1K1N        | RRG2L9D     | 7         | 2       | N    | DEMERITS                     | REFEREE GROOVE #2 8-9 LACQUER DEMERITS               |
| 7900       | 5a          | 1K1N        | RRG3L9A     | 4         | 0       | N    | % AREA                       | REFEREE GROOVE #3 8-9 LACQUER AREA PERCENT           |
| 7910       | 5a          | 1K1N        | RRG3L9D     | 7         | 2       | N    | DEMERITS                     | REFEREE GROOVE #3 8-9 LACQUER DEMERITS               |
| 7920       | 5a          | 1K1N        | RRL1L9A     | 4         | 0       |      | % AREA                       | REFEREE LAND #1 8-9 LACQUER AREA PERCENT             |
| 7930       | 5a          | 1K1N        | RRL1L9D     | 7         | 2       |      | DEMERITS                     | REFEREE LAND #1 8-9 LACQUER DEMERITS                 |
| 7940       | 5a          | 1K1N        | RRL2L9A     | 4         | 0       |      | % AREA                       | REFEREE LAND #2 8-9 LACQUER AREA PERCENT             |
| 7950       | 5a          | 1K1N        | RRL2L9D     | 7         | 2       |      | DEMERITS                     | REFEREE LAND #2 8-9 LACQUER DEMERITS                 |
| 7960       | 5a          | 1K1N        | RRL3L9A     | 4         | 0       |      | % AREA                       | REFEREE LAND #3 8-9 LACQUER AREA PERCENT             |
| 7970       |             |             |             |           |         |      |                              |                                                      |
|            | 5a          | 1K1N        | RRL3L9D     | 7         | 2       |      | DEMERITS                     | REFEREE LAND #3 8-9 LACQUER DEMERITS                 |
| 7980       | 5a          | 1K1N        | RRUSV9A     | 4         | 0       |      | % AREA                       | REFEREE RATING UPPER SKIRT 8-9 LACQUER AREA PERCENT  |
| 7990       | 5a<br>-     | 1K1N        | RRUSV9D     | 7         | 2       |      | DEMERITS                     | REFEREE RATING UPPER SKIRT 8-9 LACQUER DEMERITS      |
| 8000       | 5a          | 1K1N        | RRUCV9A     | 4         | 0       |      | % AREA                       | REFEREE RATING UNDER CROWN 8-9 LACQUER AREA PERCENT  |
| 8010       | 5a<br>-     | 1K1N        | RRUCV9D     | 7         | 2       |      | DEMERITS                     | REFEREE RATING UNDER CROWN 8-9 LACQUER DEMERITS      |
| 8020       | 5a          | 1K1N        | RRPFV9A     | 4         | 0       |      | % AREA                       | REFEREE RATING PIN BORE FRONT 8-9 LACQUER AREA %     |
| 8030       | 5a          | 1K1N        | RRPFV9D     | 7         | 2       | N    | DEMERITS                     | REFEREE RATING PIN BORE FRONT 8-9 LACQUER DEMERITS   |
| 8040       | 5a          | 1K1N        | RRPRV9A     | 4         | 0       | N    | % AREA                       | REFEREE RATING PIN BORE REAR 8-9 LACQUER AREA %      |
| 8050       | 5a          | 1K1N        | RRPRV9D     | 7         | 2       | N    | DEMERITS                     | REFEREE RATING PIN BORE REAR 8-9 LACQUER DEMERITS    |
| 8060       | 5a          | 1K1N        | RRG1L8A     | 4         | 0       | N    | % AREA                       | REFEREE GROOVE #1 7-7.9 LACQUER AREA PERCENT         |
| 8070       | 5a          | 1K1N        | RRG1L8D     | 7         | 2       | N    | DEMERITS                     | REFEREE GROOVE #1 7-7.9 LACQUER DEMERITS             |
| 8080       | 5a          | 1K1N        | RRG2L8A     | 4         | 0       | N    | % AREA                       | REFEREE GROOVE #2 7-7.9 LACQUER AREA PERCENT         |
|            |             |             |             |           |         |      |                              |                                                      |

- 15 -

FIG. A14.1 Data Dictionary (continued)

|              |          | Test         | Field              | Field  | Decimal | Data        | ,                  | <b>,</b>                                                                              |
|--------------|----------|--------------|--------------------|--------|---------|-------------|--------------------|---------------------------------------------------------------------------------------|
| Sequence     |          |              | Name               |        |         |             | Units/Format       | Description                                                                           |
|              |          |              |                    |        |         | <del></del> |                    |                                                                                       |
| 8090         | 5a       | 1K1N         | RRG2L8D            | 7      | 2       | N           | DEMERITS           | REFEREE GROOVE #2 7-7.9 LACQUER DEMERITS                                              |
| 8100         | 5a       | 1K1N         | RRG3L8A            | 4      | 0       | N           | % AREA             | REFEREE GROOVE #3 7-7.9 LACQUER AREA PERCENT                                          |
| 8110         | 5a       | 1K1N         | RRG3L8D            | 7      | 2       | N           | DEMERITS           | REFEREE GROOVE #3 7-7.9 LACQUER DEMERITS                                              |
| 8120         | 5a       | 1K1N         | RRL1L8A            | 4      | 0       | N           | % AREA             | REFEREE LAND #1 7-7.9 LACQUER AREA PERCENT                                            |
| 8130         | 5a       | 1K1N         | RRL1L8D            | 7      | 2       | N           | DEMERITS           | REFEREE LAND #1 7-7.9 LACQUER DEMERITS                                                |
| 8140         | 5a       | 1K1N         | RRL2L8A            | 4      | 0       | N           | % AREA             | REFEREE LAND #2 7-7.9 LACQUER AREA PERCENT                                            |
| 8150         | 5a       | 1K1N         | RRL2L8D            | 7      | 2       | N           | DEMERITS           | REFEREE LAND #2 7-7.9 LACQUER DEMERITS                                                |
| 8160         | 5a       | 1K1N         | RRL3L8A            | 4      | 0       | N           | % AREA             | REFEREE LAND #3 7-7.9 LACQUER AREA PERCENT                                            |
| 8170         | 5a       | 1K1N         | RRL3L8D            | 7      | 2       | N           | DEMERITS           | REFEREE LAND #3 7-7.9 LACQUER DEMERITS                                                |
| 8180         | 5a       | 1K1N         | RRUSV8A            | 4      | 0       | N           | % AREA             | REFEREE RATING UPPER SKIRT 7-7.9 LACQUER AREA %                                       |
| 8190         | 5a       | 1K1N         | RRUSV8D            | 7      | 2       | N           | DEMERITS           | REFEREE RATING UPPER SKIRT 7-7.9 LACQUER DEMERITS                                     |
| 8200         | 5a       | 1K1N         | RRUCV8A            | 4      | 0       | N           | % AREA             | REFEREE RATING UNDER CROWN 7-7.9 LACQUER AREA %                                       |
| 8210         | 5a       | 1K1N         | RRUCV8D            | 7      | 2       | N           | DEMERITS           | REFEREE RATING UNDER CROWN 7-7.9 LACQUER DEMERITS                                     |
| 8220         | 5a       | 1K1N         | RRPFV8A            | 4      | 0       | N           | % AREA             | REF. RATING PIN BORE FRONT 7-7.9 LACQUER AREA %                                       |
| 8230         | 5a       | 1K1N         | RRPFV8D            | 7      | 2       | N           | DEMERITS           | REF. RATING PIN BORE FRONT 7-7.9 LACQUER DEMERITS                                     |
| 8240         | 5a       | 1K1N         | RRPRV8A            | 4      | 0       | N           | % AREA             | REF. RATING PIN BORE REAR 7-7.9 LACQUER AREA PERCENT                                  |
| 8250         | 5a       | 1K1N         | RRPRV8D            | 7      | 2       | N           | DEMERITS           | REF. RATING PIN BORE REAR 7-7.9 LACQUER DEMERITS                                      |
| 8260         | 5a       | 1K1N         | RRG1L7A            | 4      | 0       | N           | % AREA             | REFEREE GROOVE #1 6-6.9 LACQUER AREA PERCENT                                          |
| 8270         | 5a       | 1K1N         | RRG1L7D            | 7      | 2       | N           | DEMERITS           | REFEREE GROOVE #1 6-6.9 LACQUER DEMERITS                                              |
| 8280         | 5a       | 1K1N         | RRG2L7A            | 4      | 0       | N           | % AREA             | REFEREE GROOVE #2 6-6.9 LACQUER AREA PERCENT                                          |
| 8290         | 5a       | 1K1N         | RRG2L7D            | 7      | 2       | N           | DEMERITS           | REFEREE GROOVE #2 6-6.9 LACQUER DEMERITS                                              |
| 8300         | 5a       | 1K1N         | RRG3L7A            | 4      | 0       | N           | % AREA             | REFEREE GROOVE #3 6-6.9 LACQUER AREA PERCENT                                          |
| 8310         | 5a       | 1K1N         | RRG3L7D            | 7      | 2       | N           | DEMERITS           | REFEREE GROOVE #3 6-6.9 LACQUER DEMERITS                                              |
| 8320         | 5a       | 1K1N         | RRL1L7A            | 4      | 0       | N           | % AREA             | REFEREE LAND #1 6-6.9 LACQUER AREA PERCENT                                            |
| 8330         | 5a       | 1K1N         | RRL1L7D            | 7      | 2       | N           |                    | REFEREE LAND #1 6-6.9 LACQUER DEMERITS                                                |
| 8340         | 5a       | 1K1N         | RRL2L7A            | 4      | 0       | N           |                    | REFEREE LAND #2 6-6.9 LACQUER AREA PERCENT                                            |
| 8350         | 5a       | 1K1N         | RRL2L7D            | 7      | 2       | N           |                    | REFEREE LAND #2 6-6.9 LACQUER DEMERITS                                                |
| 8360         | 5a       | 1K1N         | RRL3L7A            | 4      | 0       |             | % AREA             | REFEREE LAND #3 6-6.9 LACQUER AREA PERCENT                                            |
| 8370         | 5a       | 1K1N         | RRL3L7D            | 7      | 2       |             | DEMERITS           | REFEREE LAND #3 6-6.9 LACQUER DEMERITS                                                |
| 8380         | 5a       | 1K1N         | RRUSV7A            | 4      | 0       |             | % AREA             | REFEREE RATING UPPER SKIRT 6-6.9 LACQUER AREA %                                       |
| 8390         | 5a<br>-  | 1K1N         | RRUSV7D            | 7      | 2       | N           | DEMERITS           | REFEREE RATING UPPER SKIRT 6-6.9 LACQUER DEMERITS                                     |
| 8400         | 5a       | 1K1N         | RRUCV7A            | 4      | 0       |             | % AREA             | REFEREE RATING UNDER CROWN 6-6.9 LACQUER AREA %                                       |
| 8410         | 5a       | 1K1N         | RRUCV7D            | 7      | 2       |             | DEMERITS           | REFEREE RATING UNDER CROWN 6-6.9 LACQUER DEMERITS                                     |
| 8420         | 5a       | 1K1N         | RRPFV7A            | 4      | 0       |             | % AREA             | REFEREE RATING PIN BORE FRONT 6-6.9 LACQUER AREA %                                    |
| 8430         | 5a       | 1K1N         | RRPFV7D            | 7      | 2       |             | DEMERITS           | REF. RATING PIN BORE FRONT 6-6.9 LACQUER DEMERITS                                     |
| 8440         | 5a       | 1K1N         | RRPRV7A            | 4      | 0       |             | % AREA             | REF. RATING PIN BORE REAR 6-6.9 LACQUER AREA PERCENT                                  |
| 8450         | 5a       | 1K1N         | RRPRV7D            | 7      | 2<br>0  |             | DEMERITS<br>% ADEA | REF. RATING PIN BORE REAR 6-6.9 LACQUER DEMERITS                                      |
| 8460<br>8470 | 5a<br>5a | 1K1N<br>1K1N | RRG1L6A            | 4      | 2       |             | % AREA             | REFEREE GROOVE #1 5-5.9 LACQUER AREA PERCENT                                          |
|              | _        |              | RRG1L6D            | ,      |         |             | DEMERITS<br>% ADEA | REFEREE GROOVE #1 5-5.9 LACQUER DEMERITS REFEREE GROOVE #2 5-5.9 LACQUER AREA PERCENT |
| 8480<br>8490 | 5a       | 1K1N         | RRG2L6A            | 4      | 0       |             | % AREA<br>DEMERITS | REFEREE GROOVE #2 5-5.9 LACQUER DEMERITS                                              |
| 8500         | 5a<br>5a | 1K1N<br>1K1N | RRG2L6D            | 7<br>4 | 2<br>0  | N<br>N      |                    | REFEREE GROOVE #2 5-5.9 LACQUER AREA PERCENT                                          |
| 8510         | 5a       | 1K1N         | RRG3L6A<br>RRG3L6D | 7      | 2       | N           | % AREA<br>DEMERITS | REFEREE GROOVE #3 5-5.9 LACQUER DEMERITS                                              |
| 8520         | 5a       | 1K1N         | RRL1L6A            | 4      | 0       |             | % AREA             | REFEREE LAND #1 5-5.9 LACQUER AREA PERCENT                                            |
| 8530         | 5a       | 1K1N         | RRL1L6D            | 7      | 2       | N<br>N      | DEMERITS           | REFEREE LAND #1 5-5.9 LACQUER DEMERITS                                                |
| 8540         | 5a       | 1K1N         | RRL2L6A            | 4      | 0       | N N         | % AREA             | REFEREE LAND #2 5-5.9 LACQUER AREA PERCENT                                            |
| 8550         | 5a       | 1K1N         | RRL2L6D            | 7      | 2       | N           | DEMERITS           | REFEREE LAND #2 5-5.9 LACQUER DEMERITS                                                |
| 8560         | 5a       | 1K1N         | RRL3L6A            | 4      | 0       | N           | % AREA             | REFEREE LAND #3 5-5.9 LACQUER AREA PERCENT                                            |
| 8570         | 5a       | 1K1N         | RRL3L6D            | 7      | 2       | N           | DEMERITS           | REFEREE LAND #3 5-5.9 LACQUER DEMERITS                                                |
| 8580         | 5a       | 1K1N         | RRUSV6A            | 4      | 0       | N           |                    | REFEREE RATING UPPER SKIRT 5-5.9 LACQUER AREA %                                       |
| 8590         | 5a       | 1K1N         | RRUSV6D            | 7      | 2       | N           | DEMERITS           | REFEREE RATING UPPER SKIRT 5-5.9 LACQUER DEMERITS                                     |
| 8600         | 5a       | 1K1N         | RRUCV6A            | 4      | 0       | N           |                    | REFEREE RATING UNDER CROWN 5-5.9 LACQUER AREA %                                       |
| 8610         | 5a       | 1K1N         | RRUCV6D            | 7      | 2       | N           | DEMERITS           | REFEREE RATING UNDER CROWN 5-5.9 LACQUER DEMERITS                                     |
| 8620         | 5a       | 1K1N         | RRPFV6A            | 4      | 0       |             | % AREA             | REF RATING PISTON BORE FRONT 5-5.9 LACQUER AREA %                                     |
| 3020         | 70       |              | KKI I VOA          | 7      | v       | 14          | N AREA             | RE. MATTER FISTOR BORE FROM 5 5.7 ENGROLD AREA /6                                     |

- 16 -

FIG. A14.1 Data Dictionary (continued)



|              |          | Test         | Field              | Field  | Decimal | Data   | ,                                    | ,                                                                                                        |
|--------------|----------|--------------|--------------------|--------|---------|--------|--------------------------------------|----------------------------------------------------------------------------------------------------------|
| Sequence     |          |              | Name               |        |         |        | Units/Format                         | Description                                                                                              |
|              |          |              |                    |        |         |        |                                      |                                                                                                          |
| 8630         | 5a       | 1K1N         | RRPFV6D            | 7      | 2       | N      | DEMERITS                             | REF RATING PIN BORE FRONT 5-5.9 LACQUER DEMERITS                                                         |
| 8640         | 5a       | 1K1N         | RRPRV6A            | 4      | 0       | N      | % AREA                               | REF RATING PIN BORE REAR 5-5.9 LACQUER AREA PERCENT                                                      |
| 8650         | 5a       | 1K1N         | RRPRV6D            | 7      | 2       | N      | DEMERITS                             | REF RATING PIN BORE REAR 5-5.9 LACQUER DEMERITS                                                          |
| 8660         | 5a       | 1K1N         | RRG1L5A            | 4      | 0       | N      | % AREA                               | REFEREE GROOVE #1 4-4.9 LACQUER AREA PERCENT                                                             |
| 8670         | 5a       | 1K1N         | RRG1L5D            | 7      | 2       | N      | DEMERITS                             | REFEREE GROOVE #1 4-4.9 LACQUER DEMERITS                                                                 |
| 8680         | 5a       | 1K1N         | RRG2L5A            | 4      | 0       | N      | % AREA                               | REFEREE GROOVE #2 4-4.9 LACQUER AREA PERCENT                                                             |
| 8690         | 5a       | 1K1N         | RRG2L5D            | 7      | 2       | N      | DEMERITS                             | REFEREE GROOVE #2 4-4.9 LACQUER DEMERITS                                                                 |
| 8700         | 5a       | 1K1N         | RRG3L5A            | 4      | 0       | N      | % AREA                               | REFEREE GROOVE #3 4-4.9 LACQUER AREA PERCENT                                                             |
| 8710         | 5a       | 1K1N         | RRG3L5D            | 7      | 2       | N      | DEMERITS                             | REFEREE GROOVE #3 4-4.9 LACQUER DEMERITS                                                                 |
| 8720         | 5a       | 1K1N         | RRL1L5A            | 4      | 0       | N      | % AREA                               | REFEREE LAND #1 4-4.9 LACQUER AREA PERCENT                                                               |
| 8730         | 5a       | 1K1N         | RRL1L5D            | 7      | 2       | N      | DEMERITS                             | REFEREE LAND #1 4-4.9 LACQUER DEMERITS                                                                   |
| 8740         | 5a       | 1K1N         | RRL2L5A            | 4      | 0       | N      | % AREA                               | REFEREE LAND #2 4-4.9 LACQUER AREA PERCENT                                                               |
| 8750         | 5a       | 1K1N         | RRL2L5D            | 7      | 2       | N      | DEMERITS                             | REFEREE LAND #2 4-4.9 LACQUER DEMERITS                                                                   |
| 8760         | 5a       | 1K1N         | RRL3L5A            | 4      | 0       | N      | % AREA                               | REFEREE LAND #3 4-4.9 LACQUER AREA PERCENT                                                               |
| 8770         | 5a       | 1K1N         | RRL3L5D            | 7      | 2       | N      | DEMERITS                             | REFEREE LAND #3 4-4.9 LACQUER DEMERITS                                                                   |
| 8780         | 5a       | 1K1N         | RRUSV5A            | 4      | 0       | N      | % AREA                               | REFEREE RATING UPPER SKIRT 4-4.9 LACQUER AREA %                                                          |
| 8790         | 5a       | 1K1N         | RRUSV5D            | 7      | 2       | N      | DEMERITS                             | REFEREE RATING UPPER SKIRT 4-4.9 LACQUER DEMERITS                                                        |
| 8800         | 5a       | 1K1N         | RRUCV5A            | 4      | 0       | N      | % AREA                               | REFEREE RATING UNDER CROWN 4-4.9 LACQUER AREA %                                                          |
| 8810         | 5a       | 1K1N         | RRUCV5D            | 7      | 2       | N      | DEMERITS                             | REFEREE RATING UNDER CROWN 4-4.9 LACQUER DEMERITS                                                        |
| 8820         | 5a       | 1K1N         | RRPFV5A            | 4      | 0       | N      | % AREA                               | REF. RATING PIN BORE FRONT 4-4.9 LACQUER AREA %                                                          |
| 8830         | 5a       | 1K1N         | RRPFV5D            | 7      | 2       | N      | DEMERITS                             | REF. RATING PIN BORE FRONT 4-4.9 LACQUER DEMERITS                                                        |
| 8840         | 5a       | 1K1N         | RRPRV5A            | 4      | 0       | N      | % AREA                               | REF. RATING PIN BORE REAR 4-4.9 LACQUER AREA PERCENT                                                     |
| 8850         | 5a       | 1K1N         | RRPRV5D            | 7      | 2       | N      | DEMERITS                             | REF. RATING PIN BORE REAR 4-4.9 LACQUER DEMERITS                                                         |
| 8860         | 5a       | 1K1N         | RRG1L4A            | 4      | 0       | N      | % AREA                               | REFEREE GROOVE #1 3-3.9 LACQUER AREA PERCENT                                                             |
| 8870         | 5a       | 1K1N         | RRG1L4D            | 7      | 2       | N      | DEMERITS                             | REFEREE GROOVE #1 3-3.9 LACQUER DEMERITS                                                                 |
| 8880         | 5a       | 1K1N         | RRG2L4A            | 4      | 0       | N      | % AREA                               | REFEREE GROOVE #2 3-3.9 LACQUER AREA PERCENT                                                             |
| 8890         | 5a       | 1K1N         | RRG2L4D            | 7      | 2       | N      | DEMERITS                             | REFEREE GROOVE #2 3-3.9 LACQUER DEMERITS                                                                 |
| 8900         | 5a       | 1K1N         | RRG3L4A            | 4      | 0       | N      |                                      | REFEREE GROOVE #3 3-3.9 LACQUER AREA PERCENT                                                             |
| 8910         | 5a       | 1K1N         | RRG3L4D            | 7      | 2       |        | DEMERITS                             | REFEREE GROOVE #3 3-3.9 LACQUER DEMERITS                                                                 |
| 8920         | 5a       | 1K1N         | RRL1L4A            | 4      | 0       |        | % AREA                               | REFEREE LAND #1 3-3.9 LACQUER AREA PERCENT                                                               |
| 8930         | 5a       | 1K1N         | RRL1L4D            | 7      | 2       | N      |                                      | REFEREE LAND #1 3-3.9 LACQUER DEMERITS                                                                   |
| 8940         | 5a<br>-  | 1K1N         | RRL2L4A            | 4      | 0       |        | % AREA                               | REFEREE LAND #2 3-3.9 LACQUER AREA PERCENT                                                               |
| 8950         | 5a       | 1K1N         | RRL2L4D            | 7      | 2       | N      |                                      | REFEREE LAND #2 3-3.9 LACQUER DEMERITS                                                                   |
| 8960         | 5a<br>-  | 1K1N         | RRL3L4A            | 4      | 0       |        | % AREA                               | REFEREE LAND #3 3-3.9 LACQUER AREA PERCENT                                                               |
| 8970         | 5a<br>-  | 1K1N         | RRL3L4D            | 7      | 2       |        | DEMERITS                             | REFEREE LAND #3 3-3.9 LACQUER DEMERITS                                                                   |
| 8980         | 5a       | 1K1N         | RRUSV4A            | 4      | 0       |        | % AREA                               | REFEREE RATING UPPER SKIRT 3-3.9 LACQUER AREA %                                                          |
| 8990         | 5a       | 1K1N         | RRUSV4D            | 7      | 2       |        | DEMERITS                             | REFEREE RATING UPPER SKIRT 3-3.9 LACQUER DEMERITS                                                        |
| 9000         | 5a       | 1K1N         | RRUCV4A            | 4      | 0       |        | % AREA                               | REFEREE RATING UNDER CROWN 3-3.9 LACQUER AREA %                                                          |
| 9010         | 5a       |              | RRUCV4D            | 7      |         |        | DEMERITS                             | REFEREE RATING UNDER CROWN 3-3.9 LACQUER DEMERITS                                                        |
| 9020<br>9030 | 5a<br>5a | 1K1N         | RRPFV4A            | 4      | 0       |        | % AREA                               | REF. RATING PIN BORE FRONT 3-3.9 LACQUER AREA %                                                          |
| 9040         | 5a       | 1K1N<br>1K1N | RRPFV4D            | 7<br>4 | 2<br>0  | N<br>N |                                      | REF. RATING PIN BORE FRONT 3-3.9 LACQUER DEMERITS                                                        |
| 9050         | 5a       | 1K1N         | RRPRV4A            | 7      | 2       |        | % AREA<br>DEMERITS                   | REF. RATING PIN BORE REAR 3-3.9 LACQUER AREA PERCENT<br>REF. RATING PIN BORE REAR 3-3.9 LACQUER DEMERITS |
| 9060         | 5a       | 1K1N         | RRPRV4D<br>RRG1L3A | 4      | 0       |        | % AREA                               | REFEREE GROOVE #1 2-2.9 LACQUER AREA PERCENT                                                             |
| 9070         | 5a       | 1K1N         | RRG1L3D            | 7      | 2       | N      | DEMERITS                             | REFEREE GROOVE #1 2-2.9 LACQUER DEMERITS                                                                 |
| 9080         | 5a       | 1K1N         | RRG2L3A            | 4      | 0       | N      | % AREA                               | REFEREE GROOVE #2 2-2.9 LACQUER AREA PERCENT                                                             |
| 9090         | 5a       | 1K1N         | RRG2L3D            | 7      | 2       | N      |                                      | REFEREE GROOVE #2 2-2.9 LACQUER DEMERITS                                                                 |
| 9100         | 5a       | 1K1N         | RRG3L3A            | 4      | 0       | N      |                                      | REFEREE GROOVE #2 2-2.9 LACQUER AREA PERCENT                                                             |
| 9110         | 5a       | 1K1N         | RRG3L3D            | 7      | 2       | N      | DEMERITS                             | REFEREE GROOVE #3 2-2.9 LACQUER DEMERITS                                                                 |
| 9120         | 5a       | 1K1N         | RRL1L3A            | 4      | 0       | N<br>N |                                      | REFEREE LAND #1 2-2.9 LACQUER AREA PERCENT                                                               |
| 9130         | 5a       | 1K1N         | RRL1L3D            | 7      | 2       | N.     | DEMERITS                             | REFEREE LAND #1 2-2.9 LACQUER DEMERITS                                                                   |
| 9140         | 5a       | 1K1N         | RRL2L3A            | 4      | 0       | N      |                                      | REFEREE LAND #2 2-2.9 LACQUER AREA PERCENT                                                               |
| 9150         | 5a       | 1K1N         | RRL2L3D            | 7      | 2       | N      |                                      | REFEREE LAND #2 2-2.9 LACQUER DEMERITS                                                                   |
| 9160         | 5a       | 1K1N         | RRL3L3A            | 4      | 0       |        | % AREA                               | REFEREE LAND #3 2-2.9 LACQUER AREA PERCENT                                                               |
| , 100        |          |              |                    | 7      | Ŭ       |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | I Elle We E Ell Ellester Miler I Engeli                                                                  |

- 17 -

FIG. A14.1 Data Dictionary (continued)

| 7 Juli 200      | ,,,  |             |          |        |         |       | Report. ASTA D      | dea Dictionary                                        |
|-----------------|------|-------------|----------|--------|---------|-------|---------------------|-------------------------------------------------------|
| _               | _    | Test        | Field    |        | Decimal |       |                     |                                                       |
| <u>Sequence</u> | Form | <u>Area</u> | Name     | Length | Size    | Type  | <u>Units/Format</u> | Description                                           |
|                 | _    |             |          | _      | _       |       |                     |                                                       |
| 9170            | 5a   | 1K1N        | RRL3L3D  | 7      | 2       |       | DEMERITS            | REFEREE LAND #3 2-2.9 LACQUER DEMERITS                |
| 9180            | 5a   | 1K1N        | RRUSV3A  | 4      | 0       |       | % AREA              | REFEREE RATING UPPER SKIRT 2-2.9 LACQUER AREA %       |
| 9190            | 5a   | 1K1N        | RRUSV3D  | 7      | 2       |       | DEMERITS            | REFEREE RATING UPPER SKIRT 2-2.9 LACQUER DEMERITS     |
| 9200            | 5a   | 1K1N        | RRUCV3A  | 4      | 0       | N     | % AREA              | REFEREE RATING UNDER CROWN 2-2.9 LACQUER AREA PERCENT |
| 9210            | 5a   | 1K1N        | RRUCV3D  | 7      | 2       | N     | DEMERITS            | REFEREE RATING UNDER CROWN 2-2.9 LACQUER DEMERITS     |
| 9220            | 5a   | 1K1N        | RRPFV3A  | 4      | 0       | N     | % AREA              | REF. RATING PIN BORE FRONT 2-2.9 LACQUER AREA %       |
| 9230            | 5a   | 1K1N        | RRPFV3D  | 7      | 2       | N     | DEMERITS            | REF. RATING PIN BORE FRONT 2-2.9 LACQUER DEMERITS     |
| 9240            | 5a   | 1K1N        | RRPRV3A  | 4      | 0       | N     | % AREA              | REF. RATING PIN BORE REAR 2-2.9 LACQUER AREA PERCENT  |
| 9250            | 5a   | 1K1N        | RRPRV3D  | 7      | 2       | N     | DEMERITS            | REF. RATING PIN BORE REAR 2-2.9 LACQUER DEMERITS      |
| 9260            | 5a   | 1K1N        | RRG1L2A  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #1 1-1.9 LACQUER AREA PERCENT          |
| 9270            | 5a   | 1K1N        | RRG1L2D  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #1 1-1.9 LACQUER DEMERITS              |
| 9280            | 5a   | 1K1N        | RRG2L2A  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #2 1-1.9 LACQUER AREA PERCENT          |
| 9290            | 5a   | 1K1N        | RRG2L2D  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #2 1-1.9 LACQUER DEMERITS              |
| 9300            | 5a   | 1K1N        | RRG3L2A  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #3 1-1.9 LACQUER AREA PERCENT          |
| 9310            | 5a   | 1K1N        | RRG3L2D  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #3 1-1.9 LACQUER DEMERITS              |
| 9320            | 5a   | 1K1N        | RRL1L2A  | 4      | 0       | N     | % AREA              | REFEREE LAND #1 1-1.9 LACQUER AREA PERCENT            |
| 9330            | 5a   | 1K1N        | RRL1L2D  | 7      | 2       | N     | DEMERITS            | REFEREE LAND #1 1-1.9 LACQUER DEMERITS                |
| 9340            | 5a   | 1K1N        | RRL2L2A  | 4      | 0       | N     |                     | REFEREE LAND #2 1-1.9 LACQUER AREA PERCENT            |
| 9350            | 5a   | 1K1N        | RRL2L2D  | 7      | 2       | N     |                     | REFEREE LAND #2 1-1.9 LACQUER DEMERITS                |
| 9360            | 5a   | 1K1N        |          |        | 0       |       |                     | REFEREE LAND #2 1-1.9 LACQUER AREA PERCENT            |
|                 |      |             | RRL3L2A  | 4      |         | N     | % AREA              |                                                       |
| 9370            | 5a   | 1K1N        | RRL3L2D  | 7      | 2       | N     | DEMERITS            | REFERELAND #3 1-1.9 LACQUER DEMERITS                  |
| 9380            | 5a   | 1K1N        | RRUSV2A  | 4      | 0       |       | % AREA              | REFEREE RATING UPPER SKIRT 1-1.9 LACQUER AREA %       |
| 9390            | 5a   | 1K1N        | RRUSV2D  | 7      | 2       | N     | DEMERITS            | REFEREE RATING UPPER SKIRT 1-1.9 LACQUER DEMERITS     |
| 9400            | 5a   | 1K1N        | RRUÇV2A  | 4      | 0       | N     | % AREA              | REFEREE RATING UNDER CROWN 1-1.9 LACQUER AREA %       |
| 9410            | 5a   | 1K1N        | RRUCV2D  | 7      | 2       | N     | DEMERITS            | REFEREE RATING UNDER CROWN 1-1.9 LACQUER DEMERITS     |
| 9420            | 5a   | 1K1N        | RRPFV2A  | 4      | 0       | N     | % AREA              | REF. RATING PIN BORE FRONT 1-1.9 LACQUER AREA %       |
| 9430            | 5a   | 1K1N        | RRPFV2D  | 7      | 2       | N     | DEMERITS            | REF. RATING PIN BORE FRONT 1-1.9 LACQUER DEMERITS     |
| 9440            | 5a   | 1K1N        | RRPRV2A  | 4      | 0       | N     | % AREA              | REF. RATING PIN BORE REAR 1-1.9 LACQUER AREA PERCENT  |
| 9450            | 5a   | 1K1N        | RRPRV2D  | 7      | 2       | N     | DEMERITS            | REF. RATING PIN BORE REAR 1-1.9 LACQUER DEMERITS      |
| 9460            | 5a   | 1K1N        | RRG1L1A  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #1 0-0.9 LACQUER AREA PERCENT          |
| 9470            | 5a   | 1K1N        | RRG1L1D  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #1 0-0.9 LACQUER DEMERITS              |
| 9480            | 5a   | 1K1N        | RRG2L1A  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #2 0-0.9 LACQUER AREA PERCENT          |
| 9490            | 5a   | 1K1N        | RRG2L1D  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #2 0-0.9 LACQUER DEMERITS              |
| 9500            | 5a   | 1K1N        | RRG3L1A  | 4      | 0       | N     | % AREA              | REFEREE GROOVE #3 0-0.9 LACQUER AREA PERCENT          |
| 9510            | 5a   | 1K1N        | RRG3L1D  | 7      | 2       | N     | DEMERITS            | REFEREE GROOVE #3 0-0.9 LACQUER DEMERITS              |
| 9520            | 5a   | 1K1N        | RRL1L1A  | 4      | 0       | N     | % AREA              | REFEREE LAND #1 0-0.9 LACQUER AREA PERCENT            |
| 9530            | 5a   | 1K1N        | RRL1L1D  | 7      | 2       | N     |                     | REFEREE LAND #1 0-0.9 LACQUER DEMERITS                |
| 9540            | 5a   | 1K1N        | RRL2L1A  | 4      | 0       |       | % AREA              | REFEREE LAND #2 0-0.9 LACQUER AREA PERCENT            |
| 9550            | 5a   | 1K1N        | RRL2L1D  | 7      | 2       | N     | DEMERITS            | REFEREE LAND #2 0-0.9 LACQUER DEMERITS                |
| 9560            | 5a   | 1K1N        | RRL3L1A  | 4      | 0       | N.    | % AREA              | REFEREE LAND #3 0-0.9 LACQUER AREA PERCENT            |
| 9570            | 5a   | 1K1N        | RRL3L1D  | 7      | 2       | N.    | DEMERITS            | REFEREE LAND #3 0-0.9 LACQUER DEMERITS                |
| 9580            | 5a   | 1K1N        | RRUSV1A  | 4      | 0       |       |                     | REFEREE RATING UPPER SKIRT 0-0.9 LACQUER AREA %       |
| 9590            | _    |             |          |        |         | N     |                     |                                                       |
|                 | 5a   | 1K1N        | RRUSV1D  | 7      | 2       | N     | DEMERITS            | REFEREE RATING UPPER SKIRT 0-0.9 LACQUER DEMERITS     |
| 9600            | 5a   | 1K1N        | RRUCV1A  | 4      | 0       | N<br> | % AREA              | REFEREE RATING UNDER CROWN 0-0.9 LACQUER AREA %       |
| 9610            | 5a   | 1K1N        | RRUCV1D  | 7      | 2       | N<br> | DEMERITS            | REFEREE RATING UNDER CROWN 0-0.9 LACQUER DEMERITS     |
| 9620            | 5a   | 1K1N        | RRPFV1A  | 4      | 0       | N     | % AREA              | REF. RATING PIN BORE FRONT 0-0.9 LACQUER AREA %       |
| 9630            | 5a   | 1K1N        | RRPFV1D  | 7      | 2       | N     | DEMERITS            | REF. RATING PIN BORE FRONT 0-0.9 LACQUER DEMERITS     |
| 9640            | 5a   | 1K1N        | RRPRV1A  |        | 0       | N     | % AREA              | REF. RATING PIN BORE REAR 0-0.9 LACQUER AREA PERCENT  |
| 9650            | 5a   | 1K1N        | RRPRV1D  |        | 2       | N     | DEMERITS            | REF. RATING PIN BORE REAR 0-0.9 LACQUER DEMERITS      |
| 9660            | 5a   | 1K1N        | RRG1LCL/ | A 4    | 0       | N     | % AREA              | REFEREE GROOVE #1 CLEAN LACQUER AREA PERCENT          |
| 9670            | 5a   | 1K1N        | RRG2LCL/ | A 4    | 0       | N     | % AREA              | REFEREE GROOVE #2 CLEAN LACQUER AREA PERCENT          |
| 9680            | 5a   | 1K1N        | RRG3LCL  | A 4    | 0       | N     | % AREA              | REFEREE GROOVE #3 CLEAN LACQUER AREA PERCENT          |
| 9690            | 5a   | 1K1N        | RRL1LCL  | A 4    | 0       | N     | % AREA              | REFEREE LAND #1 CLEAN LACQUER AREA PERCENT            |
| 9700            | 5a   | 1K1N        | RRL2LCL  | A 4    | 0       | N     | % AREA              | REFEREE LAND #2 CLEAN LACQUER AREA PERCENT            |
|                 |      |             |          |        |         |       |                     |                                                       |

- 18 -

FIG. A14.1 Data Dictionary (continued)

| 7- Jan-200 | 12          | _           |          |            |         |             | Report: ASIM        | Data Dictionary                                      |
|------------|-------------|-------------|----------|------------|---------|-------------|---------------------|------------------------------------------------------|
|            |             | Test        | Field    | Field      | Decimal | Data        |                     |                                                      |
| Sequence   | <u>Form</u> | <u>Area</u> | Name     | Length     | Size    | <u>Type</u> | <u>Units/Format</u> | Description                                          |
|            |             |             |          |            |         |             |                     |                                                      |
| 9710       | 5a          | 1K1N        | RRL3LCLA | 4          | 0       | N           | % AREA              | REFEREE LAND #3 CLEAN LACQUER AREA PERCENT           |
| 9720       | 5a          | 1K1N        | RRUSVCLA | 4          | 0       | N           | % AREA              | REFEREE RATING UPPER SKIRT CLEAN LACQUER AREA %      |
| 9730       | 5a          | 1K1N        | RRUCVCLA | 4          | 0       | N           | % AREA              | REFEREE RATING UNDER CROWN CLEAN LACQUER AREA %      |
| 9740       | 5a          | 1K1N        | RRPFVCLA | 4          | 0       | N           | % AREA              | REF. RATING PIN BORE FRONT CLEAN LACQUER AREA %      |
| 9750       | 5a          | 1K1N        | RRPRVCLA | 4          | 0       | N           | % AREA              | REF. RATING PIN BORE REAR CLEAN LACQUER AREA PERCENT |
| 9760       | 5a          | 1K1N        | RG1ALTOT | 4          | 0       | N           | % AREA              | REFEREE TOTAL GROOVE #1 LACQUER AREA PERCENT         |
| 9770       | 5a          | 1K1N        | RG1DLTOT | 7          | 2       | N           | DEMERITS            | REFEREE TOTAL GROOVE #1 LACQUER DEMERITS             |
| 9780       | 5a          | 1K1N        | RG2ALTOT |            | 0       | N           | % AREA              | REFEREE TOTAL GROOVE #2 LACQUER AREA PERCENT         |
| 9790       | 5a          | 1K1N        | RG2DLTOT |            | 2       | N           | DEMERITS            | REFEREE TOTAL GROOVE #2 LACQUER DEMERITS             |
| 9800       | 5a          | 1K1N        | RG3ALTOT |            | 0       | N           | % AREA              | REFEREE TOTAL GROOVE #3 LACQUER AREA PERCENT         |
| 9810       | 5a          | 1K1N        | RG3DLTOT |            | 2       | N           | DEMERITS            | REFEREE TOTAL GROOVE #3 LACQUER DEMERITS             |
| 9820       | 5a          | 1K1N        |          |            | 0       | N           | % AREA              | REFEREE TOTAL LAND #1 LACQUER AREA PERCENT           |
|            |             |             | RL1ALTOT |            |         |             |                     |                                                      |
| 9830       | 5a          | 1K1N        | RL1DLTOT |            | 2       | N           | DEMERITS            | REFEREE TOTAL LAND #1 LACQUER DEMERITS               |
| 9840       | 5a<br>-     | 1K1N        | RL2ALTOT |            | 0       | N           | % AREA              | REFEREE TOTAL LAND #2 LACQUER AREA PERCENT           |
| 9850       | 5a          | 1K1N        | RL2DLTOT |            | 2       | N           | DEMERITS            | REFEREE TOTAL LAND #2 LACQUER DEMERITS               |
| 9860       | 5a          | 1K1N        | RL3ALTOT |            | 0       | N           | % AREA              | REFEREE TOTAL LAND #3 LACQUER AREA PERCENT           |
| 9870       | 5a          | 1K1N        | RL3DLTOT |            | 2       | N           | DEMERITS            | REFEREE TOTAL LAND #3 LACQUER DEMERITS               |
| 9880       | 5a          | 1K1N        | RUSALTOT | 4          | 0       | N           | % AREA              | REFEREE RATING TOTAL UPPER SKIRT LACQUER AREA %      |
| 9890       | 5a          | 1K1N        | RUSDLTOT | 7          | 2       | N           | DEMERITS            | REFEREE RATING TOTAL UPPER SKIRT LACQUER DEMERITS    |
| 9900       | 5a          | 1K1N        | RUCALTOT | 4          | 0       | N           | % AREA              | REFEREE RATING TOTAL UNDER CROWN LACQUER AREA %      |
| 9910       | 5a          | 1K1N        | RUCDLTOT | 7          | 2       | N           | DEMERITS            | REFEREE RATING TOTAL UNDER CROWN LACQUER DEMERITS    |
| 9920       | 5a          | 1K1N        | RPFALTOT | 4          | 0       | N           | % AREA              | REF. RATING TOTAL PIN BORE FRONT LACQUER AREA %      |
| 9930       | 5a          | 1K1N        | RPFDLTOT | 7          | 2       | N           | DEMERITS            | REF. RATING TOTAL PIN BORE FRONT LACQUER DEMERITS    |
| 9940       | 5a          | 1K1N        | RPRALTOT | 4          | 0       | N           | % AREA              | REF. RATING TOTAL PIN BORE REAR LACQUER AREA PERCENT |
| 9950       | 5a          | 1K1N        | RPRDLTOT | 7          | 2       | N           | DEMERITS            | REF. RATING TOTAL PIN BORE REAR LACQUER DEMERITS     |
| 9960       | 5a          | 1K1N        | RRG1UWD  | 7          | 2       | N           | DEMERITS            | REFEREEE GROOVE 1 UNWEIGHTED DEMERITS                |
| 9970       | 5a          | 1K1N        | RRG2UWD  | 7          | 2       | N           | DEMERITS            | REFEREE GROOVE 2 UNWEIGHTED DEMERITS                 |
| 9980       | 5a          | 1K1N        | RRG3UWD  | 7          | 2       | N           | DEMERITS            | REFEREE GROOVE 3 UNWEIGHTED DEMERITS                 |
| 9990       | 5a          | 1K1N        | RRL 1UWD | 7          | 2       | N           | DEMERITS            | REFEREE LAND 1 UNWEIGHTED DEMERITS                   |
| 10000      | 5a          | 1K1N        | RRL2UWD  | 7          | 2       | N           | DEMERITS            | REFEREE LAND 2 UNWEIGHTED DEMERITS                   |
| 10010      | 5a          | 1K1N        | RRL3UWD  | 7          | 2       | N           | DEMERITS            | REFEREE LAND 3 UNWEIGHTED DEMERITS                   |
| 10020      | 5a          | 1K1N        | RRUSUWD  | 7          | 2       | N           | DEMERITS            | REFEREE RATING UPPER SKIRT UNWEIGHTED DEMERITS       |
| 10030      | 5a          | 1K1N        | RRUCUWD  | 7          | 2       | N           | DEMERITS            | REFEREE RATING UNDER CROWN UNWEIGHTED DEMERITS       |
| 10040      | 5a          | 1K1N        | RRPFUWD  | 7          | 2       | N           | DEMERITS            | REFEREE RATING PIN BORE FRONT UNWEIGHTED DEMERITS    |
| 10050      | 5a          | 1K1N        | RRPRUWD  | 7          | 2       | N           | DEMERITS            | REFEREE RATING PIN BORE REAR UNWEIGHTED DEMERITS     |
| 10060      | 5a          | 1K1N        | RRG1WD   | 7          | 2       | N           | DEMERITS            | REFEREE GROOVE 1 WEIGHTED DEMERITS                   |
| 10070      | 5a          | 1K1N        | RRG2WD   | 7          | 2       | N           | DEMERITS            | REFEREE GROOVE 2 WEIGHTED DEMERITS                   |
| 10070      | 5a          |             | RRG3WD   | 7          | 2       |             |                     |                                                      |
|            | _           | 1K1N        |          |            |         | N           | DEMERITS            | REFEREE GROOVE 3 WEIGHTED DEMERITS                   |
| 10090      | 5a          | 1K1N        | RRL 1WD  | 7          | 2       | N           | DEMERITS            | REFEREE LAND 1 WEIGHTED DEMERITS                     |
| 10100      | 5a          | 1K1N        | RRL2WD   | 7          | 2       | N           | DEMERITS            | REFEREE LAND 2 WEIGHTED DEMERITS                     |
| 10110      | 5a          | 1K1N        | RRL3WD   | 7          | 2       | N           | DEMERITS            | REFEREE LAND 3 WEIGHTED DEMERITS                     |
| 10120      | 5a          | 1K1N        | RRUSWD   | 7          | 2       | N           | DEMERITS            | REFEREE RATING UPPER SKIRT WEIGHTED DEMERITS         |
| 10130      | 5a          | 1K1N        | RRUCWD   | 7          | 2       | N           | DEMERITS            | REFEREE RATING UNDER CROWN WEIGHTED DEMERITS         |
| 10140      | 5a          | 1K1N        | RRPFWD   | 7          | 2       | N           | DEMERITS            | REFEREE RATING PIN BORE FRONT WEIGHTED DEMERITS      |
| 10150      | 5a          | 1K1N        | RRPRWD   | 7          | 2       | N           | DEMERITS            | REFEREE RATING PIN BORE REAR WEIGHTED DEMERITS       |
| 10160      | 5a          | 1K1N        | RRIGF    | 4          | 0       | N           | %                   | REFEREE RATING IGF                                   |
| 10170      | 5a          | 1K1N        | RRUWD    | 7          | 1       | N           | DEMERITS            | REFEREE RATING UWDK                                  |
| 10180      | 6           | 1K1N        | V100Hxxx | <b>4</b> 7 | 2       | N           | cSt                 | VISC @ 100 °C AT XXX HOURS                           |
| 10190      | 6           | 1K1N        | TBN_Hxxx | k 7        | 2       | N           |                     | TBN D4739 AT XXX HOURS                               |
| 10200      | 6           | 1K1N        | FEWMHXXX | <b>K</b> 4 | 0       | A           | ppm                 | FE - WEAR METALS AT XXX HOURS [<]                    |
| 10210      | 6           | 1K1N        | ALWMHXXX | K 4        | 0       | A           | ppm                 | AL - WEAR METALS AT XXX HOURS [<]                    |
| 10220      | 6           | 1K1N        | SIWMHXXX | × 4        | 0       | Α           | ppm                 | SI - WEAR METALS AT XXX HOURS [<]                    |
| 10230      | 6           | 1K1N        | CUWMHxxx | x 4        | 0       | A           | ppm                 | CU - WEAR METALS AT XXX HOURS [<]                    |
| 10240      | 6           | 1K1N        | CRWMHxx  | x 4        | 0       | Α           | ppm                 | CR - WEAR METALS AT XXX HOURS [<]                    |
|            |             |             |          |            |         |             |                     |                                                      |

- 19 -

FIG. A14.1 Data Dictionary (continued)

| 7- Jan-200 | )2   |             |                  |               |         |      | Report: ASTM D               | Data Dictionary                                          |
|------------|------|-------------|------------------|---------------|---------|------|------------------------------|----------------------------------------------------------|
|            |      | Test        | Field            | Field         | Decimal | Data |                              |                                                          |
| Sequence   | Form | <u>Area</u> | Name             | <u>Length</u> | Size    | Туре | <u>Units</u> / <u>Format</u> | Description                                              |
|            |      |             |                  |               |         |      |                              |                                                          |
| 10250      | 6    | 1K1N        | <b>PBWM</b> Hxxx | 4             | 0       | Α    | ppm                          | PB - WEAR METALS AT XXX HOURS [<]                        |
| 10260      | 6    | 1K1N        | FDILHxxx         | 5             | 1       | N    | %                            | FUEL DILUTION ENGINE HOURS AT XXX HOURS                  |
| 10270      | 6    | 1K1N        | BLBYHXXX         | 6             | 1       | N    | L/min                        | BLOWBY ENGINE HOURS AT XXX HOURS                         |
| 10280      | 6    | 1K1N        | BSOCHXXX         | 5             | 2       | N    | g/kW-h                       | BSOC ENGINE HOURS AT XXX HOURS                           |
| 10290      | 7    | 1K1N        | DWNOCR           | 3             | 0       | Z    | -                            | NUMBER OF DOWNTIME OCCURENCES                            |
| 10300      | 7    | 1K1N        | DOWNRXXX         |               | 0       | С    | ннн:мм                       | DOWNTIME TEST HOURS                                      |
| 10310      | 7    | 1K1N        | DDATRxxx         |               | 0       |      | YYYYMMDD                     | DOWNTIME DATE                                            |
| 10320      | 7    | 1K1N        | DTIMRXXX         |               | 0       | С    | ннн:мм                       | DOWNTIME TIME                                            |
| 10330      | 7    | 1K1N        | DREARXXX         |               | 0       | C    |                              | DOWNTIME REASON                                          |
| 10340      | 7    | 1K1N        | TOTLDOWN         | 6             | 0       | c    | ннн:мм                       | DOWNTIME TIME TOTAL                                      |
| 10350      | 7    | 1K1N        | TOTCOM           | 3             | 0       | Z    |                              | TOTAL LINES OF COMMENTS & OUTLIERS                       |
| 10360      | 7    | 1K1N        | OCOMRXXX         |               | 0       | C    |                              | OTHER DOWNTIME COMMENTS XXX                              |
| 10370      | 8    | 1K1N        | RINGGTE          | 6             | 3       | N    | mm                           | TOP RING GAP PRE-TEST                                    |
| 10370      | 8    | 1K1N        |                  |               | 3       |      |                              |                                                          |
|            |      |             | RINGGI1E         |               |         | N    | mm                           | INTERMEDIATE 1 RING GAP PRE-TEST                         |
| 10390      | 8    | 1K1N        | RINGGOE          | 6             | 3       | N    | mm                           | OIL RING GAP PRE-TEST                                    |
| 10400      | 8    | 1K1N        | RINGGTO          | 6             | 3       | N    | mm                           | TOP RING GAP POST-TEST                                   |
| 10410      | 8    | 1K1N        | RINGGI 10        |               | 3       | N    | mm                           | INTERMEDIATE 1 RING GAP POST-TEST                        |
| 10420      | 8    | 1K1N        | RINGGOO          | 6             | 3       | N    | mm                           | OIL RING GAP POST-TEST                                   |
| 10430      | 8    | 1K1N        | SIDETPE1         |               | 3       | Α    | mm                           | TOP PRETEST RING SIDE CLEARANCE A [ STUCK, <, > ]        |
| 10440      | 8    | 1K1N        | SIDETPE2         |               | 3       | Α    | mm                           | TOP POSTTEST RING SIDE CLEARANCE A [ STUCK, <, > ]       |
| 10450      | 8    | 1K1N        | SIDETPE3         |               | 3       | Α    | mm                           | TOP POSTTEST RING SIDE CLEARANCE C [ STUCK, <, > ]       |
| 10460      | 8    | 1K1N        | SIDETPE4         | 7             | 3       | A    | mm                           | TOP POSTTEST RING SIDE CLEARANCE D [ STUCK, <, > ]       |
| 10470      | 8    | 1K1N        | ASIDETPE         | 7             | 3       | Α    | mm                           | TOP POSTTEST RING SIDE CLEARANCE AVG [ STUCK, <, > ]     |
| 10480      | 8    | 1K1N        | ISIDETPE         | 6             | 3       | Α    | mm                           | MINIMUM RING SIDE CLEARANCE -TOP- PRETEST [STUCK, <, >]  |
| 10490      | 8    | 1K1N        | SIDETPO1         | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP POST-TEST A [ STUCK, <, > ]      |
| 10500      | 8    | 1K1N        | SIDETPO2         | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP POST-TEST B [ STUCK, <, >]       |
| 10510      | 8    | 1K1N        | SIDETPO3         | 7             | 3       | A    | mm                           | RING SIDE CLEARANCE TOP POST-TEST C [ STUCK, <, > ]      |
| 10520      | 8    | 1K1N        | SIDETPO4         | . 7           | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP POST-TEST D [ STUCK, <, > ]      |
| 10530      | 8    | 1K1N        | ASIDETPO         | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP POST-TEST AVERAGE [STUCK, <, >]  |
| 10540      | 8    | 1K1N        | ISIDETPO         | 6             | 3       | Α    | mm                           | MIN. RING SIDE CLEARANCE POSTTEST-0.114-0.185[STUCK,<,>] |
| 10550      | 8    | 1K1N        | LSCT1            | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP LSC A [ STUCK, <, > ]            |
| 10560      | 8    | 1K1N        | LSCT2            | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP LSC B [ STUCK, <, > ]            |
| 10570      | 8    | 1K1N        | LSCT3            | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP LSC C [ STUCK, <, > ]            |
| 10580      | 8    | 1K1N        | LSCT4            | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP LSC D [ STUCK, <, > ]            |
| 10590      | 8    | 1K1N        | ILSCT            | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE TOP LSC MINIMUM [ STUCK, <, > ]      |
| 10600      | 8    | 1K1N        | ISIDE1PE         |               | 3       | A    | mm                           | MINIMUM RING SIDE CLEARANCE - INT1 PRETEST [STUCK, <, >] |
| 10610      | 8    | 1K1N        | SIDE1PE1         | _             | 3       | A    | mm                           | RING SIDE CLEARANCE INT. PRETEST A [STUCK, <, >]         |
| 10620      | 8    | 1K1N        | SIDE1PE2         |               | 3       | A    | mm                           | RING SIDE CLEARANCE INT. PRETEST B [STUCK, <, >]         |
| 10630      | 8    | 1K1N        | SIDE1PE3         |               | 3       | A    | mm                           | RING SIDE CLEARANCE INT. PRETEST C [STUCK, <, >]         |
| 10640      | 8    | 1K1N        | SIDE1PE4         |               | 3       | A    | mm                           | RING SIDE CLEARANCE INT. PRETEST D [STUCK, <, >]         |
| 10650      | 8    | 1K1N        | ASIDE 1PE        | _             | 3       | A    | mm                           | RING SIDE CLEARANCE INT. PRETEST D [STUCK, <, >]         |
| 10660      | 8    | 1K1N        | ISIDE1PC         |               | 3       | A    | mm                           | MINIMUM RING SIDE CLEARANCE-INT1-POSTTEST [STUCK, <, >]  |
| 10670      | 8    | 1K1N        |                  |               | 3       |      |                              | RING SIDE CLEARANCE INT. POST-TEST A [STUCK, <, >]       |
|            |      |             | SIDE1P01         |               |         | A    | mm                           | ·                                                        |
| 10680      | 8    | 1K1N        | SIDE1PO2         |               | 3       | Α.   | mm                           | RING SIDE CLEARANCE INT. POST-TEST B [STUCK, <, >]       |
| 10690      | 8    | 1K1N        | SIDE1PO3         |               | 3       | Α.   | mm                           | RING SIDE CLEARANCE INT. POST-TEST C [STUCK, <, >]       |
| 10700      | 8    | 1K1N        | SIDE1PO4         |               | 3       | Α.   | mm                           | RING SIDE CLEARANCE INT. POST-TEST D [STUCK, <, >]       |
| 10710      | 8    | 1K1N        | ASIDE1PO         |               | 3       | Α.   | mm                           | RING SIDE CLEARANCE INT. POST-TEST AVG [STUCK, <, >]     |
| 10720      | 8    | 1K1N        | LSCI1            | 7             | 3       | Α.   | mm                           | RING SIDE CLEARANCE INT. LSC A [STUCK, <, >]             |
| 10730      | 8    | 1K1N        | LSCI2            | 7             | 3       | A    | mm                           | RING SIDE CLEARANCE INT. LSC B [STUCK, <, >]             |
| 10740      | 8    | 1K1N        | LSC13            | 7             | 3       | A    | mm                           | RING SIDE CLEARANCE INT. LSC C [STUCK, <, >]             |
| 10750      | 8    | 1K1N        | LSC14            | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE INT. LSC D [STUCK, <, >]             |
| 10760      | 8    | 1K1N        | ILSCINT          | 7             | 3       | Α    | mm                           | RING SIDE CLEARANCE INT. LSC MINIMUM [STUCK, <, >]       |
| 10770      | 8    | 1K1N        | SIDEOPE          | 1 7           | 3       | Α    | mm                           | RING SIDE CLEARANCE OIL PRE-TEST A [STUCK, <, >]         |
| 10780      | 8    | 1K1N        | SIDEOPE          | 2 7           | 3       | Α    | mm                           | RING SIDE CLEARANCE OIL PRE-TEST B [STUCK, <, >]         |

- 20 -

FIG. A14.1 Data Dictionary (continued)



| 1- Jan-200 | ,,          |             |                 |        |             |             | Report. Asim b      | ata bictional y                                        |
|------------|-------------|-------------|-----------------|--------|-------------|-------------|---------------------|--------------------------------------------------------|
|            |             | Test        | Field           | Field  | Decimal     | Data        |                     |                                                        |
| Sequence   | <u>Form</u> | <u>Area</u> | Name            | Length | <u>Size</u> | <u>Type</u> | <u>Units/Format</u> | Description                                            |
|            |             |             |                 |        |             |             |                     |                                                        |
| 10790      | 8           | 1K1N        | SIDEOPE3        | 7      | 3           | Α           | mm                  | RING SIDE CLEARANCE OIL PRE-TEST C [STUCK, <, >]       |
| 10800      | 8           | 1K1N        | SIDEOPE4        | 7      | 3           | Α           | mm                  | RING SIDE CLEARANCE OIL PRE-TEST D [STUCK, <, >]       |
| 10810      | 8           | 1K1N        | ASIDEOPE        | 7      | 3           | Α           | mm                  | RING SIDE CLEARANCE OIL PRE-TEST AVG [STUCK, <, >]     |
| 10820      | 8           | 1K1N        | ISIDEOPE        | 6      | 3           | Α           | mm                  | MINIMUM RING SIDE CLEARANCE-OIL-PRETEST [STUCK, <, >]  |
| 10830      | 8           | 1K1N        | SIDEOP01        | 7      | 3           | Α           | mm                  | RING SIDE CLEARANCE OIL POST-TEST A [STUCK, <, >]      |
| 10840      | 8           | 1K1N        | SIDEOPO2        | 7      | 3           | Α           | mm                  | RING SIDE CLEARANCE OIL POST-TEST B [STUCK, <, >]      |
| 10850      | 8           | 1K1N        | SIDEOPO3        | 7      | 3           | Α           | mm                  | RING SIDE CLEARANCE OIL POST-TEST C [STUCK, <, >]      |
| 10860      | 8           | 1K1N        | SIDEOPO4        | 7      | 3           | A           | mm                  | RING SIDE CLEARANCE OIL POST-TEST D [STUCK, <, >]      |
| 10870      | 8           | 1K1N        | ASIDEOPO        | 7      | 3           | A           | mm                  | RING SIDE CLEARANCE OIL POST-TEST AVG [STUCK, <, >]    |
| 10880      | 8           | 1K1N        | ISIDEOPO        | 6      | 3           | A           | mm                  | MINIMUM RING SIDE CLEARANCE-OIL-POSTTEST [STUCK, <, >] |
|            |             |             |                 | 7      | 3           |             |                     |                                                        |
| 10890      | 8           | 1K1N        | LSCO1           |        |             | A           | mm                  | RING SIDE CLEARANCE OIL LSC A [STUCK, <, >]            |
| 10900      | 8           | 1K1N        | LSCO2           | 7      | 3           | A           | mm                  | RING SIDE CLEARANCE OIL LSC B [STUCK, <, >]            |
| 10910      | 8           | 1K1N        | LSC03           | 7      | 3           | Α           | mm                  | RING SIDE CLEARANCE OIL LSC C [STUCK, <, >]            |
| 10920      | 8           | 1K1N        | LSCO4           | 7      | 3           | Α           | mm                  | RING SIDE CLEARANCE OIL LSC D [STUCK, <, >]            |
| 10930      | 8           | 1K1N        | ILSCO           | 7      | 3           | A           | mm                  | RING SIDE CLEARANCE OIL LSC MINIMUM [STUCK, <, >]      |
| 10940      | 9           | 1K1N        | BBLFINT1        | 5      | 2           | N           | micrometre          | LINER BORE SURFACE FINISH - TRANSVERSE - 130 MM        |
| 10950      | 9           | 1K1N        | BBLFINL1        | 5      | 2           | N           | micrometre          | LINER BORE SURFACE FINISH -LONGITUDINAL- 130 MM        |
| 10960      | 9           | 1K1N        | BBLFINA1        | 5      | 2           | N           | micrometre          | LINER BORE SURFACE FINISH - AVERAGE - 130 MM           |
| 10970      | 9           | 1K1N        | BBLF1NT2        | 5      | 2           | N           | micrometre          | LINER BORE SURFACE FINISH - TRANSVERSE - 50 MM         |
| 10980      | 9           | 1K1N        | BBLFINL2        | 5      | 2           | N           | micrometre          | LINER BORE SURFACE FINISH -LONGITUDINAL- 50 MM         |
| 10990      | 9           | 1K1N        | BBLF1NA2        | 5      | 2           | Ń           | micrometre          | LINER BORE SURFACE FINISH - AVERAGE - 50 MM            |
| 11000      | 9           | 1K1N        | BBLFINT3        | 5      | 2           | N           | micrometre          | LINER BORE SURFACE FINISH - TRANSVERSE - 25 MM         |
| 11010      | 9           | 1K1N        | BBLFINL3        | 5      | 2           | N           | micrometre          | LINER BORE SURFACE FINISH -LONGITUDINAL- 25 MM         |
| 11020      | 9           | 1K1N        | BBLFINA3        | 5      | 2           | N           | micrometre          | LINER BORE SURFACE FINISH - AVERAGE - 25 MM            |
| 11030      | 9           | 1K1N        | BBLFIN          | 5      | 2           | N           | micrometre          | BEFORE TEST LINER BORE SURFACE FINISH TOTAL AVG        |
| 11040      | 9           | 1K1N        | BOREPT          | 6      | 1           | N           | %                   | LINER BORE POLISH - GRID - THRUST                      |
| 11050      | 9           | 1K1N        | BOREPAT         | 6      | 1           | N           | %                   | LINER BORE POLISH - GRID - ANTI-THRUST                 |
| 11060      | 9           | 1K1N        | BBLONG1         | 8      | 3           | N           | mm                  | BEFORE TEST LINER BORE MEA230 MM HT-LONGITUDINAL       |
| 11070      | 9           | 1K1N        | BBTRAN1         | 8      | 3           | N           | mm                  | BEFORE TEST LINER BORE MEA230 MM HT-TRANSVERSE         |
| 11070      | 9           | 1K1N        | _               | 8      | 3           | N.          | mm                  | BEFORE TEST LINER BORE MEA130 MM HT-LONGITUDINAL       |
|            |             |             | BBLONG2         | 8      | 3           |             |                     | BEFORE TEST LINER BORE MEA 130 MM HT-TRANSVERSE        |
| 11090      | 9           | 1K1N        | BBTRAN2         |        |             | N.          | mm<br>—             |                                                        |
| 11100      | 9           | 1K1N        | BBLONG3         | 8      | 3           | N.          | mm                  | BEFORE TEST LINER BORE MEA 50 MM HT-LONGITUDINAL       |
| 11110      | 9           | 1K1N        | BBTRAN3         | 8      | 3           | N           | mm                  | BEFORE TEST LINER BORE MEA50 MM HT-TRANSVERSE          |
| 11120      | 9           | 1K1N        | BBLONG4         | 8      | 3           | N           | mm                  | BEFORE TEST LINER BORE MEA25 MM HT-LONGITUDINAL        |
| 11130      | 9           | 1K1N        | BBTRAN4         | 8      | 3           | N           | mm                  | BEFORE TEST LINER BORE MEA25 MM HT-TRANSVERSE          |
| 11140      | 9           | 1K1N        | BBLONG5         | 8      | 3           | N           | mm                  | BEFORE TEST LINER BORE MEA15 MM HT-LONGITUDINAL        |
| 11150      | 9           | 1K1N        | BBTRAN5         | 8      | 3           | N           | mm                  | BEFORE TEST LINER BORE MEA15 MM HT-TRANSVERSE          |
| 11160      | 9           | 1K1N        | AWEARLF         | 6      | 3           | N           | mm                  | AFTER TEST LINER BORE WEAR STEPLONGITUDINAL FRONT      |
| 11170      | 9           | 1K1N        | AWEARLR         | 6      | 3           | N           | mm                  | AFTER TEST LINER BORE WEAR STEPLONGITUDINAL REAR       |
| 11180      | 9           | 1K1N        | AWEARTT         | 6      | 3           | N           | mm                  | AFTER TEST LINER BORE WEAR STEPTRANSVERSE T            |
| 11190      | 9           | 1K1N        | <b>AWEARTAT</b> | 6      | 3           | N           | mm                  | AFTER TEST LINER BORE WEAR STEPTRANSVERSE AT           |
| 11200      | 10          | 1K1N        | RPMSENS         | 17     | 0           | С           |                     | ENGINE SPEED SENSING DEVICE                            |
| 11210      | 10          | 1K1N        | RPMCALF         | 13     | 0           | С           |                     | ENGINE SPEED CALIBRATION FREQUENCY                     |
| 11220      | 10          | 1K1N        | RPMRECD         | 16     | 0           | С           |                     | ENGINE SPEED RECORD DEVICE                             |
| 11230      | 10          | 1K1N        | RPMOBSF         | 12     | 0           | С           |                     | ENGINE SPEED OBSERVATION FREQUENCY                     |
| 11240      | 10          | 1K1N        | RPMRECF         | 12     | 0           | С           |                     | ENGINE SPEED RECORD FREQUENCY                          |
| 11250      | 10          | 1K1N        | RPMLOGF         | 12     | 0           | C           |                     | ENGINE SPEED LOG FREQUENCY                             |
| 11260      | 10          | 1K1N        | RPMSYSR         | 8      | 0           | C           |                     | ENGINE SPEED SYSTEM RESPONSE                           |
| 11270      | 10          | 1K1N        | PWRSENS         | 17     | 0           | c           |                     | ENGINE POWER SENSING DEVICE                            |
| 11270      | 10          | 1K1N        | PWRCALF         | 13     | 0           | С           |                     | ENGINE POWER CALIBRATION FREQUENCY                     |
|            | 10          |             |                 | 16     | 0           | C           |                     | ENGINE POWER RECORD DEVICE                             |
| 11290      |             | 1K1N        | PWRRECD         |        |             |             |                     |                                                        |
| 11300      | 10          | 1K1N        | PWROBSF         | 12     | 0           | C           |                     | ENGINE POWER OBSERVATION FREQUENCY                     |
| 11310      | 10          | 1K1N        | PWRRECF         | 12     | 0           | С           |                     | ENGINE POWER RECORD FREQUENCY                          |
| 11320      | 10          | 1K1N        | PWRLOGF         | 12     | 0           | С           |                     | ENGINE POWER LOG FREQUENCY                             |

- 21 **-**

FIG. A14.1 Data Dictionary (continued)



| 7 3411 200 | -              | Test  | Field    | Eigld    | Decimal |        |               | •                                                                             |
|------------|----------------|-------|----------|----------|---------|--------|---------------|-------------------------------------------------------------------------------|
| Coguence   | Form           |       | Name     |          |         |        | Units/Format  | Description                                                                   |
| Sequence   | <u>FOI III</u> | Al Ca | Name     | Length   | 3120    | 1700   | orres, rormae | <u> </u>                                                                      |
| 11330      | 10             | 1K1N  | PWRSYSR  | 8        | 0       | С      |               | ENGINE POWER SYSTEM RESPONSE                                                  |
| 11340      | 10             | 1K1N  | FFLOSENS |          | 0       | C      |               | FUEL RATE SENSING DEVICE                                                      |
| 11350      | 10             | 1K1N  | FFLOCALF |          | 0       | C      |               | FUEL RATE CALIBRATION FREQUENCY                                               |
| 11360      | 10             | 1K1N  | FFLORECD |          | 0       | C      |               | FUEL RATE RECORD DEVICE                                                       |
| 11370      | 10             | 1K1N  | FFLOOBSF |          | 0       | С      |               | FUEL RATE OBSERVATION FREQUENCY                                               |
| 11380      | 10             | 1K1N  | FFLORECF |          | 0       | С      |               | FUEL RATE RECORD FREQUENCY                                                    |
| 11390      | 10             | 1K1N  | FFLOLOGF |          | 0       | С      |               | FUEL RATE ENGINE SPEED LOG FREQUENCY                                          |
| 11400      | 10             | 1K1N  | FFLOSYSR |          | 0       | С      |               | FUEL RATE SYSTEM RESPONSE                                                     |
| 11410      | 10             | 1K1N  | HUMSENS  | 17       | 0       | С      |               | HUMIDITY SENSING DEVICE                                                       |
| 11420      | 10             | 1K1N  | HUMCALF  | 13       | 0       | С      |               | HUMIDITY CALIBRATION FREQUENCY                                                |
| 11430      | 10             | 1K1N  | HUMRECD  | 16       | 0       | С      |               | HUMIDITY RECORD DEVICE                                                        |
| 11440      | 10             | 1K1N  | HUMOBSF  | 12       | 0       | С      |               | HUMIDITY OBSERVATION FREQUENCY                                                |
| 11450      | 10             | 1K1N  | HUMRECF  | 12       | 0       | С      |               | HUMIDITY RECORD FREQUENCY                                                     |
| 11460      | 10             | 1K1N  | HUMLOGF  | 12       | 0       | С      |               | HUMIDITY LOG FREQUENCY                                                        |
| 11470      | 10             | 1K1N  | HUMSYSR  | 8        | 0       | С      |               | HUMIDITY SYSTEM RESPONSE                                                      |
| 11480      | 10             | 1K1N  | COTSENS  | 17       | 0       | С      |               | COOLANT OUT TEMPERATURE SENSING DEVICE                                        |
| 11490      | 10             | 1K1N  | COTCALF  | 13       | 0       | С      |               | COOLANT OUT TEMPERATURE CALIBRATION FREQUENCY                                 |
| 11500      | 10             | 1K1N  | COTRECD  | 16       | 0       | С      |               | COOLANT OUT TEMPERATURE ENGINE SPEED RECORD DEVICE                            |
| 11510      | 10             | 1K1N  | COTOBSF  | 12       | 0       | С      |               | COOLANT OUT TEMPERATURE OBSERVATION FREQUENCY                                 |
| 11520      | 10             | 1K1N  | COTRECF  | 12       | 0       | C      |               | COOLANT OUT-TEMPERATURE RECORD FREQUENCY                                      |
| 11530      | 10             | 1K1N  | COTLOGF  | 12       | 0       | С      |               | COOLANT OUT TEMPERATURE LOG FREQUENCY                                         |
| 11540      | 10             | 1K1N  | COTSYSR  | 8        | 0       | С      |               | COOLANT OUT TEMPERATURE SYSTEM RESPONSE                                       |
| 11550      | 10             | 1K1N  | CONSENS  | 17       | 0       | C      |               | COOLANT IN TEMPERATURE SENSING DEVICE                                         |
| 11560      | 10             | 1K1N  | CONCALF  | 13       | 0       | C      |               | COOLANT IN TEMPERATURE CALIBRATION FREQUENCY                                  |
| 11570      | 10             | 1K1N  | CONRECD  | 16       | 0       | С      |               | COOLANT IN TEMPERATURE RECORD DEVICE                                          |
| 11580      | 10             | 1K1N  | CONOBSF  | 12       | 0       | С      |               | COOLANT IN TEMPERATURE OBSERVATION FREQUENCY                                  |
| 11590      | 10             | 1K1N  | CONRECF  | 12       | 0       | С      |               | COOLANT IN TEMPERATURE RECORD FREQUENCY                                       |
| 11600      | 10             | 1K1N  | CONLOGF  | 12       | 0       | С      |               | COOLANT IN TEMPERATURE LOG FREQUENCY                                          |
| 11610      | 10             | 1K1N  | CONSYSR  | 8        | 0       | С      |               | COOLANT IN TEMPERATURE SYSTEM RESPONSE                                        |
| 11620      | 10             | 1K1N  | OBRGSENS | 17       | 0       | С      |               | OIL TO BEARING TEMPERATURE SENSING DEVICE                                     |
| 11630      | 10             | 1K1N  | OBRGCALF | 13       | 0       | С      |               | OIL TO BEARING TEMPERATURE CALIBRATION FREQUENCY                              |
| 11640      | 10             | 1K1N  | OBRGRECD | 16       | 0       | С      |               | OIL TO BEARING TEMPERATURE RECORD DEVICE                                      |
| 11650      | 10             | 1K1N  | OBRGOBSF | 12       | 0       | С      |               | OIL TO BEARING TEMPERATUREOBSERVATION FREQUENCY                               |
| 11660      | 10             | 1K1N  | OBRGRECF | 12       | 0       | С      |               | OIL TO BEARING TEMPERATURE RECORD FREQUENCY                                   |
| 11670      | 10             | 1K1N  | OBRGLOGF | 12       | 0       | С      |               | OIL TO BEARING TEMPERATURE LOG FREQUENCY                                      |
| 11680      | 10             | 1K1N  | OBRGSYSR | 8        | 0       | С      |               | OIL TO BEARING TEMPERATURE SYSTEM RESPONSE                                    |
| 11690      | 10             | 1K1N  | OCOLSENS |          | 0       | C      |               | OIL COOLER IN TEMPERATURE SENSING DEVICE                                      |
| 11700      | 10             | 1K1N  | OCOLCALF |          | 0       | С      |               | OIL COOLER IN TEMPERATURE CALIBRATION FREQUENCY                               |
| 11710      | 10             | 1K1N  | OCOLRECD |          | 0       | С      |               | OIL COOLER IN TEMPERATURE RECORD DEVICE                                       |
| 11720      | 10             | 1K1N  | OCOLOBSF |          | 0       | С      |               | OIL COOLER IN TEMPERATURE OBSERVATION FREQUENCY                               |
| 11730      | 10             | 1K1N  | OCOLRECF |          | 0       | C      |               | OIL COOLER IN TEMPERATURE RECORD FREQUENCY                                    |
| 11740      | 10             | 1K1N  | OCOLLOGF | _        | 0       | C      |               | OIL COOLER IN TEMPERATURE LOG FREQUENCY                                       |
| 11750      | 10             | 1K1N  | OCOLSYSR |          | 0       | C      |               | OIL COOLER IN TEMPERATURE SYSTEM RESPONSE                                     |
| 11760      | 10             | 1K1N  | AIRTSENS |          | 0       | С      |               | INLET AIR TEMPERATURE SENSING DEVICE                                          |
| 11770      | 10             | 1K1N  | AIRTCALF |          | 0       | С      |               | INLET AIR TEMPERATURE CALIBRATION FREQUENCY                                   |
| 11780      | 10             | 1K1N  | AIRTRECD |          | 0       | С      |               | INLET AIR TEMPERATURE RECORD DEVICE                                           |
| 11790      | 10             | 1K1N  | AIRTOBSF |          | 0       | С      |               | INLET AIR TEMPERATURE OBSERVATION FREQUENCY                                   |
| 11800      | 10             | 1K1N  | AIRTRECF |          | 0       | С      |               | INLET AIR TEMPERATURE ENGINE SPEED RECORD FREQUENCY                           |
| 11810      | 10             | 1K1N  | AIRTLOGF | _        | 0       | С      |               | INLET AIR TEMPERATURE LOG FREQUENCY INLET AIR TEMPERATURE SYSTEM RESPONSE     |
| 11820      | 10             | 1K1N  | AIRTSYSR |          | 0       | C      |               | EXHAUST TEMPERATURE SENSING DEVICE                                            |
| 11830      | 10             | 1K1N  | EXTSENS  | 17<br>17 | 0       | C<br>C |               | EXHAUST TEMPERATURE SENSING DEVICE  EXHAUST TEMPERATURE CALIBRATION FREQUENCY |
| 11840      | 10             | 1K1N  | EXTCALF  | 13<br>16 |         |        |               | EXHAUST TEMPERATURE CALIBRATION PREGOENCY                                     |
| 11850      | 10             | 1K1N  | EXTRECD  | 16<br>12 | 0<br>0  | C      |               | EXHAUST TEMPERATURE OBSERVATION FREQUENCY                                     |
| 11860      | 10             | 1K1N  | EXTOBSF  | 12       | V       | L      |               | EVANOUS IF HELEVATORE ODSERANTION EXEMPERCY                                   |

- 22 -

FIG. A14.1 Data Dictionary (continued)



| 7- jan-200     | ) <u>C</u>  |      |             |        |         |      | Report. Asia bi     | aca procronary                                      |
|----------------|-------------|------|-------------|--------|---------|------|---------------------|-----------------------------------------------------|
| _              | _           | Test | Field<br>   |        | Decimal |      |                     | Di-+i                                               |
| Sequence       | <u>Form</u> | Area | <u>Name</u> | Length | Size    | Туре | <u>Units/Format</u> | Description                                         |
| 11970          | 10          | 1K1N | EXTRECF     | 12     | 0       | С    |                     | EXHAUST TEMPERATURE RECORD FREQUENCY                |
| 11870<br>11880 | 10          | 1K1N | EXTLOGF     | 12     | 0       | C    |                     | EXHAUST TEMPERATURE LOG FREQUENCY                   |
| 11890          | 10          | 1K1N | EXTSYSR     | 8      | 0       | c    |                     | EXHAUST TEMPERATURE SYSTEM RESPONSE                 |
| 11900          | 10          | 1K1N | FUELSENS    |        | 0       | c    |                     | FUEL TEMPERATURE SENSING DEVICE                     |
| 11910          | 10          | 1K1N | FUELCALF    |        | 0       | c    |                     | FUEL TEMPERATURE CALIBRATION FREQUENCY              |
| 11920          | 10          | 1K1N | FUELRECD    | 16     | Ō       | c    |                     | FUEL TEMPERATURE RECORD DEVICE                      |
| 11930          | 10          | 1K1N | FUELOBSF    |        | 0       | C    |                     | FUEL TEMPERATURE OBSERVATION FREQUENCY              |
| 11940          | 10          | 1K1N | FUELRECF    |        | 0       | c    |                     | FUEL TEMPERATURE RECORD FREQUENCY                   |
| 11950          | 10          | 1K1N | FUELLOGF    |        | 0       | C    |                     | FUEL TEMPERATURE LOG FREQUENCY                      |
| 11960          | 10          | 1K1N | FUELSYSR    | _      | 0       | c    |                     | FUEL TEMPERATURE SYSTEM RESPONSE                    |
| 11970          | 10          | 1K1N | OBRPSENS    |        | 0       | C    |                     | OIL TO BEARING PRESSURE SENSING DEVICE              |
| 11980          | 10          | 1K1N | OBRPCALF    |        | 0       | C    |                     | OIL TO BEARING PRESSURE CALIBRATION FREQUENCY       |
| 11990          | 10          | 1K1N | OBRPRECD    | 16     | 0       | С    |                     | OIL TO BEARING PRESSURE RECORD DEVICE               |
| 12000          | 10          | 1K1N | OBRPOBSE    |        | 0       | С    |                     | OIL TO BEARING PRESSURE OBSERVATION FREQUENCY       |
| 12010          | 10          | 1K1N | OBRPRECF    |        | 0       | С    |                     | OIL TO BEARING PRESSURE RECORD FREQUENCY            |
| 12020          | 10          | 1K1N | OBRPLOGE    |        | 0       | С    |                     | OIL TO BEARING PRESSURE LOG FREQUENCY               |
| 12030          | 10          | 1K1N | OBRPSYSR    | _      | 0       | С    |                     | OIL TO BEARING PRESSURE SYSTEM RESPONSE             |
| 12040          | 10          | 1K1N | OJETSENS    |        | 0       | С    |                     | OIL TO JET PRESSURE SENSING DEVICE                  |
| 12050          | 10          | 1K1N | OJETCALF    |        | 0       | С    |                     | OIL TO JET PRESSURE CALIBRATION FREQUENCY           |
| 12060          | 10          | 1K1N | OJETRECD    | 16     | 0       | С    |                     | OIL TO JET PRESSURE RECORD DEVICE                   |
| 12070          | 10          | 1K1N | OJETOBSF    | 12     | 0       | Ċ    |                     | OIL TO JET PRESSURE OBSERVATION FREQUENCY           |
| 12080          | 10          | 1K1N | OJETRECF    | 12     | 0       | С    |                     | OIL TO JET PRESSURE RECORD FREQUENCY                |
| 12090          | 10          | 1K1N | OJETLOGF    | 12     | 0       | С    |                     | OIL TO JET PRESSURE ENGINE SPEED LOG FREQUENCY      |
| 12100          | 10          | 1K1N | OJETSYSR    | 8      | 0       | С    |                     | OIL TO JET PRESSURE SYSTEM RESPONSE                 |
| 12110          | 10          | 1K1N | AIRPSENS    | 17     | 0       | C    |                     | INLET AIR PRESSURE SENSING DEVICE                   |
| 12120          | 10          | 1K1N | AIRPCALF    | 13     | 0       | C    |                     | INLET AIR PRESSURE CALIBRATION FREQUENCY            |
| 12130          | 10          | 1K1N | AIRPRECD    | 16     | 0       | C    |                     | INLET AIR PRESSURE RECORD DEVICE                    |
| 12140          | 10          | 1K1N | AIRPOBSF    | 12     | 0       | С    |                     | INLET AIR PRESSURE OBSERVATION FREQUENCY            |
| 12150          | 10          | 1K1N | AIRPRECF    | 12     | 0       | С    |                     | INLET AIR PRESSURE RECORD FREQUENCY                 |
| 12160          | 10          | 1K1N | AIRPLOGF    | 12     | 0       | С    |                     | INLET AIR PRESSURE LOG FREQUENCY                    |
| 12170          | 10          | 1K1N | AIRPSYSR    | 8      | 0       | С    |                     | INLET AIR PRESSURE SYSTEM RESPONSE                  |
| 12180          | 10          | 1K1N | EXPSENS     | 17     | 0       | С    |                     | EXHAUST PRESSURE SENSING DEVICE                     |
| 12190          | 10          | 1K1N | EXPCALF     | 13     | 0       | С    |                     | EXHAUST PRESSURE CALIBRATION FREQUENCY              |
| 12200          | 10          | 1K1N | EXPRECD     | 16     | 0       | С    |                     | EXHAUST PRESSURE RECORD DEVICE                      |
| 12210          | 10          | 1K1N | EXPOBSF     | 12     | 0       | C    |                     | EXHAUST PRESSURE OBSERVATION FREQUENCY              |
| 12220          | 10          | 1K1N | EXPRECF     | 12     | 0       | C    |                     | EXHAUST PRESSURE RECORD FREQUENCY                   |
| 12230          | 10          | 1K1N | EXPLOGF     | 12     | 0       | C    |                     | EXHAUST PRESSURE LOG FREQUENCY                      |
| 12240          | 10          | 1K1N | EXPSYSR     | 8      | 0       | C    |                     | EXHAUST PRESSURE SYSTEM RESPONSE                    |
| 12250          | 10          | 1K1N | FFILSENS    | 17     | 0       | С    |                     | FUEL FILTER HOUSING PRESSURE SENSING DEVICE         |
| 12260          | 10          | 1K1N | FFILCALF    | 13     | 0       | С    |                     | FUEL FILTER HOUSING PRESSURE CALIBRATION FREQUENCY  |
| 12270          | 10          | 1K1N | FFILRECD    | 16     | 0       | С    |                     | FUEL FILTER HOUSING PRESSURE RECORD DEVICE          |
| 12280          | 10          | 1K1N | FFILOBSF    | 12     | 0       | С    |                     | FUEL FILTER HOUSING PRESSURE OBSERVATION FREQUENCY  |
| 12290          | 10          | 1K1N | FFILRECF    | 12     | 0       | C    |                     | FUEL FILTER HOUSING PRESSURE RECORD FREQUENCY       |
| 12300          | 10          | 1K1N | FFILLOGF    | 12     | 0       | С    |                     | FUEL FILTER HOUSING PRESSURE LOG FREQUENCY          |
| 12310          | 10          | 1K1N | FFILSYSR    | 8      | 0       | С    |                     | FUEL FILTER HOUSING PRESSURE SYSTEM RESPONSE        |
| 12320          | 10          | 1K1N | CCVSENS     | 17     | 0       | С    |                     | CRANKCASE VACUUM SENSING DEVICE                     |
| 12330          | 10          | 1K1N | CCVCALF     | 13     | 0       | С    |                     | CRANKCASE VACUUM ENGINE SPEED CALIBRATION FREQUENCY |
| 12340          | 10          | 1K1N | CCVRECD     | 16     | 0       | С    |                     | CRANKCASE VACUUM RECORD DEVICE                      |
| 12350          | 10          | 1K1N | CCVOBSF     | 12     | 0       | С    |                     | CRANKCASE VACUUM OBSERVATION FREQUENCY              |
| 12360          | 10          | 1K1N | CCVRECF     | 12     | 0       | С    |                     | CRANKCASE VACUUM RECORD FREQUENCY                   |
| 12370          | 10          | 1K1N | CCVLOGF     | 12     | 0       | C    |                     | CRANKCASE VACUUM LOG FREQUENCY                      |
| 12380          | 10          | 1K1N | CCVSYSR     | 8      | 0       | С    |                     | CRANKCASE VACUUM SYSTEM RESPONSE                    |
| 12390          | 10          | 1K1N | BLBYSENS    |        | 0       | C    |                     | BLOWBY SENSING DEVICE                               |
| 12400          | 10          | 1K1N | BLBYCALF    | 13     | 0       | С    |                     | BLOWBY ENGINE SPEED CALIBRATION FREQUENCY           |

- 23 -

FIG. A14.1 Data Dictionary (continued)

7-jan-2002

Report: ASTM Data Dictionary

| 1- Jan 1-200 | ۲.          |             |             |        |             |             | Report. Asim b      | ata biotionary                               |
|--------------|-------------|-------------|-------------|--------|-------------|-------------|---------------------|----------------------------------------------|
|              |             | Test        | Field       | Field  | Decimal     | Data        |                     |                                              |
| Sequence     | <u>Form</u> | <u>Area</u> | <u>Nате</u> | Length | <u>Size</u> | <u>Type</u> | <u>Units/Format</u> | <u>Description</u>                           |
|              |             |             |             |        |             |             |                     |                                              |
| 12410        | 10          | 1K1N        | BLBYRECD    | 16     | 0           | C           |                     | BLOWBY RECORD DEVICE                         |
| 12420        | 10          | 1K1N        | BLBYOBSF    | 12     | 0           | C           |                     | BLOWBY OBSERVATION FREQUENCY                 |
| 12430        | 10          | 1K1N        | BLBYRECF    | 12     | 0           | С           |                     | BLOWBY RECORD FREQUENCY                      |
| 12440        | 10          | 1K1N        | BLBYLOGF    | 12     | 0           | С           |                     | BLOWBY LOG FREQUENCY                         |
| 12450        | 10          | 1K1N        | BLBYSYSR    | 8      | 0           | С           |                     | BLOWBY SYSTEM RESPONSE                       |
| 12460        | 10          | 1K1N        | CFLWSENS    | 17     | 0           | C           |                     | COOLANT FLOW SENSING DEVICE                  |
| 12470        | 10          | 1K1N        | CFLWCALF    | 13     | 0           | С           |                     | COOLANT FLOW CALIBRATION FREQUENCY           |
| 12480        | 10          | 1K1N        | CFLWRECD    | 16     | 0           | С           |                     | COOLANT FLOW RECORD DEVICE                   |
| 12490        | 10          | 1K1N        | CFLWOBSF    | 12     | 0           | С           |                     | COOLANT FLOW OBSERVATION FREQUENCY           |
| 12500        | 10          | 1K1N        | CFLWRECF    | 12     | 0           | С           |                     | COOLANT FLOW ENGINE SPEED RECORD FREQUENCY   |
| 12510        | 10          | 1K1N        | CFLWLOGF    | 12     | 0           | С           |                     | COOLANT FLOW LOG FREQUENCY                   |
| 12520        | 10          | 1K1N        | CFLWSYSR    | 8      | 0           | С           |                     | COOLANT FLOW SYSTEM RESPONSE                 |
| 12530        | 11          | 1K1N        | INAIRIM     | 70     | 0           | С           |                     | INLET AIR TEMPERATURE PLOT IMAGE             |
| 12540        | 11          | 1K1N        | OBEARIM     | 70     | 0           | С           |                     | OIL TO BEARING TEMPERATURE PLOT IMAGE        |
| 12550        | 11          | 1K1N        | COLINIM     | 70     | 0           | С           |                     | COOLANT IN TEMPERATURE PLOT IMAGE            |
| 12560        | 11          | 1K1N        | COLOUTIM    | 70     | 0           | С           |                     | COOLANT OUT TEMPERATURE PLOT IMAGE           |
| 12570        | 11          | 1K1N        | EXHTMPIM    | 70     | 0           | C           |                     | EXHAUST TEMPERATURE PLOT IMAGE               |
| 12580        | 11          | 1K1N        | FRATEIM     | 70     | 0           | С           |                     | FUEL RATE PLOT IMAGE                         |
| 12590        | 11          | 1K1N        | RPMIM       | 70     | 0           | С           |                     | ENGINE SPEED PLOT IMAGE                      |
| 12600        | 11          | 1K1N        | POWERIM     | 70     | 0           | С           |                     | POWER PLOT IMAGE                             |
| 12610        | 12          | 1K1N        | OBEARPIM    | 70     | 0           | Ċ           |                     | OIL TO BEARING PRESSURE PLOT IMAGE           |
| 12620        | 12          | 1K1N        | OJETPIM     | 70     | 0           | С           |                     | OIL TO JET PRESSURE PLOT IMAGE               |
| 12630        | 12          | 1K1N        | INAIRPIM    | 70     | 0           | С           |                     | INLET AIR PRESSURE PLOT IMAGE                |
| 12640        | 12          | 1K1N        | EXHPIM      | 70     | 0           | С           |                     | EXHAUST PRESSURE PLOT IMAGE                  |
| 12650        | 12          | 1K1N        | HUMIDIM     | 70     | 0           | С           |                     | HUMIDITY PLOT IMAGE                          |
| 12660        | 12          | 1K1N        | COLFLOIM    | 70     | 0           | С           |                     | COOLANT FLOW PLOT IMAGE                      |
| 12670        | 12          | 1K1N        | CCVACIM     | 70     | 0           | С           |                     | CRANKCASE VACUUM PLOT IMAGE                  |
| 12680        | 12          | 1K1N        | BLOBYIM     | 70     | 0           | С           |                     | BLOWBY PLOT IMAGE                            |
| 12690        | 13          | 1K1N        | OCPIM       | 70     | 0           | С           |                     | OIL CONSUMPTION PLOT IMAGE                   |
| 12700        | 14          | 1K1N        | PRLIM       | 70     | 0           | С           |                     | PISTON RING AND LINER PHOTOGRAPHS PLOT IMAGE |
| 12710        | 15          | 1K1N        | DTSTRxxx    |        | 0           |             | YYYYMMDD            | USAGE START DATES                            |
| 12720        | 15          | 1K1N        | DTTMRxxx    |        | 0           | С           | HHR:MM              | USAGE DATES TIME                             |
| 12730        | 15          | 1K1N        | WDZIRxxx    |        | 3           | N           |                     | WEIGHTED TOTAL DEMERITS ZI                   |
| 12740        | 15          | 1K1N        | WDSARxxx    |        | 1           | N           |                     | WEIGHTED TOTAL DEMERITS SEVERITY ADJUSTMENT  |
| 12750        | 15          | 1K1N        | TGZIRxxx    |        | 3           | N           |                     | TGF % ZI                                     |
| 12760        | 15          | 1K1N        | TGSARxxx    |        | 0           | N           |                     | TGF % S.A.                                   |
| 12770        | 15          | 1K1N        | TLZIRxxx    |        | 3           | N           |                     | TRANSFORMED TLHC % ZI                        |
| 12780        | 15          | 1K1N        | TLSARxxx    |        | 3           | N           |                     | TRANSFORMED TLHC % S.A.                      |
| 12790        | 16          | 1K1N        | CCHIM       | 70     | 0           | C           |                     | TMC CONTROL CHART ANALYSIS PLOT IMAGE        |
| 12800        | 17          | 1K1N        | FUELIM      | 70     | 0           | C           |                     | FUEL BATCH ANALYSIS PLOT IMAGE               |
| 12000        | • • •       | 114 114     |             |        | •           | -           |                     |                                              |

- 24 -

FIG. A14.1 Data Dictionary (continued)

# Data Dictionary Repeating Field Specifications # The following contains specifications and field groupings for fields in the # Data Dictionary that are REPEATING Fields. These fields can be identified # in the Data Dictionary by the Hxxx or Rxxx in the last four positions of the # field name. f Repeating fields are used to specify repeating measurements. # The format for a repeating field name is 4 descriptive characters followed # by the letter H or R followed by 3 characters for the actual interval # the measurement was taken. The field will always be a total of 8 characters. # Example ABCDHxxx. # The following is the format of this specification: Column 1 - 8: Repeating Field Name Column 10 - 17: The Parent Field Name of the Group Column 19 - 80: Comments about the Repeating Field Group. # The lines following the Repeating Field Name Record will contain the required # measurements for the particular field. Multiple 80 characters lines # can be specified. A blank line marks the end of each specification. # The Field Name in Column 10-17 designates the the Group in which the field # belongs. The First field name in a group is the Parent of the grouping # and can be used to determine how fields should be grouped. # The changing of the Parent Field marks the end of a repeating group specification. Example: VIS Hxxx, DVISHxxx and PVISHxxx expanded for transmission (8 and 16 hours): VIS HOO8 DVISH008 PVISH008 VIS H016 DVISH016 PVISH016 Note: During electronic transmission, repeating field groups must be kept together with in the specified group but the order with in the group does not have to be maintained.

NEW 024 204 252

TBN Hxxx V100Hxxx TBN D4739 AT XXX HOURS

NEW 024 204 252

FIG. A14.2 Repeating Field Specifications



FEWMHXXX V100HXXX FE - WEAR METALS AT XXX HOURS [<] (ppm) NEW 024 204 252 ALWMHxxx V100Hxxx AL - WEAR METALS AT XXX HOURS [<] (ppm) NEW 024 204 252 SIWMHxxx V100Hxxx SI - WEAR METALS AT XXX HOURS [<] (ppm) NEW 024 204 252 CUWMHXXX V100HXXX CU - WEAR METALS AT XXX HOURS [<] (ppm) NEW 024 204 252 CRWMHxxx V100Hxxx CR - WEAR METALS AT XXX HOURS [<] (ppm) NEW 024 204 252 PBWMHxxx V100Hxxx PB - WEAR METALS AT XXX HOURS [<] (ppm) NEW 024 204 252 FDILHxxx V100Hxxx FUEL DILUTION ENGINE HOURS AT XXX HOURS (%) 024 204 252 BLBYHXXX V100HXXX 024 204 252 BLOWBY ENGINE HOURS AT XXX HOURS (L/min) BSOC ENGINE HOURS AT XXX HOURS (g/kW-h) BSOCHXXX V100HXXX 024 048 072 108 132 156 180 204 228 252 DOWNTIME TEST HOURS (HH:MM) DOWNHXXX DOWNHXXX DDATHXXX DOWNHXXX DOWNTIME DATE (YYYYMMDD) DTIMHXXX DOWNHXXX DOWNTIME TIME (HH:MM) DOWNTIME REASON DREAHXXX DOWNHXXX OTHER DOWNTIME COMMENTS XXX OCOMHXXX OCOMHXXX DTSTRXXX DTSTRXXX USAGE START DATES (YYYYMMDD) DTTMRxxx DTSTRxxx USAGE DATES TIME (HHH:MM) WDZIRXXX DTSTRXXX WEIGHTED TOTAL DEMERITS ZI WDSARxxx DTSTRxxx WEIGHTED TOTAL DEMERITS SEVERITY ADJUSTMENT TGZIRXXX DTSTRXXX TGF % ZI TGF & S.A. TGSARxxx DTSTRxxx

FIG. A14.2 Repeating Field Specifications (continued)

#### TLZIRXXX DTSTRXXX TRANSFORMED TLHC % ZI

### TLSARXXX DTSTRXXX TRANSFORMED TLHC % S.A.

FIG. A14.2 Repeating Field Specifications (continued)

#### A15. TEST ENGINE/PARTS/ACCESSORIES

A15.1 Table A15.1 provides the test engine, parts, and accessories list.

## A15.2 Engine Parts Warranty:

A15.2.1 All parts of the 1Y540 engine and the 1Y540 conversion kit that are nonconforming due to faulty manufacture shall be noted by the laboratory and brought to the attention of Engine System Technology Department (ESTD).

A15.2.2 ESTD shall determine whether the part is to be returned or warranty is to be provided without viewing the part.

A15.2.3 If ESTD determines that the part is nonconforming without viewing the part, the test laboratory shall be asked by ESTD to return the part to its Caterpillar dealer. ESTD shall

contact the dealer and inform the dealer that the part is coming and to provide warranty for it.

A15.2.4 If ESTD wants to view the part, then ESTD shall issue a return goods authorization number (RGA) to the test laboratory. The laboratory shall fill out the return goods authorization claim form (RGA) (see Fig. A15.1) and shall send the completed claim form in a package with the part and separately by FAX as follows:

A15.2.4.1 Send claim form in a package with the part to Caterpillar, Inc., Tech Center TC-L, Wing 4-Rm 406, 14009 Old Galena Rd., Mossville, IL 61552.

A15.2.4.2 FAX a separate copy of the claim form to Caterpillar, Inc., Tech Services Div., Tech Center Bldg. L.

TABLE A15.1 Test Engine/Parts/Accessories List

| elbow Barco flowmeter coolant in 1-gal container Coolant in 55-Gal drum solenoid seal engine oil filter commercial tester commercial tester nozzle tester service kit screw fibre washer line assembly |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| coolant in 1-gal container Coolant in 55-Gal drum solenoid seal engine oil filter commercial tester commercial tester nozzle tester service kit screw fibre washer                                     |
| Coolant in 55-Gal drum solenoid seal engine oil filter commercial tester commercial tester nozzle tester service kit screw fibre washer                                                                |
| solenoid seal engine oil filter commercial tester commercial tester nozzle tester service kit screw fibre washer                                                                                       |
| seal engine oil filter commercial tester commercial tester nozzle tester service kit screw fibre washer                                                                                                |
| engine oil filter commercial tester commercial tester nozzle tester service kit screw fibre washer                                                                                                     |
| commercial tester commercial tester nozzle tester service kit screw fibre washer                                                                                                                       |
| commercial tester commercial tester nozzle tester service kit screw fibre washer                                                                                                                       |
| nozzle tester<br>service kit<br>screw<br>fibre washer                                                                                                                                                  |
| service kit<br>screw<br>fibre washer                                                                                                                                                                   |
| screw<br>fibre washer                                                                                                                                                                                  |
| fibre washer                                                                                                                                                                                           |
| fibre washer                                                                                                                                                                                           |
|                                                                                                                                                                                                        |
|                                                                                                                                                                                                        |
| piston                                                                                                                                                                                                 |
| Cat diesel engine and service manual                                                                                                                                                                   |
| thermocouple (fluids)                                                                                                                                                                                  |
| thermocouple (engine exhaust)                                                                                                                                                                          |
| thermocouple (air to engine)                                                                                                                                                                           |
| valve (to crankcase breather)                                                                                                                                                                          |
| orifice                                                                                                                                                                                                |
| piston ring                                                                                                                                                                                            |
| piston ring                                                                                                                                                                                            |
| piston ring                                                                                                                                                                                            |
| Cat diesel engine and service manual                                                                                                                                                                   |
| conversion arrangement for 1Y73                                                                                                                                                                        |
| cylinder block                                                                                                                                                                                         |
| elbow                                                                                                                                                                                                  |
| adapter                                                                                                                                                                                                |
| oil/filter group (factory)                                                                                                                                                                             |
| line assembly                                                                                                                                                                                          |
| rocker shaft oil line                                                                                                                                                                                  |
| cylinder liner                                                                                                                                                                                         |
| oil/filter group (new-replacement)                                                                                                                                                                     |
| governor housing cover                                                                                                                                                                                 |
|                                                                                                                                                                                                        |
|                                                                                                                                                                                                        |
| crankcase breather assembly                                                                                                                                                                            |
| crankcase breather assembly<br>screen (last chance)                                                                                                                                                    |
| crankcase breather assembly                                                                                                                                                                            |
|                                                                                                                                                                                                        |

## CATERPILLAR SCOTE 1K/IN TEST

4:3 2/98

#### RETURN GOODS AUTHORIZATION FORM

| RETURN GOO | DDS AUTHORIZATION NUMBER                                                                                                        |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| CLAIM DATE |                                                                                                                                 |  |
| CONTACT:   | CATERPILLAR, INC. ENGINE SYS TECH DEV P.O. BOX 610 MOSSVILLE, IL 61552 PHONE: 309-578-2131 FAX: 309-578-6457 ATTN: R.A. RIVIERE |  |
| PART NUMB  | ER/QUANTITY                                                                                                                     |  |
| PART NAME  | HOURS ON PART                                                                                                                   |  |
| DATE PART  | PURCHASED                                                                                                                       |  |
| PURCHASE C | ORDER NUMBER                                                                                                                    |  |
| TEST LAB   |                                                                                                                                 |  |
|            | NAME                                                                                                                            |  |
|            | ADDRESS                                                                                                                         |  |
|            | CONTACT PERSON'S NAME                                                                                                           |  |
|            | PHONE NUMBER                                                                                                                    |  |
|            | FAX NUMBER                                                                                                                      |  |
| NAME OF CA | AT DEALER/MORTON PARTS THAT SOLD PART                                                                                           |  |
|            |                                                                                                                                 |  |

INCLUDE DOCUMENTATION AND PHOTOS OF NON-CONFORMING PART

FIG. A15.1 Example of Return Goods Claim Form

A15.2.5 If ESTD determines that the part is nonconforming, ESTD shall contact the dealer on behalf of the test laboratory and have the dealer provide warranty.

A15.2.6 The return goods authorization (RGA) claim form shall include a return goods authorization number; part name; hours on the part; part number; quantity; purchase order

number; date purchased; test laboratory that purchase; the part and contact person's name, telephone number, FAX number and address; dealer's name that sold the part; measurements or photos, or both, to document the noncomformance.

A15.2.6.1 Fig. A15.1 is a sample of a blank RGA claim form.

## A16. THE ROLE OF THE ASTM TEST MONITORING CENTER AND THE CALIBRATION PROGRAM

A16.1 Nature and Functions of the ASTM Test Monitoring Center (TMC)—The ASTM TMC is a non-profit organization located in Pittsburgh, PA and is staffed to administer engineering studies; conduct oil laboratory visits; perform statistical analyses of reference oil test data; blend, store and ship reference oils; and provide the associated administrative functions to maintain the referencing calibration program for various lubricant tests as directed by the Subcommittee D02.B and the Test Monitoring Board. The TMC coordinates its activities with the test sponsors, the test developers, the surveillance panels and the testing laboratories.

A16.2 Rules of Operation of the ASTM TMC—The TMC operates in accordance with the ASTM charter, the ASTM by-laws, the Regulations Governing ASTM Technical Committees, the by-laws governing ASTM Committee D02 and the rules and regulations governing the test monitoring system.

A16.3 Management of the ASTM TMC—The management of the ASTM Test Monitoring System is vested in the Test Monitoring Board (TMB) elected by Subcommittee D02.B. The TBM selects the TMC administrator who is responsible for directing the activities of the TMC staff.

A16.4 Operating Income of the ASTM TMC—The TMC operating income is obtained from the fees levied on the reference oils supplied and on the calibration tests conducted. Fee schedules are established and reviewed by Subcommittee D02.B.

#### A16.5 Conducting a Reference Oil Test:

A16.5.1 For those laboratories that choose to utilize the services of the ASTM TMC in maintaining calibration of test stands, full-scale calibration testing shall be conducted at regular intervals. These full-scale tests are conducted using coded reference oils supplied by the ASTM TMC. It is a laboratory's responsibility to maintain the calibration in accordance with the test procedure. It is also a laboratory's responsibility to keep the on-site reference of inventory at or above the minimum level specified by the TMC test engineers.

A16.5.2 When laboratory personnel decide to run a reference calibration test, they shall request an oil code from the cognizant TMC engineer. Upon completion of the reference oil test, the data shall be sent in summary form (use TMC-acceptable forms) to the TMC by telephone facsimile transmission, or by some other method acceptable to the TMC. The TMC will review the data and contact the laboratory engineer to report the laboratory's calibration status. All reference oil tests, whether aborted, invalidated, or successfully completed, shall be reported to the TMC. Subsequent to sending the data in summary form to the TMC, the laboratory is required to submit to the TMC the written test report specified in the test procedure.

A16.6 New Laboratories—Laboratories wishing to become a part of the ASTM Test Monitoring System will be requested to conduct reference oil tests to ensure that the laboratory is using the proper testing techniques. Information concerning fees, laboratory inspection, reagents, testing practices, appropriate committee membership, and rater training can be obtained by contacting the TMC Administrator at the ASTM Test Monitoring Center.

A16.7 Introducing New 1K/IN Test Procedures Reference Oils—The calibrating reference oils produce wear, piston and ring groove deposit forming tendency, and oil consumption characteristics. When new reference oils are selected, member laboratories will be requested to conduct their share of tests to enable the TMC to establish the proper industry average and test acceptance limits. The ASTM D02.B0.02 1K/IN Test Procedures Surveillance Panel determines the number of tests to be conducted prior to establishing the industry average and test acceptance targets for new reference oils.

## A16.8 TMC Information Letters:

A16.8.1 Occasionally, it becomes necessary to change the procedure and notify the test laboratories of the change prior to

consideration of the change by either ASTM Subcommittee D02.B on Automotive Lubricants or ASTM Committee D02 on Petroleum Products and Lubricants. When this occurs, the TMC will issue an Information Letter. Subsequently, prior to each semi-annual Committee D02 meeting, the accumulated Information Letters are balloted by ASTM Subcommittee D02.B. The ballot is reviewed at the ASTM Subcommittee D02.B meeting and the actions taken are considered at a meeting of ASTM Committee D02. By this means, the Society due process procedures are applied to these Information Letters.

A16.8.2 The review of an Information Letter prior to its original issue will differ according to its nature. TMC is authorized to issue an Information Letter concerning a part number change that does not affect test results. Long-term studies by the 1K/1N Test Procedures Surveillance Panel to improve the test procedures through improved operation and hardware control may result in a recommendation to issue an Information Letter. If obvious procedural items affecting test results need immediate attention, the test sponsor and the TMC will issue an Information Letter and present the background data to the 1K/1N surveillance panel for approval prior to the semi-annual ASTM Subcommittee D02.B meeting.

A16.8.3 Authority for issuance of Information Letters was given by the ASTM Committee on Technical Committee Operations (COTCO) in 1984 as follows:

"COTCO recognizes that D02 has a unique and complex situation. The use of Information Letters is approved provided each letter contains a disclaimer to the effect that such has not obtained ASTM consensus. These Information Letters should be moved to such consensus as rapidly as possible."

A16.8.4 Information Letters pertaining to this procedure issued prior to March 21, 2002 are incorporated in this test method. A listing of such Information Letters and copies of the letters may be obtained from TMC. Information Letters issued subsequent to this date may also be obtained from the TMC.

A16.9 *TMC Memoranda*—Memoranda, supplementary to Information Letters, are also issued. These are developed by the TMC and distributed to the 1K/1N Test Procedures Surveillance Panel as well as to participating laboratories. They convey such information as batch approvals for test parts or materials, clarification of the test procedures, notes and suggestions for the collection and analysis of special data that the TMC may request, or for any other pertinent matters having no direct effect on the test performance, results, or, precision and bias.

A16.10 *Precision Data*—The TMC determines the current 1K/1N test procedures precision by analyzing results of calibration tests conducted on reference oils. Current precision data can be obtained from the TMC.

#### A17. SAFETY

#### A17.1 General Considerations:

- A17.1.1 Performing engine tests on engine oils exposes personnel and facilities to many hazards. This includes all aspects associated with the test itself, preparations for the test, conclusion of the test, housekeeping, and, indeed, anything and everything else that could come to mind as possible hazards.
- A17.1.2 Only personnel who are thoroughly trained and experienced in engine testing shall undertake the design, installation, and operation of engine test stands.
- A17.1.3 The engine test installation shall be inspected and approved by a competent authority external to the laboratory, such as, a safety department or safety officer.

#### A17.2 Personnel in the Work Area:

- A17.2.1 Personnel working on the engines shall be provided with the proper tools, be alert to common safety practices, and avoid contact with hot surfaces and external moving parts.
- A17.2.2 When working on the engines, personnel shall wear safety masks or safety glasses.
- A17.2.3 In the vicinity of running engines, personnel shall not wear loose or flowing clothing (notably ties), nor transport bulky material that could topple on the running engines.
- A17.2.4 Preferably personnel working on engines should not have long hair or long beards. If these hairy appendages are permitted, then they shall be firmly secured to the person possessing them so that they will not get caught in moving parts.

#### A17.3 Guards and Barriers:

- A17.3.1 Barriers shall be provided appropriately around the engine to protect personnel. In addition, heavy duty guards shall be placed alongside the engine and coupling shaft.
  - A17.4 Fuel and Oil Lines, and Electrical Wiring:
- A17.4.1 All fuel and oil lines, and electrical wiring shall be properly routed, guarded, kept clean and dry and, generally, in good order.

## A17.5 Housekeeping:

- A17.5.1 The external parts of the engines and the floor area around the engines shall be kept clean and free from spills of fuel, oil, coolant and so forth.
- A17.5.2 The working area shall be free from obstacles that could cause injury or falls.
- A17.5.3 The testing area shall not be used for storage. Containers of fuel, oil, coolant, and so forth, shall not be allowed to accumulate there.
- A17.6 Toxic Fume and Fire Hazards—Exhaust gases shall be vented by way of appropriate leakfree ductwork. Fuel containers shall not be left open. Fuel leaks shall be corrected, and fuel and oil spills shall be immediately treated with absorbent and removed.
- A17.7 First Aid—Good safety measures avoid both major injuries and minor ones such as scraped knuckles and minor burns. All injuries require first aid treatment and subsequent recording and reporting of the incident.
  - A17.8 Automatic Shutdown, Remote Cut-off and Interlocks:
- A17.8.1 The test installation shall be equipped with a fuel shut-off valve which shall automatically cut off the fuel supply when the engine is not running.
- A17.8.2 There shall be a remote station for cutting off fuel from the test stand.
- A17.8.3 There shall be an excessive vibration pickup interlock if the engine runs unattended.
- A17.8.4 Provide suitable interlocks that shut down the engine automatically when any of the following occurs:
  - A17.8.4.1 The engine dynamometer loses field current,
  - A17.8.4.2 The engine overspeeds,
  - A17.8.4.3 Low oil pressure develops,
  - A17.8.4.4 High water temperature develops,
  - A17.8.4.5 The exhaust system fails,
  - A17.8.4.6 The room ventilation system fails, or
  - A17.8.4.7 The fire protection system is activated.

### A17.9 Fire Protection Equipment:

- A17.9.1 Provide fixed fire protection equipment.
- A17.9.2 Place dry chemical fire extinguishers at a number of locations at the test stands.

## **APPENDIXES**

## (Nonmandatory Information)

## X1. HUMIDITY DATA

X1.1 Humidify Correction Factors for Non-Standard Barometric Conditions—See Tables X1.1-X1.8.

or humidity = 
$$7000 \left( \frac{18.0152}{28.96247} \right) \frac{P_{\nu}}{(P_B - P_{\nu})}$$
 (X1.2)

X1.2 Correcting Humidity by Applying the Perfect Gas Law Equation—With Examples:

or humidity = 
$$4354.13 \frac{P_{\nu}}{(P_B - P_{\nu})}$$
 (X1.3)

X1.3 Saturation Vapor Pressure Over Water—See Table

corrected humidity =  $7000 \left( \frac{M_{\nu}}{M_a} \right) P_{\nu} \left( P_B - P_{\nu} \right)$  (X1.1)

where:

7000 = number of grains/lb.

 $M_{\rm v}$  = molecular weight of water vapor,  $M_{\rm a}$  = molecular weight of dry air,

 $P_{\rm v}$  = partial pressure of water vapor at dew point, and

 $P_{\rm B}$  = barometric pressure.

TABLE X1.1 Grains/lb; Range: 30.0 to 30.9 in. Hg

X1.9.

|    |    |      |      |      |      | ,    |      | 5    |      |      |      |
|----|----|------|------|------|------|------|------|------|------|------|------|
|    |    | 30.9 | 30.8 | 30.7 | 30.6 | 30.5 | 30.4 | 30.3 | 30.2 | 30.1 | 30.0 |
|    | 65 | -3.1 | -2.8 | -2.5 | -2.2 | -1.9 | -1.6 | -1.2 | -0.9 | -0.6 | -0.3 |
| D  | 66 | -3.2 | -2.9 | -2.6 | -2.2 | -1.9 | -1.6 | -1.3 | -1.0 | -0.6 | -0.3 |
| Е  | 67 | -3.3 | -3.0 | -2.6 | -2.3 | -2.0 | -1.7 | -1.3 | -1.0 | -0.7 | -0.3 |
| W  | 68 | -3.4 | -3.1 | -2.7 | -2.4 | -2.0 | -1.7 | -1.4 | -1.0 | -0.7 | -0.3 |
|    | 69 | -3.5 | -3.2 | -2.8 | -2.5 | -2.1 | -1.8 | -1.4 | -1.1 | -0.7 | -0.4 |
| Р  | 70 | -3.7 | -3.3 | -3.0 | -2.6 | -2.2 | -1.9 | -1.5 | -1.1 | -0.7 | -0.4 |
| 0  | 71 | -3.8 | -3.4 | -3.0 | -2.7 | -2.3 | -1.9 | -1.5 | -1.1 | -0.8 | -0.4 |
| 1  | 72 | -3.9 | -3.5 | -3.1 | -2.7 | -2.3 | -2.0 | -1.6 | -1.2 | -0.8 | -0.4 |
| N  | 73 | -4.1 | -3.7 | -3.3 | -2.9 | -2.5 | -2.1 | -1.6 | -1.2 | -0.8 | -0.4 |
| T  | 74 | -4.2 | -3.8 | -3.4 | -2.9 | -2.5 | -2.1 | -1.7 | -1.3 | -0.8 | -0.4 |
|    | 75 | -4.4 | -4.0 | -3.5 | -3.1 | -2.6 | -2.2 | -1.8 | -1.3 | -0.9 | -0.4 |
| Т  | 76 | -4.5 | -4.1 | -3.6 | -3.2 | -2.7 | -2.3 | -1.8 | -1.4 | -0.9 | -0.5 |
| Е  | 77 | -4.7 | -4.2 | -3.8 | -3.3 | -2.8 | -2.4 | -1.9 | -1.4 | -0.9 | -0.5 |
| M  | 78 | -4.9 | -4.4 | -3.9 | -3.4 | -2.9 | -2.5 | -2.0 | -1.5 | -1.0 | -0.5 |
| Р  | 79 | -5.0 | -4.5 | -4.0 | -3.5 | -3.0 | -2.5 | -2.0 | -1.5 | -1.0 | -0.5 |
| °F | 80 | -5.2 | -4.7 | -4.2 | -3.6 | -3.1 | -2.6 | -2.1 | -1.6 | -1.0 | -0.5 |

TABLE X1.2 Grains/lb; Range: 29.0 to 29.9 in. Hg

|    |    | 29.9 | 29.8 | 29.7 | 29.6 | 29.5 | 29.4 | 29.3 | 29.2 | 29.1 | 29.0 |
|----|----|------|------|------|------|------|------|------|------|------|------|
|    | 65 | 0.0  | 0.3  | 0.7  | 1.0  | 1.3  | 1.7  | 2.0  | 2.3  | 2.6  | 3.0  |
| D  | 66 | 0.0  | 0.3  | 0.7  | 1.0  | 1.4  | 1.7  | 2.0  | 2.4  | 2.7  | 3.1  |
| E  | 67 | 0.0  | 0.4  | 0.7  | 1.1  | 1.4  | 1.8  | 2.1  | 2.5  | 2.8  | 3.2  |
| W  | 68 | 0.0  | 0.4  | 0.7  | 1.1  | 1.5  | 1.9  | 2.2  | 2.6  | 3.0  | 3.3  |
|    | 69 | 0.0  | 0.4  | 8.0  | 1.1  | 1.5  | 1.9  | 2.3  | 2.7  | 3.0  | 3.4  |
| Р  | 70 | 0.0  | 0.4  | 8.0  | 1.2  | 1.6  | 2.0  | 2.3  | 2.7  | 3.1  | 3.5  |
| 0  | 71 | 0.0  | 0.4  | 8.0  | 1.2  | 1.6  | 2.1  | 2.5  | 2.9  | 3.3  | 3.7  |
| 1  | 72 | 0.0  | 0.4  | 8.0  | 1.3  | 1.7  | 2.1  | 2.5  | 2.9  | 3.4  | 3.8  |
| N  | 73 | 0.0  | 0.4  | 0.9  | 1.3  | 1.8  | 2.2  | 2.6  | 3.1  | 3.5  | 4.0  |
| Т  | 74 | 0.0  | 0.5  | 0.9  | 1.4  | 1.8  | 2.3  | 2.8  | 3.2  | 3.7  | 4.1  |
|    | 75 | 0.0  | 0.5  | 0.9  | 1.4  | 1.9  | 2.4  | 2.8  | 3.3  | 3.8  | 4.2  |
| Т  | 76 | 0.0  | 0.5  | 1.0  | 1.5  | 2.0  | 2.5  | 2.9  | 3.4  | 3.9  | 4.4  |
| Е  | 77 | 0.0  | 0.5  | 1.0  | 1.5  | 2.0  | 2.6  | 3.1  | 3.6  | 4.1  | 4.6  |
| M  | 78 | 0.0  | 0.5  | 1.0  | 1.6  | 2.1  | 2.6  | 3.1  | 3.6  | 4.2  | 4.7  |
| Р  | 79 | 0.0  | 0.5  | 1.1  | 1.6  | 2.2  | 2.7  | 3.2  | 3.8  | 4.3  | 4.9  |
| °F | 80 | 0.0  | 0.6  | 1.1  | 1.7  | 2.2  | 2.8  | 3.4  | 3.9  | 4.5  | 5.0  |

# TABLE X1.3 Grains/lb; Range: 28.0 to 28.9 in. Hg

|    |    | 28.9 | 28.8 | 28.7 | 28.6 | 28.5 | 28.4 | 28.3 | 28.2 | 28.1 | 28.0 |
|----|----|------|------|------|------|------|------|------|------|------|------|
|    | 65 | 3.3  | 3.7  | 4.0  | 4.4  | 4.7  | 5.1  | 5.4  | 5.8  | 6.1  | 6.5  |
| D  | 66 | 3.4  | 3.8  | 4.1  | 4.5  | 4.9  | 5.3  | 5.6  | 6.0  | 6.4  | 6.7  |
| E  | 67 | 3.5  | 3.9  | 4.3  | 4.6  | 5.0  | 5.4  | 5.8  | 6.2  | 6.5  | 6.9  |
| W  | 68 | 3.7  | 4.1  | 4.5  | 4.9  | 5.3  | 5.7  | 6.0  | 6.4  | 6.8  | 7.2  |
|    | 69 | 3.8  | 4.2  | 4.6  | 5.0  | 5.4  | 5.9  | 6.3  | 6.7  | 7.1  | 7.5  |
| Р  | 70 | 3.9  | 4.3  | 4.7  | 5.2  | 5.6  | 6.0  | 6.4  | 6.8  | 7.3  | 7.7  |
| 0  | 71 | 4.1  | 4.5  | 5.0  | 5.4  | 5.8  | 6.3  | 6.7  | 7.1  | 7.5  | 8.0  |
| I  | 72 | 4.2  | 4.7  | 5.1  | 5.6  | 6.0  | 6.5  | 6.9  | 7.4  | 7.8  | 8.3  |
| N  | 73 | 4.4  | 4.9  | 5.3  | 5.8  | 6.2  | 6.7  | 7.2  | 7.6  | 8.1  | 8.5  |
| Т  | 74 | 4.6  | 5.1  | 5.6  | 6.0  | 6.5  | 7.0  | 7.5  | 8.0  | 8.4  | 8.9  |
|    | 75 | 4.7  | 5.2  | 5.7  | 6.2  | 6.7  | 7.2  | 7.7  | 8.2  | 8.7  | 9.2  |
| Т  | 76 | 4.9  | 5.4  | 5.9  | 6.4  | 6.9  | 7.5  | 8.0  | 8.5  | 9.0  | 9.5  |
| E  | 77 | 5.1  | 5.6  | 6.2  | 6.7  | 7.2  | 7.8  | 8.3  | 8.8  | 9.3  | 9.9  |
| M  | 78 | 5.2  | 5.8  | 6.3  | 6.9  | 7.4  | 8.0  | 8.6  | 9.1  | 9.7  | 10.2 |
| Р  | 79 | 5.4  | 6.0  | 6.6  | 7.1  | 7.7  | 8.3  | 8.9  | 9.5  | 10.0 | 10.6 |
| °F | 80 | 5.6  | 6.2  | 6.8  | 7.4  | 8.0  | 8.6  | 9.2  | 9.8  | 10.4 | 11.0 |

# TABLE X1.4 Grains/lb; Range: 27.0 to 27.9 in. Hg

|    |    | 27.9 | 27.8 | 27.7 | 27.6 | 27.5 | 27.4 | 27.3 | 27.2 | 27.1 | 27.0 |
|----|----|------|------|------|------|------|------|------|------|------|------|
|    | 65 | 6.8  | 7.2  | 7.5  | 7.9  | 8.2  | 8.6  | 8.9  | 9.3  | 9.6  | 10.0 |
| D  | 66 | 7.1  | 7.5  | 7.9  | 8.3  | 8.7  | 9.1  | 9.4  | 9.8  | 10.2 | 10.6 |
| E  | 67 | 7.3  | 7.7  | 8.1  | 8.5  | 8.9  | 9.4  | 9.8  | 10.2 | 10.6 | 11.0 |
| W  | 68 | 7.6  | 8.0  | 8.4  | 8.9  | 9.3  | 9.7  | 10.1 | 10.5 | 11.0 | 11.4 |
|    | 69 | 7.9  | 8.3  | 8.8  | 9.2  | 9.6  | 10.1 | 10.5 | 10.9 | 11.3 | 11.8 |
| Р  | 70 | 8.1  | 8.6  | 9.0  | 9.5  | 9.9  | 10.4 | 10.9 | 11.3 | 11.8 | 12.2 |
| 0  | 71 | 8.1  | 8.9  | 9.3  | 9.8  | 10.3 | 10.8 | 11.2 | 11.7 | 12.2 | 12.6 |
| I  | 72 | 8.7  | 9.2  | 9.7  | 10.2 | 10.7 | 11.2 | 11.6 | 12.1 | 12.6 | 13.1 |
| N  | 73 | 9.0  | 9.5  | 10.0 | 10.5 | 11.0 | 11.6 | 12.1 | 12.6 | 13.1 | 13.6 |
| Т  | 74 | 9.4  | 9.9  | 10.4 | 11.0 | 11.5 | 12.0 | 12.5 | 13.0 | 13.6 | 14.1 |
|    | 75 | 9.7  | 10.2 | 10.8 | 11.3 | 11.9 | 12.4 | 12.9 | 13.5 | 14.0 | 14.6 |
| Т  | 76 | 10.0 | 10.6 | 11.1 | 11.7 | 12.3 | 12.9 | 13.4 | 14.0 | 14.6 | 15.1 |
| E  | 77 | 10.4 | 11.0 | 11.6 | 12.2 | 12.8 | 13.4 | 13.9 | 14.5 | 15.1 | 15.7 |
| M  | 78 | 10.8 | 11.4 | 12.0 | 12.6 | 13.2 | 13.9 | 14.5 | 15.1 | 15.7 | 16.3 |
| Р  | 79 | 11.2 | 11.8 | 12.5 | 13.1 | 13.7 | 14.4 | 15.0 | 15.6 | 16.2 | 16.9 |
| °F | 80 | 11.6 | 12.3 | 12.9 | 13.6 | 14.2 | 14.9 | 15.5 | 16.2 | 16.8 | 17.5 |

TABLE X1.5 Grams/kg; Range: 101.6 to 104.6 kPa

|    |      |       |       |       | _     | _     |       |       |       |       |       |
|----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |      | 104.6 | 104.3 | 104.0 | 103.6 | 103.3 | 102.9 | 102.6 | 102.1 | 101.9 | 101.6 |
|    | 18.3 | -0.44 | -0.40 | -0.36 | -0.32 | -0.27 | -0.23 | -0.17 | -0.13 | -0.09 | -0.04 |
| D  | 18.9 | -0.46 | -0.41 | -0.37 | -0.32 | -0.27 | -0.23 | -0.19 | -0.14 | -0.09 | -0.04 |
| E  | 19.4 | -0.47 | -0.43 | -0.37 | -0.33 | -0.29 | -0.24 | -0.19 | -0.14 | -0.10 | -0.04 |
| W  | 20.0 | -0.49 | -0.44 | -0.39 | -0.34 | -0.29 | -0.24 | -0.20 | -0.14 | -0.10 | -0.04 |
|    | 20.6 | -0.50 | -0.46 | -0.40 | -0.36 | -0.30 | -0.26 | -0.20 | -0.16 | -0.10 | -0.06 |
| Р  | 21.1 | -0.53 | -0.47 | -0.43 | -0.37 | -0.32 | -0.27 | -0.21 | -0.16 | -0.10 | -0.06 |
| 0  | 21.7 | -0.54 | -0.49 | -0.43 | -0.39 | -0.33 | -0.27 | -0.21 | -0.16 | -0.11 | -0.06 |
| I  | 22.2 | -0.56 | -0.50 | -0.44 | -0.39 | -0.33 | -0.29 | -0.23 | -0.17 | -0.11 | -0.06 |
| N  | 22.8 | -0.59 | -0.53 | -0.47 | -0.41 | -0.36 | -0.30 | -0.23 | -0.17 | -0.11 | -0.06 |
| T  | 23.3 | -0.60 | -0.54 | -0.49 | -0.41 | -0.36 | -0.30 | -0.24 | -0.19 | -0.11 | -0.06 |
|    | 23.9 | -0.63 | -0.57 | -0.50 | -0.44 | -0.37 | -0.31 | -0.26 | -0.19 | -0.13 | -0.06 |
| T  | 24.4 | -0.64 | -0.59 | -0.51 | -0.46 | -0.39 | -0.33 | -0.26 | -0.20 | -0.13 | -0.07 |
| E  | 25.0 | -0.67 | -0.60 | -0.54 | -0.47 | -0.40 | -0.34 | -0.27 | -0.20 | -0.13 | -0.07 |
| M  | 25.6 | -0.70 | -0.63 | -0.56 | -0.49 | -0.41 | -0.36 | -0.29 | -0.21 | -0.14 | -0.07 |
| P  | 26.1 | -0.72 | -0.64 | -0.57 | -0.50 | -0.43 | -0.36 | -0.29 | -0.21 | -0.14 | -0.07 |
| °C | 26.7 | -0.74 | -0.67 | -0.60 | -0.51 | -0.44 | -0.37 | -0.30 | -0.23 | -0.14 | -0.07 |
|    |      |       |       |       |       |       |       |       |       |       |       |

# TABLE X1.6 Grams/kg; Range: 98.2 to 101.2 kPa

|    |      | 101.2 | 100.9 | 100.6 | 100.2 | 99.9 | 99.5 | 99.2 | 98.9 | 98.5 | 98.2 |
|----|------|-------|-------|-------|-------|------|------|------|------|------|------|
|    | 18.3 | 0     | 0.04  | 0.10  | 0.14  | 0.19 | 0.24 | 0.29 | 0.33 | 0.37 | 0.43 |
| D  | 18.9 | 0     | 0.04  | 0.10  | 0.14  | 0.20 | 0.24 | 0.29 | 0.34 | 0.39 | 0.44 |
| E  | 19.4 | 0     | 0.06  | 0.10  | 0.16  | 0.20 | 0.26 | 0.30 | 0.36 | 0.40 | 0.46 |
| W  | 20.0 | 0     | 0.06  | 0.10  | 0.16  | 0.21 | 0.27 | 0.32 | 0.37 | 0.43 | 0.47 |
|    | 20.6 | 0     | 0.06  | 0.11  | 0.16  | 0.21 | 0.27 | 0.33 | 0.39 | 0.43 | 0.49 |
| Р  | 21.1 | 0     | 0.06  | 0.11  | 0.17  | 0.23 | 0.29 | 0.33 | 0.39 | 0.44 | 0.50 |
| 0  | 21.7 | 0     | 0.06  | 0.11  | 0.17  | 0.23 | 0.30 | 0.36 | 0.41 | 0.47 | 0.53 |
| 1  | 22.2 | 0     | 0.06  | 0.11  | 0.19  | 0.24 | 0.30 | 0.36 | 0.41 | 0.49 | 0.54 |
| N  | 22.8 | 0     | 0.06  | 0.13  | 0.19  | 0.26 | 0.32 | 0.37 | 0.44 | 0.50 | 0.57 |
| T  | 23.3 | 0     | 0.07  | 0.13  | 0.20  | 0.26 | 0.33 | 0.40 | 0.46 | 0.53 | 0.59 |
|    | 23.9 | 0     | 0.07  | 0.13  | 0.20  | 0.27 | 0.34 | 0.40 | 0.47 | 0.54 | 0.60 |
| T  | 24.4 | 0     | 0.07  | 0.14  | 0.21  | 0.29 | 0.36 | 0.41 | 0.49 | 0.56 | 0.63 |
| E  | 25.0 | 0     | 0.07  | 0.14  | 0.21  | 0.29 | 0.37 | 0.44 | 0.51 | 0.59 | 0.66 |
| M  | 25.6 | 0     | 0.07  | 0.14  | 0.23  | 0.30 | 0.37 | 0.44 | 0.51 | 0.60 | 0.67 |
| Р  | 26.1 | 0     | 0.07  | 0.16  | 0.23  | 0.32 | 0.39 | 0.46 | 0.54 | 0.61 | 0.70 |
| °C | 26.7 | 0     | 0.09  | 0.16  | 0.24  | 0.32 | 0.40 | 0.49 | 0.56 | 0.64 | 0.72 |

TABLE X1.7 Grams/kg; Range: 94.8 to 97.9 kPa

|    |      | 97.9 | 97.5 | 97.2 | 96.8 | 96.5 | 96.2 | 95.8 | 95.5 | 95.2 | 94.8 |
|----|------|------|------|------|------|------|------|------|------|------|------|
|    | 18.3 | 0.47 | 0.53 | 0.57 | 0.63 | 0.67 | 0.73 | 0.77 | 0.83 | 0.87 | 0.93 |
| D  | 18.9 | 0.49 | 0.54 | 0.59 | 0.65 | 0.70 | 0.76 | 0.80 | 0.86 | 0.92 | 0.96 |
| E  | 19.4 | 0.50 | 0.56 | 0.61 | 0.66 | 0.72 | 0.77 | 0.83 | 0.89 | 0.93 | 0.99 |
| W  | 20.0 | 0.53 | 0.59 | 0.64 | 0.70 | 0.76 | 0.82 | 0.86 | 0.92 | 0.97 | 1.03 |
|    | 20.6 | 0.54 | 0.60 | 0.66 | 0.72 | 0.77 | 0.84 | 0.90 | 0.96 | 1.02 | 1.07 |
| Р  | 21.1 | 0.56 | 0.61 | 0.67 | 0.74 | 0.80 | 0.86 | 0.92 | 0.97 | 1.04 | 1.10 |
| 0  | 21.7 | 0.59 | 0.64 | 0.72 | 0.77 | 0.83 | 0.90 | 0.96 | 1.02 | 1.07 | 1.14 |
| 1  | 22.2 | 0.60 | 0.67 | 0.73 | 0.80 | 0.86 | 0.93 | 0.99 | 1.06 | 1.12 | 1.19 |
| N  | 22.8 | 0.63 | 0.70 | 0.76 | 0.83 | 0.89 | 0.96 | 1.03 | 1.09 | 1.16 | 1.22 |
| T  | 23.3 | 0.66 | 0.73 | 0.80 | 0.86 | 0.93 | 1.00 | 1.07 | 1.14 | 1.20 | 1.27 |
|    | 23.9 | 0.67 | 0.74 | 0.82 | 0.89 | 0.96 | 1.03 | 1.10 | 1.17 | 1.24 | 1.32 |
| T  | 24.4 | 0.70 | 0.77 | 0.84 | 0.92 | 0.99 | 1.07 | 1.14 | 1.22 | 1.29 | 1.36 |
| E  | 25.0 | 0.73 | 0.80 | 0.89 | 0.96 | 1.03 | 1.12 | 1.19 | 1.26 | 1.33 | 1.42 |
| M  | 25.6 | 0.74 | 0.83 | 0.90 | 0.99 | 1.06 | 1.14 | 1.23 | 1.30 | 1.39 | 1.46 |
| Р  | 26.1 | 0.77 | 0.86 | 0.94 | 1.02 | 1.10 | 1.19 | 1.27 | 1.36 | 1.43 | 1.52 |
| °C | 26.7 | 0.80 | 0.89 | 0.97 | 1.06 | 1.14 | 1.23 | 1.32 | 1.40 | 1.49 | 1.57 |

TABLE X1.8 Grams/kg; Range: 91.4 to 94.5 kPa

|    |      | 94.5 | 94.1 | 93.8 | 93.5 | 93.1 | 92.8 | 92.4 | 92.1 | 91.7 | 91.4 |
|----|------|------|------|------|------|------|------|------|------|------|------|
|    | 18.3 | 0.97 | 1.03 | 1.07 | 1.13 | 1.17 | 1.23 | 1.27 | 1.33 | 1.37 | 1.43 |
| D  | 18.9 | 1.02 | 1.07 | 1.13 | 1.19 | 1.24 | 1.30 | 1.34 | 1.40 | 1.46 | 1.52 |
| E  | 19.4 | 1.04 | 1.10 | 1.16 | 1.22 | 1.27 | 1.34 | 1.40 | 1.46 | 1.52 | 1.57 |
| W  | 20.0 | 1.09 | 1.14 | 1.20 | 1.27 | 1.33 | 1.39 | 1.44 | 1.50 | 1.57 | 1.63 |
|    | 20.6 | 1.13 | 1.19 | 1.26 | 1.32 | 1.37 | 1.44 | 1.50 | 1.56 | 1.62 | 1.69 |
| Р  | 21.1 | 1.14 | 1.23 | 1.29 | 1.36 | 1.42 | 1.49 | 1.56 | 1.62 | 1.69 | 1.74 |
| 0  | 21.7 | 1.16 | 1.27 | 1.33 | 1.40 | 1.47 | 1.54 | 1.60 | 1.67 | 1.74 | 1.80 |
| I  | 22.2 | 1.24 | 1.32 | 1.39 | 1.46 | 1.53 | 1.60 | 1.66 | 1.73 | 1.80 | 1.87 |
| N  | 22.8 | 1.29 | 1.36 | 1.43 | 1.50 | 1.57 | 1.66 | 1.73 | 1.80 | 1.87 | 1.94 |
| Τ  | 23.3 | 1.34 | 1.42 | 1.49 | 1.57 | 1.64 | 1.72 | 1.79 | 1.86 | 1.94 | 2.02 |
|    | 23.9 | 1.39 | 1.46 | 1.54 | 1.62 | 1.70 | 1.77 | 1.84 | 1.93 | 2.00 | 2.09 |
| Т  | 24.4 | 1.43 | 1.52 | 1.59 | 1.67 | 1.76 | 1.84 | 1.92 | 2.00 | 2.09 | 2.16 |
| E  | 25.0 | 1.49 | 1.57 | 1.66 | 1.74 | 1.83 | 1.92 | 1.99 | 2.07 | 2.16 | 2.25 |
| M  | 25.6 | 1.54 | 1.63 | 1.72 | 1.80 | 1.89 | 1.99 | 2.07 | 2.16 | 2.25 | 2.33 |
| Р  | 26.1 | 1.60 | 1.69 | 1.79 | 1.87 | 1.96 | 2.06 | 2.15 | 2.23 | 2.32 | 2.42 |
| °C | 26.7 | 1.66 | 1.76 | 1.84 | 1.94 | 2.03 | 2.13 | 2.22 | 2.32 | 2.40 | 2.50 |

TABLE X1.9 Saturation Vapor Pressure Over Water (Smithsonian Tables) $^{\!\!\!\!/}$ 

|                 |                 | •               |                 |
|-----------------|-----------------|-----------------|-----------------|
| Dew Point       | Vapor Pressure, | Dew Point       | Vapor Pressure, |
| Temperature,° F | in. Hg          | Temperature, °F | in. Hg          |
| 60              | 0.52160         | 75              | 0.87506         |
| 61              | 0.54047         | 76              | 0.90472         |
| 62              | 0.55994         | 77              | 0.93524         |
| 63              | 0.58002         | 78              | 0.96666         |
| 64              | 0.60073         | 79              | 0.99900         |
|                 |                 |                 |                 |
| 65              | 0.62209         | 80              | 1.03230         |
| 66              | 0.64411         | 81              | 1.06650         |
| 67              | 0.66681         | 82              | 1.10170         |
| 68              | 0.69021         | 83              | 1.13800         |
| 69              | 0.71432         | 84              | 1.17520         |
|                 |                 |                 |                 |
| 70              | 0.73916         | 85              | 1.21360         |
| 71              | 0.76467         | 86              | 1.25300         |
| 72              | 0.79113         | 87              | 1.29350         |
| 73              | 0.81829         | 88              | 1.33510         |
| 74              | 0.84626         | 89              | 1.37790         |

<sup>&</sup>lt;sup>A</sup> Reprinted from "Selecting Humidity Sensors for Industrial Processes Handbook", General Eastern Instrument Corp., March 1982.

## X2. STATISTICAL EQUATIONS FOR MEAN AND STANDARD DEVIATION

X2.1 See Eq X2.1 and X2.2 where:

$$\bar{x} = \text{mean} = \frac{1}{n} \sum_{i=1}^{n} [Y_i \text{ (standard)} - Z_i \text{ (reading)}],$$
 (X2.1)

$$n=$$
 total number of data pairs  $(Y_i, Z_i)$ , and  $df=$  degrees of freedom  $= n-1$ .

$$s = \text{standard deviation} = \sqrt{\frac{\sum_{i=1}^{n} \left[ (Y_i - Z_i) - \overline{x} \right]^2}{df}}$$
 (X2.2)



## X3. EXAMPLES OF FORMS FOR REPORTING

X3.1 Examples of Reporting Test Results—See Figs. X3.1-X3.4.

Specification D 4485, report the results of multiple tests on the form shown as Fig. X3.5.

X3.2 When testing candidate oil against the limits of

# CATERPILLAR 1K/1N TEST REPORT

Form 4A (Example)
Rating Worksheet

METHOD: 1K
TEST NO: 72-112 OIL CODE: CMIR 19869 SR-0177 RATER : GC EOT DATE: 19971130

|          | oves     |        |                |                |         |                    |             |              |        |       |             |         |                                                  |             |          |              |
|----------|----------|--------|----------------|----------------|---------|--------------------|-------------|--------------|--------|-------|-------------|---------|--------------------------------------------------|-------------|----------|--------------|
| :[       | NO. 1    |        |                | NO. 2          |         |                    |             | NO. 3        |        |       | U           | NDERCRO |                                                  |             | UPPERSK  | IRT          |
|          | A%       | FCT    | DEM            | Α%             | FCT     | DE                 | M           | A%           | FCT    | DEM   | A%          | FCT     | DEM                                              | A%          | FCT      | DEM          |
| I        | 19       | 1.0    | 10.00          | 57             | 1.0     | 57                 | .00         |              | 1.0    |       |             | 1.0     |                                                  |             | 1.0      |              |
|          | 40       | .50    | 20.00          |                |         |                    |             |              | .50    |       |             |         |                                                  |             |          |              |
| · [      | 41       | .25    | 10.25          | 42             | .25     | . 1                |             |              | .25    |       |             | .25     |                                                  |             | .25      |              |
| ľ        | 100      | Sub T  | 49.25          | 99             | Sub T   | 67                 | .50         |              | Sub T  |       |             | Sub T   |                                                  |             | Sub T    |              |
| ,        |          | 1040.0 |                | 1              | 10-1.0  | +~                 | 090         | 10           | 10-9.6 | 0.040 | 20          | 10-8.5  | 0.300                                            | 15          | 10-9.0   | 0.15         |
| <u> </u> |          | 1040.0 | <del> </del>   | <del>- '</del> | 10-10.0 |                    | 390         | 20           | 10-9.9 | 0.020 | 15          | 10-8.5  | 0.350                                            |             | 10.9.5   | 0.15         |
| ŀ        |          | 1040.0 |                |                | 10-10.0 |                    |             | 70           | 1040.0 | 0.020 | 65          | 1040.0  | 0.150                                            | 40          | 10.9.5   | 0.225        |
| ŀ        |          | 1040.0 |                |                | 10-10.0 |                    |             | -/0-         | 1040.0 |       | 00          | 1040.0  |                                                  |             | 1040.0   | <u> </u>     |
| ŀ        |          | 1040.0 |                | <del> </del>   |         |                    |             |              |        |       |             | 1040.0  | <del> </del> -                                   |             |          | <u> </u>     |
| ŀ        |          | 1040.0 | <del> </del>   | <del> </del>   | 10-10.0 |                    |             |              | 1040.0 |       | <del></del> | 1040.0  | <del> </del>                                     |             | 1040.0   | <del> </del> |
| ł        |          | 1040.0 | <del> </del>   | <del> </del>   |         |                    |             | ļ            |        |       |             |         |                                                  |             | 1040.0   |              |
| ŀ        |          | 1040.0 |                | <del> </del>   | 10-10.0 |                    |             |              | 1040.0 |       |             | 1040.0  | ├                                                | _           | 1040.0   |              |
| ŀ        |          | 1040.0 | <del> </del>   | <del></del>    | 10-10.0 |                    |             |              | 1040.0 |       |             | 1040.0  | ┼                                                |             | 1040.0   |              |
| ŀ        |          | 1040.0 |                | <b> </b>       | 10-10.0 |                    |             | <b> </b>     | 1040.0 |       |             | 1040.0  | -                                                |             | 1040.0   |              |
| ŀ        |          | 1040.0 |                |                | 10-10.0 |                    |             | <del> </del> | 1040.0 |       |             | 1040.0  | <del> </del>                                     |             |          |              |
| ł        |          |        | -              |                |         |                    |             | <b> </b>     |        |       |             |         | <del> </del>                                     | +           | 1040.0   |              |
| ŀ        |          | 1040.0 | 1000           | -              | 10-10.0 |                    | 200         | <u> </u>     | 1040.0 | 0.000 | 100         | 1040.0  | - 45                                             | +           | 1040.0   | 0.00         |
| ł        |          | Sub T  | 0.00           | 1              | Sub T   |                    | 090         |              | Sub T  | 0.060 | 100         | Sub T   | 0.45                                             | 100         | Sub T    | 0.38         |
| Ţ        |          | TOTAL  | 49.25          | <u> </u>       | TOTAL   | 16/                | .59         | L            | TOTAL  | 0.060 | 500.00      | TOTAL   | 0.45                                             |             | TOTAL    | 0.38         |
| -        | NDS 1    |        |                | L NO. 3        |         |                    |             | NO.          |        |       | PINS        | FRONT   |                                                  |             | - DE 4 D |              |
| :        | NO. 1    | FCT    | DEM            | NO. 2          |         | 100                | ***         |              |        | 0514  | A 0/        |         | DEM                                              |             | REAR     |              |
| ŀ        | A%       | FCT    | DEM            | A%             | FCT     |                    | M           | A%           | FCT    | DEM   | A%          | FCT     | DEM                                              | A%          | FCT      | DEM          |
| ł        | 18       | 1.0    | 18.00          | 8              | 1.0     | 8.                 | 00          | ļ            | 1.0    |       |             | 1.0     | <del> </del>                                     |             | 1.0      | <del> </del> |
| ŀ        | CF       | 95     | 10.05          |                | 25      | <del>-   _</del> - | 75          | ļ            | 25     |       |             | 25      |                                                  |             | 05       | 1            |
| L        | 65<br>83 | .25    | 16.25<br>34.25 | 87<br>95       | .25     |                    | .75<br>).75 |              | .25    |       | <u> </u>    | .25     | <del> </del>                                     | <del></del> | .25      | <del> </del> |
|          | 83       | Sub T  | 34.25          | 95             | Sub T   | 28                 | 1.75        |              | Sub T  |       |             | Sub T   | <del>                                     </del> |             | Sub T    | <del> </del> |
| 1        | 17       | 10-9.5 | 0.086          | 3              | 10-7.0  | 0.                 | 090         | 5            | 10-8.5 | 0.075 | 10          | 10-8.0  | 0.20                                             | 0 5         | 10-7.0   | 0.150        |
| ſ        |          | 1040.0 |                | 2              | 10-5.5  | 0.0                | 090         | 15           | 10-9.0 | 0.150 | 90          | 1040.0  | T                                                | 5           | 10.8.0   | 0.100        |
| ſ        |          | 1040.0 |                |                | 10-10.0 | 5                  |             | 20           | 10-9.5 | 0.100 |             | 1040.0  | T                                                | 90          | 1040.0   |              |
| I        |          | 1040.0 |                |                | 10-10.  | 5                  |             | 25           | 10-9.9 | 0.025 |             | 1040.0  |                                                  |             | 1040.0   |              |
| Ī        |          | 1040.0 |                |                | 10-10.  | 0                  |             | 35           | 1040.0 |       |             | 1040.0  |                                                  |             | 1040.0   | <u> </u>     |
| Ì        |          | 1040.0 | 1              |                | 10-10.  |                    |             |              | 1040.0 |       |             | 1040.0  | 1                                                |             | 1040.0   |              |
| ı        |          | 1040.0 |                |                | 10-10.  | 0                  |             |              | 1040.0 |       |             | 1040.0  |                                                  |             | 1040.0   |              |
| I        |          | 1040.0 | T              |                | 10-10.  |                    |             | <u> </u>     | 1040.0 |       |             | 1040.0  | 1                                                |             | 1040.0   | T            |
| 1        |          | 1040.0 | T              | Ī              | 10-10.  | 0                  |             |              | 1040.0 |       |             | 1040.0  | 1                                                |             | 1040.0   | T            |
| Ì        |          | 1040.0 |                | 1              | 10-10.  | 0                  |             | T            | 1040.0 | ]     |             | 1040.0  | 1                                                |             | 1040.0   | 1            |
| Ì        |          | 1040.0 | T              |                | 10-10.  | 0                  |             |              | 1040.0 | 1     |             | 1040.0  |                                                  |             | 1040.0   |              |
| Ì        |          | 1040.0 |                |                | 10-10.  | 0                  |             |              | 1040.0 |       |             | 1040.0  | T                                                |             | 1040.0   |              |
|          | 17       | Sub T  | 0.09           | 5              | Sub T   | 0.                 | 180         | 100          | Sub T  | 0.350 | 100         | Sub T   | 0.20                                             | 100         | Sub T    | 0.25         |
|          |          | TOTAL  | 34.34          |                | TOTAL   | 29                 | 9.93        |              | TOTAL  | 0.350 |             | TOTAL   | 0.20                                             |             | TOTAL    | 0.25         |
|          |          |        |                | GROC           | VES     |                    |             |              | LANDS  |       |             | UP      | PER                                              | UNDER       | PIN      | BORE         |
| _        |          |        |                | 1              |         | 2                  | 3           |              | 1      | 2     | 3           | SK      | IRT                                              | CROWN       | FRONT    | REAR         |
| ₹A       | TING     |        |                | 49.2           | 5 6     | 7.59               | 0.0         | 6            | 34.34  | 29.93 | 0.3         | 35 0.3  | 8                                                | 0.45        | 0.20     | 0.25         |
| VI       | DK LOC   | FCT    |                | 1.5            | ,       | 1.5                | 25          | 5            | 1      | 1     | 2           | 5 50    |                                                  | 20          | 0        | 0            |
| _        | T RATIN  |        |                | 73.8           | 8 10    | 1.39               | 1.1         | 5            | 34.34  | 29.93 | 8.7         | 75 19   | .00                                              | 9.00        | 0.0      | 0            |
| -        | F        | 41     |                | INIT           | GROOVE  | T11 1              | 62          |              | WDKWDN |       | 277.8       |         | D 1 441D                                         | HVY CAP     |          | 18           |

FIG. X3.1 Example of Piston Rating Worksheet (Form 4A)



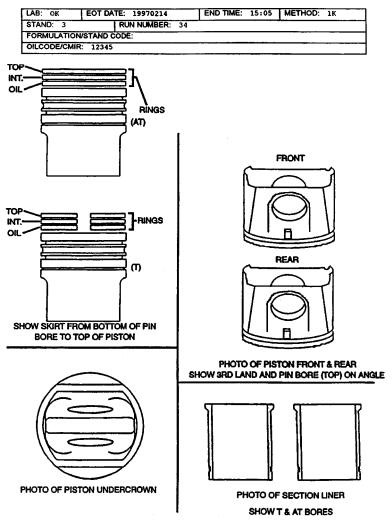



FIG. X3.2 Piston, Ring and Liner Photographs (Example of Form 14)

## 1K/1N Form 16 (Example) TMC CONTROL CHART ANALYSIS

| LAB: OK       | EOT DATE: 19970214 | END TIME: | 15:05 | METHOD: | 1K |
|---------------|--------------------|-----------|-------|---------|----|
| STAND: 3      | RUN NUMBER: 34     |           |       |         |    |
| FORMULATION/S | STAND CODE:        |           |       |         | •  |
| OILCODE/CMIR: | 12345              |           |       |         |    |

Fax To: JOE ENGINEER Company: OK OIL TEST LAB Fax Number: 800-555-1212

# \*\*\* ASTM TMC \*\*\* \*\* CATERPILLAR 1K \*\*\* \*\* Control Chart Analysis \*\*

Start = 19970202 EOT date = 19970214 EOT time = 15:05 LTMS date = 19970214 LTMS time = 15:05 Lab = OK Stand = 3 Run = 34 Reported = 19970218

Analysis compiled: 30FEB97 13:37:09

Targets s Measured Units **Transformed** Parameter Units Mean 216.4000 17.5000 0.6050 0.2680 0.2750 35.6000 15.7000 1.1000 0.1450 WDK 175.6 19 TLHC BSOC 0.0000 n 0.180 0.170 EOTOC

EWALA

FWMA

Note: When two Limits given, the upper is the Warning Limit and the lower is the Action Limit.

CHEWHADT

SHEWHART

CMIR = 12345 011 = 809-1

Key: A - Action alarm W - Warning alarm

| Stand | d Ana | lys | IS |
|-------|-------|-----|----|
|       |       |     |    |

|       |   |        | Severi | ty     |        | Preci  | sion  |       | Severi   | ty    |      | recision  |       |
|-------|---|--------|--------|--------|--------|--------|-------|-------|----------|-------|------|-----------|-------|
|       | N | Z(I)   | Limit  | `Alarm | Q(I)   | Limit  | Alarm | Y(I)  | Limit    | Alarm | R(I) | Limit     | Alarm |
|       |   |        |        |        |        |        |       |       |          |       |      |           |       |
| WDK   | 9 | -0.444 | ±0.882 |        | -0.611 | +0.756 |       | -1.14 | 6 ±1.750 |       | -0.9 | 40 +1.800 |       |
| TGF   | ğ | -0.125 | ±0.882 |        | -0.107 | +0.756 |       | 0.09  | 6 ±1.750 |       | -0.2 | 28 +1.800 |       |
| TLHC  | 9 | -0.348 | ±0.882 |        | -1.015 | +0.756 |       | -0.55 | 0 ±1.750 |       | -2.3 | 29 +1.800 |       |
| BSOC  | ğ |        | ±0.882 |        | -0.981 | +0.756 |       | -0.60 | 7 ±1.750 |       | -1.4 | 37 +1.800 |       |
| EOTOC | 9 |        | ±0.882 |        | -1.134 | +0.756 |       |       | 4 ±1.750 |       |      | 96 +1.800 |       |

## Laboratory Analysis

|       |     |        |         | ENMA  |        |                  |       |       |          | SHEWHAKI |      |           |       |
|-------|-----|--------|---------|-------|--------|------------------|-------|-------|----------|----------|------|-----------|-------|
|       |     |        | everity |       | - (-)  | Precisio         |       |       | Severity | .7       |      | cision    | • 3   |
|       | N   | Z(I)   | Limit   | Alarm | Q(I)   | Limit            | Alarm | Y(I)  | Limit    | Alarm    | R(I) | Limit     | Alarm |
|       |     |        |         |       |        | +0.600           |       |       |          |          |      |           |       |
| WDK   | 124 | -1.007 | ±0.653  | SA    | -0.673 | +0.860           |       | -1.14 | 6 ±1.750 |          | -1.4 | 89 +1.800 |       |
| TGF   | 124 | -0.320 | ±0.653  |       | -0.331 | +0.860           |       | 0.09  | 6 ±1.750 |          | 0.3  | 02 +1.800 |       |
| TLHC  | 124 | -0.503 | ±0.653  |       | -1.043 | +0.600<br>+0.860 |       | -0.55 | 0 ±1.750 |          | -0.9 | 74 +1.800 |       |
| BSOC  | 124 | -0.708 | ±0.653  | SA    |        | +0.600           |       | -0.60 | 7 ±1.750 |          | -1 4 | 88 +1.800 |       |
| 8300  |     |        |         | 34    |        | +0.600           |       |       |          |          |      |           |       |
| EOTOC | 124 | -0.380 | ±0.653  |       | -1.331 | +0.860           |       | -0.34 | 4 ±1.750 |          | -1.6 | 35 +1.800 |       |

\*\* SEVERITY ADJUSTMENTS \*\*

F SA = TLHC SA = WDN SA = 35.8 TGF SA -

\* TMC Validity Code:\_

AC = Acceptable Calibration. OC = Oper. Valid, Failed Acceptance Criteria.

Calibration Expires:
\_\_\_\_ Stand Pulled From LTMS
\* Based on review of call-in report of operational data and control chart analysis shown above.

|             | 1                 |              | EWI          | 4A           |              | SHEW      | ART      |
|-------------|-------------------|--------------|--------------|--------------|--------------|-----------|----------|
|             | -                 | Lambd        | la           | l I          | k            | ,         | (        |
| Chart Level | Limit Type        | Precision    | Severity     | Precision    | Severity     | Precision | Severity |
| Stand       | Action            | 0.3          | 0.3          | 1.8          | 2.1          | 1.8       | 1.75     |
| Lab         | Warning<br>Action | 0.2<br>0.2   | 0.2          | 1.8<br>2.58  | 1.96         | 1.8       | 1.75     |
| Industry    | Warning<br>Action | 0.15<br>0.15 | 0.15<br>0.15 | 1.74<br>2.58 | 2.05<br>2.81 |           |          |

FIG. X3.3 TMC Control Chart Analysis (Example of Form 16)



## 1K/1N Form 17 (Example) FUEL BATCH ANALYSIS

| LAB: OK      | EOT DATE: 19970301 |    | END TIME: | 17:15 | METHOD: | 1K |
|--------------|--------------------|----|-----------|-------|---------|----|
| STAND: 3     | RUN NUMBER:        | 35 |           |       |         |    |
| FORMULATION  | STAND CODE:        |    |           |       |         |    |
| OILCODE/CMIR | : 12346            |    |           |       |         |    |

 Product:
 LSRD-4
 Batch:
 9701234

 Date:
 19970121
 Tank:
 84

# **SPECIFICATIONS**

| TEST                            | METHOD |                 | MIN       |        | MAX       | RESULT |
|---------------------------------|--------|-----------------|-----------|--------|-----------|--------|
| Distillation, °F (°C)           | D-86   | IBP             | 350 (177) |        | 390 (199) | 196    |
|                                 |        | 5%              |           |        |           | 214    |
|                                 |        | 10%             | 410 (210) |        | 450 (232) | 219    |
|                                 |        | 30%             |           |        |           | 239    |
| 1                               |        | 50%             | 480 (249) |        | 530 (277) | 262    |
|                                 |        | 70%             |           |        | _         | 287    |
|                                 |        | 90%             | 570 (299) |        | 620 (327) | 316    |
|                                 |        | 95%             |           |        |           | 327    |
|                                 |        | EP              | 620(327)  |        | 680 (360) | 339    |
|                                 |        | Recovery, vol % |           | Report |           | 98.4   |
|                                 |        | Residue, vol %  |           | Report |           | 1.6    |
|                                 |        | Loss, vol %     |           | Report |           | 0.0    |
| Gravity, *APIA                  | D-287  |                 | 32.0      |        | 36.0      | 34.5   |
| Cetane Number B                 | D-613  |                 | 42.0      |        | 48.0      | 46.8   |
| Cetane Index                    | D-976  |                 |           | Report |           | 45.3   |
| Cetane Index                    | D-4737 |                 | 42.0      |        | 48.0      | 45.3   |
| Flash Point, °F (°C)            | D-93   |                 | 130 (54)  |        |           | 81     |
| Cloud Point, °F (°C)            | D-2500 |                 |           |        | 10 (-12)  | 17     |
| Pour Point, *F (*C)             | D-97   |                 |           |        | 0 (-18)   | -21    |
| Sulfur, wt. %                   | D-2622 |                 | 0.030     |        | 0.050     | 0.041  |
| Acid Number, mg KOH/g           | D-664  |                 |           | Report |           | <0.05  |
| Viscosity, cSt @ 40°C           | D-445  |                 | 2         |        | 3.2       | 2.7    |
| Hydrocarbon Composition, vol %  |        |                 |           |        |           |        |
| Aromatics                       | D-5186 | 1               | 28.0      |        | 35.0      | 29.6   |
| Olefins                         | D-1319 |                 |           | Report |           | 1.4    |
| Saturates                       | D-1319 | 1               |           | Report | ··        | 69     |
| Copper Corrosion, 3h @ 212°F    | D-130  |                 |           |        | 3         | 1A     |
| Ash, wt. %                      | D-482  |                 |           |        | 0.01      | .002   |
| Ramsbottom Carbon, 10% residuum | D-524  |                 |           |        | 0.35      | 0.08   |
| Basic Sediment & Water, vol %   | D-2709 |                 |           |        | 0.05      | <0.01  |
| Allphatic paraffins             | D-2425 |                 |           | Report |           | 46.78  |
| Monocycloparaffins              |        |                 |           | Report |           | 10.55  |
| Dicycloparaffins                | 1      |                 |           | Report |           | 8.08   |
| Tricycloparaffins               | 1      |                 |           | Report |           | 5.37   |
| Alkylbenzenes                   |        |                 |           | Report |           | 9.16   |
| Indanes/Tetralins               | 1      |                 |           | Report |           | 5.32   |
| Indenes                         | ]      |                 |           | Report |           | 4.12   |
| Naphthalene                     | 1      | 1               |           | Report |           | 0.77   |
| Naphthalenes                    | 1      |                 |           | Report |           | 6.56   |
| Acenaphthenes                   | 1      | 1               |           | Report |           | 1.49   |
| Acenaphthylenes                 | ]      |                 |           | Report |           | 1.13   |
| Tricyclic aromatices            | 7      |                 |           | Report |           | 0.67   |

| <sup>A</sup> Alarm Spec 34.0 - 36.0 | <sup>B</sup> Alarm Spec 45.0 - 48.0 |         |  |
|-------------------------------------|-------------------------------------|---------|--|
| Approved by:                        |                                     |         |  |
|                                     | HHC Laboratory                      | Analyst |  |

| OIL CODE NO.    |            |               |                 |           |                         |                   | CHECK ONE |              |      |       |      |
|-----------------|------------|---------------|-----------------|-----------|-------------------------|-------------------|-----------|--------------|------|-------|------|
| O               | IL CODE II | ·             | <del></del>     |           |                         |                   |           | 1K           | 1N   |       |      |
| TEST DATE       |            | OIL TEST      | ENGINE NUMBER F |           |                         | FIN               | AL LAB RA | BSOC, g/kW-h |      |       |      |
|                 | COMP.      | TEST CODE NO. | LAB.            | SERIAL    | STAND                   | RUN               | WDK       | TGF          | TLHC | 0-252 | 0-24 |
| 1 <sup>ST</sup> |            |               |                 |           |                         |                   |           |              |      |       |      |
| 2               |            |               |                 |           |                         |                   |           |              |      |       |      |
| 3               |            |               |                 |           |                         |                   |           |              |      |       |      |
| 4               |            |               |                 |           |                         |                   |           |              |      |       |      |
|                 |            |               |                 |           | TEST AV                 | ERAGE             |           | .,,          |      |       |      |
| 1 <sup>ST</sup> |            | A STEWN DOOR  |                 |           |                         | lali u ann ≜      |           |              |      |       |      |
| 2               | 14 F       |               |                 |           | 1. 中<br>第144年3月 - 1888年 |                   |           |              |      |       |      |
| 3               |            | 1. 美国市政 1. 1  |                 |           |                         |                   |           |              |      |       |      |
| 4               |            |               | wa<br>Kabupatan |           |                         | P\$ 9 11 2 3 11 1 |           |              |      |       |      |
|                 |            | 2 TEST A      | VERAGE W        | ITH OUTL  | ER REMOV                | ED                |           |              |      |       |      |
|                 |            | 3 TEST A      | VERAGE W        | ITH OUTLI | ER REMOV                | ED                |           |              |      |       |      |

FIG. X3.5 1K/1N Multiple Test Data Summary Sheet

#### X4. OPTIONAL RECORDING OF RELEVANT CANDIDATE OIL PASS LIMIT INFORMATION

X4.1 If the non-reference oil test result is to be offered as a candidate oil test result against an engine oil specification, such as Specification D 4485, then the relevant candidate oil

pass limit information may be recorded on Fig. A13.2 using the mnemonics LDESC, DTCEFF, WPDL, TGFPL, TLHCPL, BSCOPL, and EPTOCPL.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).