

Designation: E 308 - 01

Standard Practice for Computing the Colors of Objects by Using the CIE System¹

This standard is issued under the fixed designation E 308; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

INTRODUCTION

Standard tables (Tables 1-4) of color matching functions and illuminant spectral power distributions have since 1931 been defined by the CIE, but the CIE has eschewed the role of preparing tables of tristimulus weighting factors for the convenient calculation of tristimulus values. There have subsequently appeared numerous compilations of tristimulus weighting factors in the literature with disparity of data resulting from, for example, different selections of wavelength intervals and methods of truncating abbreviated wavelength ranges. In 1970, Foster et al. (1)² proposed conventions to standardize these two features, and Stearns (2) published a more complete set of tables. Stearns' work and later publications such as the 1985 revision of E 308 have greatly reduced the substantial variations in methods for tristimulus computation that existed several decades ago.

The disparities among earlier tables were largely caused by the introduction of computations based on 20-nm wavelength intervals. With the increasing precision of modern instruments, there is a likelihood of a need for tables for narrower wavelength intervals. Stearns' tables, based on a 10-nm interval, did not allow the derivation of consistent tables with wavelength intervals less than 10 nm. The 1-nm table must be designated the basic table if others with greater wavelength intervals are to have the same white point, and this was the reason for the 1985 revision of E 308, resulting in tables that are included in the present revision as Tables 5.

The 1994 revision was made in order to introduce to the user a method of reducing the dependence of the computed tristimulus values on the bandpass of the measuring instrument, using methods that are detailed in this practice. These changes, however, lead to tables (Tables 6 in this practice) that are substantially different from the Tables 5 that have been in use since 1985. There is accordingly a danger, if the new tables are introduced but not universally adopted, that there may again be, perhaps for several decades, a significant disparity among the tables of tristimulus weighting factors commonly used. It is highly desirable that this should be avoided.

1. Scope

- 1.1 This practice provides the values and practical computation procedures needed to obtain CIE tristimulus values from spectral reflectance, transmittance, or radiance data for object-color specimens.
- 1.2 Procedures and tables of standard values are given for computing from spectral measurements the CIE tristimulus values X, Y, Z, and chromaticity coordinates x, y for the CIE 1931 standard observer and X_{10} , Y_{10} , Z_{10} and x_{10} . y_{10} for the CIE 1964 supplementary standard observer.
- ¹ This practice is under the jurisdiction of ASTM Committee E12 on Color and Appearance and is the direct responsibility of Subcommittee E12.04 on Color and Appearance Analysis.
- Current edition approved Aug. 10, 2001. Published November 2001. Originally published as $E\ 308-66$. Last previous edition $E\ 308-99$.
- ² The boldface numbers in parentheses refer to the list of references at the end of this practice.

- 1.3 Standard values are included for the spectral power of six CIE standard illuminants and three CIE recommended fluorescent illuminants.
- 1.4 Procedures are included for cases in which data are available only in more limited wavelength ranges than those recommended, or for a measurement interval wider than that recommended by the CIE. This practice is applicable to spectral data obtained according to Practice E 1164 with 1-, 5-, 10-, or 20-nm measurement interval.
- 1.5 Procedures are included for cases in which the spectral data are, and those in which they are not, corrected for bandpass dependence. For the uncorrected cases, it is assumed that the spectral bandpass of the instrument used to obtain the data was approximately equal to the measurement interval and was triangular in shape. These choices are believed to correspond to the most widely used industrial practice.
 - 1.6 This practice includes procedures for conversion of

results to color spaces that are part of the CIE system, such as CIELAB and CIELUV (3). Equations for calculating color differences in these and other systems are given in Test Method D 2244.

TABLE 1 Spectral Tristimulus Values (Color-Matching Functions) \bar{x} , \bar{y} , \bar{z} of the CIE 1931 Standard (2°) Observer, at 5 nm Intervals from 380 to 780 nm (See Note 2 and Ref (3))

λ(nm)	$\bar{x}(\lambda)$	$\bar{y}(\lambda)$	$\bar{z}(\lambda)$
-()	(7	7(7)	(7
380	0.0014	0.0000	0.0065
385	0.0022	0.0001	0.0105
390	0.0042	0.0001	0.0201
395	0.0076	0.0002	0.0362
400	0.0143	0.0004	0.0679
405	0.0232	0.0006	0.1102
410			
	0.0435	0.0012	0.2074
415	0.0776	0.0022	0.3713
420	0.1344	0.0040	0.6456
425	0.2148	0.0073	1.0391
430	0.2839		1.3856
		0.0116	
435	0.3285	0.0168	1.6230
440	0.3483	0.0230	1.7471
445	0.3481	0.0298	1.7826
450	0.0000	0.0200	4 7704
450	0.3362	0.0380	1.7721
455	0.3187	0.0480	1.7441
460	0.2908	0.0600	1.6692
465	0.2511	0.0739	1.5281
470	0.1954	0.0910	1.2876
470	0.1334	0.0910	1.2070
475	0.1421	0.1126	1.0419
480	0.0956	0.1390	0.8130
485	0.0580	0.1693	0.6162
490	0.0320	0.2080	0.4652
495	0.0147	0.2586	0.3533
500	0.0049	0.3230	0.2720
505	0.0024	0.4073	0.2123
510	0.0021	0.5030	0.1582
515	0.0291	0.6082	0.1117
520	0.0633	0.7100	0.0782
525	0.1096	0.7932	0.0573
530	0.1655	0.8620	0.0422
535	0.2257	0.9149	0.0298
540	0.2904	0.9540	0.0203
545	0.3597	0.9803	0.0134
550	0.4334	0.9950	0.0087
555	0.5121	1.0000	0.0057
560	0.5945	0.9950	0.0039
565	0.6784	0.9786	0.0027
570	0.7621	0.9520	0.0021
***	*****		
-7-	0.0405	0.0454	0.0040
575	0.8425	0.9154	0.0018
580	0.9163	0.8700	0.0017
585	0.9786	0.8163	0.0014
590	1.0263	0.7570	0.0011
595	1.0567	0.6949	0.0010
393	1.0307	0.0949	0.0010
600	1.0622	0.6310	0.0008
605	1.0456	0.5668	0.0006
610	1.0026	0.5030	0.0003
615	0.9384	0.4412	0.0002
620	0.8544	0.3810	0.0002
625	0.7514	0.3210	0.0001
630	0.6424	0.2650	0.0000
635	0.5419	0.2170	0.0000
640	0.4479	0.1750	0.0000
645	0.3608	0.1382	0.0000

TABLE 1 Continued

λ(nm)	$\bar{x}(\lambda)$	$ar{y}(\lambda)$	$ar{z}(\lambda)$
650	0.2835	0.1070	0.0000
655	0.2187	0.0816	0.0000
660	0.1649	0.0610	0.0000
665	0.1212	0.0446	0.0000
670	0.0874	0.0320	0.0000
675	0.0636	0.0232	0.0000
680	0.0468	0.0170	0.0000
685	0.0329	0.0119	0.0000
690	0.0227	0.0082	0.0000
695	0.0158	0.0057	0.0000
700	0.0114	0.0041	0.0000
705	0.0081	0.0029	0.0000
710	0.0058	0.0021	0.0000
715	0.0041	0.0015	0.0000
720	0.0029	0.0010	0.0000
705	0.0000	0.0007	0.0000
725	0.0020	0.0007	0.0000
730	0.0014	0.0005	0.0000
735	0.0010	0.0004	0.0000
740	0.0007	0.0002	0.0000
745	0.0005	0.0002	0.0000
750	0.0003	0.0001	0.0000
755	0.0002	0.0001	0.0000
760	0.0002	0.0001	0.0000
765	0.0001	0.0000	0.0000
770	0.0001	0.0000	0.0000
775	0.0001	0.0000	0.0000
780	0.0000	0.0000	0.0000
	Summation at	5 nm intervals:	
	$\nabla \bar{\mathbf{r}} (\lambda)$ -	= 21.3714	
	` '	= 21.3711	
		= 21.3715	
	== (//)		

TABLE 2 Spectral Tristimulus Values (Color-Matching Functions) \bar{x}_{10} , \bar{y}_{10} , \bar{z}_{10} of the CIE 1964 Supplementary Standard (10°) Observer, At 5 nm Intervals from 380 to 780 nm (See Note 2 and Ref 3)

λ(nm)	$ar{x}_{10}(\lambda)$	$\bar{y}_{10}(\lambda)$	$\bar{z}_{10}(\lambda)$
380	0.0002	0.0000	0.0007
385	0.0007	0.0001	0.0029
390	0.0024	0.0003	0.0105
395	0.0072	0.0008	0.0323
400	0.0191	0.0020	0.0860
405	0.0434	0.0045	0.1971
410	0.0847	0.0088	0.3894
415	0.1406	0.0145	0.6568
420	0.2045	0.0214	0.9725
425	0.2647	0.0295	1.2825
430	0.3147	0.0387	1.5535
435	0.3577	0.0496	1.7985
440	0.3837	0.0621	1.9673
445	0.3867	0.0747	2.0273
450	0.3707	0.0895	1.9948
455	0.3430	0.1063	1.9007
460	0.3023	0.1282	1.7454
465	0.2541	0.1528	1.5549
470	0.1956	0.1852	1.3176
475	0.1323	0.2199	1.0302
480	0.0805	0.2536	0.7721
485	0.0411	0.2977	0.5701
490	0.0162	0.3391	0.4153
495	0.0051	0.3954	0.3024

TABLE 2 Continued

TABLE 2 Continued

λ(nm)	$\bar{x}_{10}(\lambda)$	$\bar{y}_{10}(\lambda)$	$\bar{z}_{10}(\lambda)$	λ(nm)	$\bar{x}_{10}(\lambda)$	$\bar{y}_{10}(\lambda)$	$\bar{Z}_{10}(\lambda)$
500	0.0038	0.4608	0.2185	660	0.1526	0.0603	0.0000
505	0.0154	0.5314	0.1592	665	0.1122	0.0441	0.0000
510	0.0375	0.6067	0.1120	670	0.0813	0.0318	0.0000
515	0.0714	0.6857	0.0822				
520	0.1177	0.7618	0.0607	675	0.0579	0.0226	0.0000
				680	0.0409	0.0159	0.0000
525	0.1730	0.8233	0.0431	685	0.0286	0.0111	0.0000
530	0.2365	0.8752	0.0305	690	0.0199	0.0077	0.0000
535	0.3042	0.9238	0.0206	695	0.0138	0.0054	0.0000
540	0.3768	0.9620	0.0137				
545	0.4516	0.9822	0.0079	700	0.0096	0.0037	0.0000
				705	0.0066	0.0026	0.0000
550	0.5298	0.9918	0.0040	710	0.0046	0.0018	0.0000
555	0.6161	0.9991	0.0011	715	0.0031	0.0012	0.0000
560	0.7052	0.9973	0.0000	720	0.0022	0.0008	0.0000
565	0.7938	0.9824	0.0000				
570	0.8787	0.9556	0.0000	725	0.0015	0.0006	0.0000
				730	0.0010	0.0004	0.0000
575	0.9512	0.9152	0.0000	735	0.0007	0.0003	0.0000
580	1.0142	0.8689	0.0000	740	0.0005	0.0002	0.0000
585	1.0743	0.8256	0.0000	745	0.0004	0.0001	0.0000
590	1.1185	0.7774	0.0000				
595	1.1343	0.7204	0.0000	750	0.0003	0.0001	0.0000
				755	0.0002	0.0001	0.0000
600	1.1240	0.6583	0.0000	760	0.0001	0.0000	0.0000
605	1.0891	0.5939	0.0000	765	0.0001	0.0000	0.0000
610	1.0305	0.5280	0.0000	770	0.0001	0.0000	0.0000
615	0.9507	0.4618	0.0000				
620	0.8563	0.3981	0.0000	775	0.0000	0.0000	0.0000
				780	0.0000	0.0000	0.0000
625	0.7549	0.3396	0.0000		0	t E and intervals.	
630	0.6475	0.2835	0.0000		Summation a	t 5 nm intervals:	
635	0.5351	0.2283	0.0000		$\Sigma \bar{X}_{10}(\lambda)$	= 23.3294	
640	0.4316	0.1798	0.0000			= 23.3324	
645	0.3437	0.1402	0.0000			= 23.3343	
650	0.2683	0.1076	0.0000				
655	0.2043	0.0812	0.0000				

TABLE 3 Relative Spectral Power Distributions S(λ) of CIE Standard Illuminants A, C, D_{50} , D_{55} , D_{65} , and D_{75} at 5-nm Intervals from 380 to 780 nm (See Note 2 and Ref 3)

λ (nm)	$A S(\lambda)$	C S(λ)	D ₅₀ S(λ)	D ₅₅ S(λ)	D ₆₅ S(λ)	D ₇₅ S(λ)
380	9.80	33.00	24.49	32.58	49.98	66.70
385	10.90	39.92	27.18	35.34	52.31	68.33
390	12.09	47.40	29.87	38.09	54.65	69.96
395	13.35	55.17	39.59	49.52	68.70	85.95
400	14.71	63.30	49.31	60.95	82.75	101.93
405	16.15	71.81	52.91	64.75	87.12	106.91
410	17.68	80.60	56.51	68.55	91.49	111.89
415	19.29	89.53	58.27	70.07	92.46	112.35
420	20.99	98.10	60.03	71.58	93.43	112.80
425	22.79	105.80	58.93	69.75	90.06	107.94
430	24.67	112.40	57.82	67.91	86.68	103.09
435	26.64	117.75	66.32	76.76	95.77	112.14
440	28.70	121.50	74.82	85.61	104.86	121.20
445	30.85	123.45	81.04	91.80	110.94	127.10
450	33.09	124.00	87.25	97.99	117.01	133.01
455	35.41	123.60	88.93	99.23	117.41	132.68
460	37.81	123.10	90.61	100.46	117.81	132.36
465	40.30	123.30	90.99	100.19	116.34	129.84
470	42.87	123.80	91.37	99.91	114.86	127.32
475	45.52	124.09	93.24	101.33	115.39	127.06
480	48.24	123.90	95.11	102.74	115.92	126.80
485	51.04	122.92	93.54	100.41	112.37	122.29
490	53.91	120.70	91.96	98.08	108.81	117.78
495	56.85	116.90	93.84	99.38	109.08	117.19
500	59.86	112.10	95.72	100.68	109.35	116.59
505	62.93	106.98	96.17	100.69	108.58	115.15
510	66.06	102.30	96.61	100.70	107.80	113.70
515	69.25	98.81	96.87	100.34	106.30	111.18

TABLE 3 Continued

λ (nm)	$A \in \mathcal{S}(\lambda)$	<i>C</i> <i>S</i> (λ)	$D_{50} S(\lambda)$	D ₅₅ S(λ)	D ₆₅ S(λ)	D ₇₅ S(λ)
520	72.50	96.90	97.13	99.99	104.79	108.56
525	75.79	96.78	99.61	102.10	106.24	109.55
530	79.13	98.00	102.10	104.21	107.69	110.44
535	82.52	99.94	101.43	103.16	106.05	108.37
540	85.95	102.10	100.75	102.10	104.41	106.29
545	89.41	103.95	101.54	102.53	104.23	105.60
550	92.91	105.20	102.32	102.97	104.05	104.90
555	96.44	105.67	101.16	101.48	102.02	102.45
560	100.00	105.30	100.00	100.00	100.00	100.00
565	103.58	104.11	98.87	98.61	98.17	97.81
570	107.18	102.30	97.74	97.22	96.33	95.62
575	110.80	100.15	98.33	97.48	96.06	94.91
580	114.44	97.80	98.92	97.75	95.79	94.21
585	118.08	95.43	96.21	94.59	92.24	90.60
590	121.73	93.20	93.50	91.43	88.69	87.00
595	125.39	91.22	95.59	92.93	89.35	87.11
600	129.04	89.70	97.69	94.42	90.01	87.23
605	132.70	88.83	98.48	94.78	89.80	86.68
610	136.35	88.40	99.27	95.14	89.60	86.14
615	139.99	88.19	99.16	94.68	88.65	84.86
620	143.62	88.10	99.04	94.22	87.70	83.58
625	147.24	88.06	97.38	92.33	85.49	81.16
630	150.84	88.00	95.72	90.45	83.29	78.75
635	154.42	87.86	97.29	91.39	83.49	78.59
640	157.98	87.80	98.86	92.33	83.70	78.43
645	161.52	87.99	97.26	90.59	81.86	76.61
650	165.03	88.20	95.67	88.85	80.03	74.80
655	168.51	88.20	96.93	89.59	80.12	74.56
660	171.96	87.90	98.19	90.32	80.21	74.32
665	175.38	87.22	100.60	92.13	81.25	74.87
670	178.77	86.30	103.00	93.95	82.28	75.42
675	182.12	85.30	101.07	91.95	80.28	73.50
680	185.43	84.00	99.13	89.96	78.28	71.58
685	188.70	82.21	93.26	84.82	74.00	67.71
690	191.93	80.20	87.38	79.68	69.72	63.85
695	195.12	78.24	89.49	81.26	70.67	64.46
700	198.26	76.30	91.60	82.84	71.61	65.08
705	201.36	74.36	92.25	83.84	72.98	66.57
710	204.41	72.40	92.89	84.84	74.35	68.07
715	207.41	70.40	84.87	77.54	67.98	62.26
720	210.36	68.30	76.85	70.24	61.60	56.44
725	213.27	66.30	81.68	74.77	65.74	60.34
730	216.12	64.40	86.51	79.30	69.89	64.24
735	218.92	62.80	89.55	82.15	72.49	66.70
740	221.67	61.50	92.58	84.99	75.09	69.15
745	224.36	60.20	85.40	78.44	69.34	63.89
750	227.00	59.20	78.23	71.88	63.59	58.63
755	229.59	58.50	67.96	62.34	55.01	50.62
760	232.12	58.10	57.69	52.79	46.42	42.62
765	234.59	58.00	70.31	64.36	56.61	51.98
770	237.01	58.20	82.92	75.93	66.81	61.35
775	239.37	58.50	80.60	73.87	65.09	59.84
780	241.68	59.10	78.27	71.82	63.38	58.32

TABLE 4 Relative Spectral Power Distributions $S(\lambda)$ of CIE Fluorescent Illuminants F2, F7, and F11 at 5-nm Intervals from 380 to 780 nm (See Note 2 and Ref 3)

			•
λ(nm)	F2	F7	F11
380	1.18	2.56	0.91
385	1.48	3.18	0.63
390	1.84	3.84	0.46
395	2.15	4.53	0.37
400	3.44	6.15	1.29
405	15.69	19.37	12.68
410	3.85	7.37	1.59
415	3.74	7.05	1.79
420	4.19	7.71	2.46
425	4.62	8.41	3.38

TABLE 4 Continued

λ(nm)	F2	F7	F11
430	5.06	9.15	4.49
435	34.98	44.14	33.94
440	11.81	17.52	12.13
445	6.27	11.35	6.95
450	6.63	12.00	7.19
455	6.93	12.58	7.12
460	7.19	13.08	6.72
465	7.40	13.45	6.13
470	7.54	13.71	5.46
475	7.62	13.88	4.79
480	7.65	13.95	5.66
485	7.62	13.93	14.29
490	7.62	13.82	14.96

TABLE 4 Continued

	TABLE 4	Continued	
λ(nm)	F2	F7	F11
495	7.45	13.64	8.97
500	7.28	13.43	4.72
EOE	7 15	12.25	2 22
505	7.15	13.25	2.33
510	7.05	13.08	1.47
515	7.04	12.93	1.10
520	7.16	12.78	0.89
525	7.47	12.60	0.83
530	8.04	12.44	1.18
535	8.88	12.33	4.90
		12.33	
540 545	10.01 24.88	29.52	39.59 72.84
550	16.64	17.05	32.61
330	10.04	17.05	32.01
555	14.59	12.44	7.52
560	16.16	12.58	2.83
565	17.56	12.72	1.96
570	18.62	12.83	1.67
575	21.47	15.46	4.43
010	21.77	10.40	7.70
580	22.79	16.75	11.28
585	19.29	12.83	14.76
590	18.66	12.67	12.73
595	17.73	12.45	9.74
600	16.54	12.19	7.33
605	15.21	11.89	9.72
610	13.80	11.60	55.27
615	12.36	11.35	42.58
620	10.95	11.12	13.18
625	9.65	10.95	13.16
630	8.40	10.76	12.26
635	7.32	10.42	5.11
640	6.31	10.11	2.07
645	5.43	10.04	2.34
650	4.68	10.02	3.58
655	4.02	10.11	3.01
660	3.45	9.87	2.48
665	2.96	8.65	2.14
670	2.55	7.27	1.54
675	2.19	6.44	1.33
680	1.89	5.83	1.46
685	1.64	5.41	1.94
690	1.53	5.04	2.00
695	1.27	4.57	1.20
700	1.10	4.12	1.35
705	0.00	2.77	4.40
705 710	0.99 0.88	3.77 3.46	4.10 5.58
715	0.76	3.08	
713		2.73	2.51
725	0.68 0.61	2.47	0.57 0.27
725	0.01	2.41	0.27
730	0.56	2.25	0.23
735	0.54	2.06	0.21
740	0.51	1.90	0.24
745	0.47	1.75	0.24
750	0.47	1.62	0.20
755	0.43	1.54	0.24
760	0.46	1.45	0.32
765	0.47	1.32	0.26
770	0.40	1.17	0.16
775	0.33	0.99	0.12
780	0.27	0.81	0.09

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro-

priate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

D 2244 Test Method for Calculation of Color Differences from Instrumentally Measured Color Coordinates³

E 284 Terminology of Appearance³

E 313 Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates³

E 1164 Practice for Obtaining Spectrophotometric Data for Object-Color Evaluation³

2.2 ANSI Standard:

PH2.23 Lighting Conditions for Viewing Photographic Color Prints and Transparencies⁴

2.3 CIE/ISO Standards:

CIE Standard S 001/ISO IS 10526, Colorimetric Illuminants^{4,45}

CIE Standard S 002/ISO IS 10527, Colorimetric Observers⁴, ⁴⁵

CIE Standard D 001, Colorimetric Illuminants and Observers (Disk)⁵

2.4 ASTM Adjuncts:

Computer disk containing Tables 5 and 6⁶

3. Terminology

- 3.1 Definitions of terms in Terminology E 284 are applicable to this practice (see also Ref (4)).
 - 3.2 Definitions:
- 3.2.1 bandpass, n—of a passband, the wavelength range over which the radiant power through the passband is at least half of its maximum value within the passband (syn: bandwidth) (see passband).
- 3.2.2 *chromaticity*, *n*—the color quality of a color stimulus definable by its chromaticity coordinates.
- 3.2.3 *chromaticity coordinates*, *n*—the ratio of each of the tristimulus values of a psychophysical color (see section 3.2.7.11) to the sum of the tristimulus values.
- 3.2.3.1 *Discussion*—In the CIE 1931 standard colorimetric system, the chromaticity coordinates are: x = X/(X + Y + Z), y = Y/(X + Y + Z), z = Z/(X + Y + Z); in the CIE 1964 supplementary colorimetric system, the same equations apply with all symbols having the subscript 10 (see 3.2.6.).
- 3.2.4 *CIE*, *n*—the abbreviation for the French title of the International Commission on Illumination, Commission Internationale de l'Éclairage.
- 3.2.5 CIE 1931 (x, y) chromaticity diagram, n—chromaticity diagram for the CIE 1931 standard observer, in which the CIE 1931 chromaticity coordinates are plotted, with x as abscissa and y as ordinate.
- 3.2.6 CIE 1964 (x_{10}, y_{10}) chromaticity diagram, n—chromaticity diagram for the CIE 1964 supplementary

³ Annual Book of ASTM Standards, Vol 06.01.

⁴ Available from American National Standards Institute, 13th Floor, 11 W. 42nd St., New York, NY 10036.

⁵ Available from USNC-CIE Publications Office, c/o Mr. Thomas M. Lemons, TLA-Lighting Consultants, 7 Pond Street, Salem, MA 01970-4819.

⁶ Computer disk of 72 tables is available from ASTM Headquarters. Request Adjunct No. ADJE0308a.

standard observer, in which the CIE 1964 chromaticity coordinates are plotted, with x_{10} as abscissa and y_{10} as ordinate.

- 3.2.6.1 *Discussion*—Fig. 1 shows the CIE 1931 and 1964 chromaticity diagrams, including the locations of the spectrum locus and the connecting purple boundary.
- 3.2.7 *CIE 1976* (u', v') *or* (u'_{10}, v'_{10}) chromaticity diagram, n—chromaticity diagram in which the CIE 1976 L^* u^* v^* (CIELUV) chromaticity coordinates are plotted, with u' (or u'_{10}) as abscissa and v' (or v'_{10}) as ordinate.
- 3.2.8 CIE 1931 standard colorimetric system, n—a system for determining the tristimulus values of any spectral power distribution using the set of reference color stimuli, X, Y, Z and the three CIE color—matching functions \bar{x} (λ), \bar{y} (λ), \bar{z} (λ) adopted by the CIE in 1931.
- 3.2.9 CIE 1964 supplementary standard colorimetric system, n—a system for determining the tristimulus values of any spectral power distribution using the set of reference color stimuli X_{10} , Y_{10} , Z_{10} and the three CIE color-matching functions $\bar{x}_{10}(\lambda)$, $\bar{y}_{10}(\lambda)$, $\bar{z}_{10}(\lambda)$ adopted by the CIE in 1964 (see Note 1).

Note 1—Users should be aware that the CIE 1964 (10°) supplementary system and standard observer assume no contribution or constant contribution of rods to vision. Under some circumstances, such as in viewing highly metameric pairs in very low light levels (where the rods are unsaturated), the amount of rod participation can vary between the members of the pair. This is not accounted for by any trichromatic system of colorimetry. The 10° system and observer should be used with caution in such circumstances.

3.2.10 *color*, *n*—*of an object*, aspect of object appearance distinct from form, shape, size, position or gloss that depends

upon the spectral composition of the incident light, the spectral reflectance, transmittance, or radiance of the object, and the spectral response of the observer, as well as the illuminating and viewing geometry.

- 3.2.11 *color*, *n*—*psychophysical*, characteristics of a color stimulus (that is, light producing a visual sensation of color) denoted by a colorimetric specification with three values, such as tristimulus values.
- 3.2.12 *color–matching functions*, *n* the amounts, in any trichromatic system, of three reference color stimuli needed to match, by additive mixing, monochromatic components of an equal–energy spectrum.
- 3.2.13 *fluorescent illuminant*, *n*—illuminant representing the spectral distribution of the radiation from a specified type of fluorescent lamp.
- 3.2.14 CIE recommended fluorescent illuminants, n—a set of spectral power distributions of 12 types of fluorescent lamps, the most important of which are F2, representing a cool white fluorescent lamp with correlated color temperature 4200 K, F7, a broad-band (continuous-spectrum) daylight lamp (6500 K), and F11, a narrow-band (line-spectrum) white fluorescent lamp (4000 K).
- 3.2.15 *luminous*, *adj*—weighted according to the spectral luminous efficiency function $V(\lambda)$ of the CIE.
- 3.2.16 opponent-color scales, n—scales that denote one color by positive scale values, the neutral axis by zero value, and an approximately complementary color by negative scale values, common examples being scales that are positive in the red direction and negative in the green direction, and those that

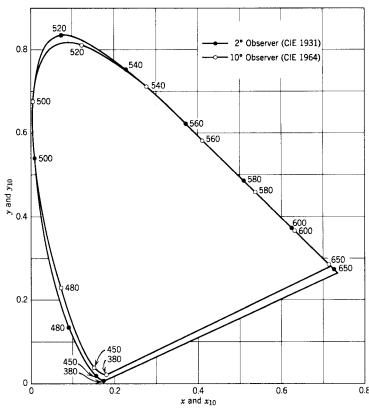
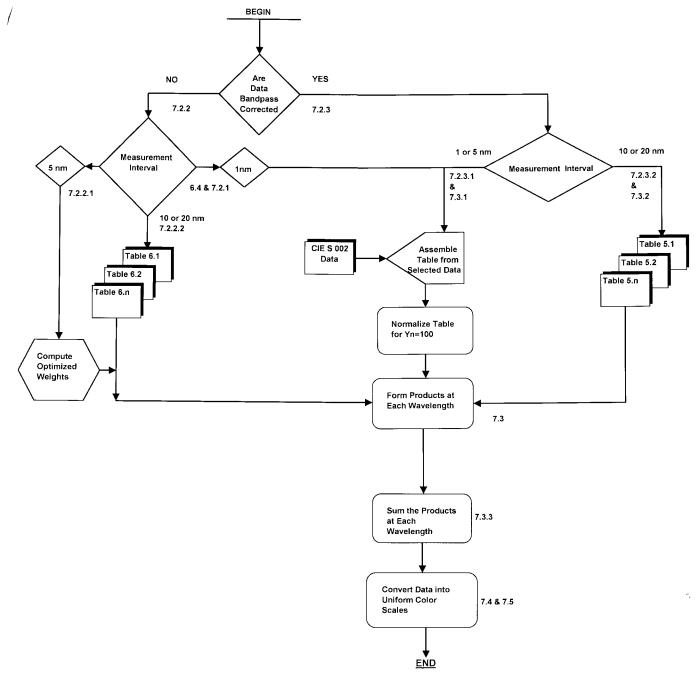


FIG. 1 The CIE 1931 x, y and 1964 x_{10} , y_{10} Chromaticity Diagrams (5) (see Note 2)

are positive in the yellow direction and negative in the blue direction.

- 3.2.17 CIELAB color scales, n—CIE 1976 L^* , a^* , b^* opponent-color scales, in which a^* is positive in the red direction and negative in the green direction, and b^* is positive in the yellow direction and negative in the blue direction.
- 3.2.18 CIELUV color scales, n—CIE 1976 L^* , u^* , v^* opponent-color scales, in which u^* is positive in the red direction and negative in the green direction, and v^* is positive in the yellow direction and negative in the blue direction.
- 3.2.19 *passband*, *n*—a narrow portion of a dispersed spectrum, selected by the exit slit of a monochromator or the equivalent, for the purpose of defining an emitted spectral power function.
- 3.2.19.1 *Discussion*—The shape of the spectral transmittance function of the passband may be triangular, trapezoidal, or rectangular, among others, but is usually symmetrical.
- 3.2.20 spectral, adj—for radiometric quantities, pertaining to monochromatic radiation at a specified wavelength or, by extension, to radiation within a narrow wavelength band about a specified wavelength.
- 3.2.21 *standard illuminant*, *n*—a luminous flux, specified by its spectral distribution, meeting specifications adopted by a standardizing organization.
- 3.2.22 *CIE standard illuminant A*, *n*—colorimetric illuminant, representing the full radiator at 2855.6 K, defined by the CIE in terms of a relative spectral power distribution.
- 3.2.23 CIE standard illuminant C, n—colorimetric illuminant, representing daylight with a correlated color temperature of 6774 K, defined by the CIE in terms of a relative spectral power distribution.
- 3.2.24 CIE standard illuminant D_{65} , n—colorimetric illuminant, representing daylight with a correlated color temperature of 6504 K, defined by the CIE in terms of a relative spectral power distribution.
- 3.2.24.1 *Discussion*—Other illuminants of importance defined by the CIE include the daylight illuminants D_{50} , D_{55} , and D_{75} . Illuminant D_{50} is used by the graphic arts industry for viewing colored transparencies and prints (see ANSI PH2.23).
- 3.2.25 *standard observer*, *n*—an ideal observer having visual response described by the CIE color-matching functions (see CIE S002 and Ref (3)).
- 3.2.26 CIE 1931 standard observer, n—ideal colorimetric observer with color-matching functions $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ corresponding to a field of view subtending a 2° angle on the retina; commonly called the "2° standard observer."
- 3.2.27 CIE 1964 supplementary standard observer, n—ideal colorimetric observer with color-matching functions $\bar{x}_{10}(\lambda)$, $\bar{y}_{10}(\lambda)$, $\bar{z}_{10}(\lambda)$ corresponding to a field of view subtending a 10° angle on the retina; commonly called the "10° standard observer" (see Note 1).
 - 3.2.28 *tristimulus values*, *n*—see 3.2.8 and 3.2.9.
- 3.2.29 tristimulus weighting factors, $S\bar{x}$, $S\bar{y}$, $S\bar{z}$, n—factors obtained from products of the spectral power S of an illuminant and the spectral color-matching functions \bar{x} , \bar{y} , \bar{z} (or \bar{x}_{10} , \bar{y}_{10} , \bar{z}_{10}) of an observer, usually tabulated at wavelength intervals of 10 or 20 nm, used to compute tristimulus values by multiplication by the spectral reflectance, transmittance, or radiance (or

the corresponding factors) and summation.


3.2.29.1 *Discussion*—Proper account should be taken of the spectral bandpass of the measuring instrument.

4. Summary of Practice

- 4.1 *Selection of Parameters*—The user of this practice must select values of the following parameters:
- 4.1.1 *Observer*—Select either the CIE 1931 standard colorimetric observer (2° observer) or the CIE 1964 supplementary standard observer (10° observer), tabulated in this practice, CIE Standard S 002 or D 001, or Ref (3) (see 3.2.25 and Note 1).
- 4.1.2 *Illuminant*—Select one of the CIE standard or recommended illuminants tabulated in this practice, CIE Standard S 001 or D 001, or Ref (3) (see 3.2.21).
- 4.1.3 *Measurement Interval*—Select the measurement interval of the available spectral data. This practice provides for 1-, 5-, 10-, or 20-nm measurement intervals. For best practice the measurement interval should be selected to be as nearly as possible equal to the instrument bandpass.
- 4.2 *Procedures*—The user should ascertain whether or not the spectral data have been corrected for bandpass dependence. The accuracy of tristimulus values is significantly improved by incorporating a correction for bandpass dependence into either the spectral data or the tables of tristimulus weighting factors (see 7.2). The procedures used depend on this and on the measurement interval.
- 4.2.1 For data obtained at 1- or 5-nm measurement interval, the procedures of 7.2 should be followed.
- 4.2.2 For data obtained at 10- or 20-nm measurement interval, the tables of tristimulus weighting factors contained in Tables 5 should be used with spectral data that have been corrected for bandpass dependence. The tables contained in Tables 6 should be used with spectral data that have not been so corrected; these tables include a provision that minimizes the error introduced by bandpass dependence when employing a triangular passband equal in half width to the measurement interval.
- 4.2.3 A flow chart to ensure the use of proper combinations of data and tables is given in Fig. 2. The procedures of the practice are given in detail in 7.1.
- 4.3 Calculations—CIE tristimulus values X, Y, Z or X_{10} , Y_{10} , Z_{10} are calculated by numerical summation of the products of tristimulus weighting factors for selected illuminants and observers with the reflectance factors (or transmittance or radiance factors) making up the spectral data.
- 4.4 The tristimulus values so calculated may be further converted to coordinates in a more nearly uniform color space such as CIELAB or CIELUV.

5. Significance and Use

- 5.1 The CIE colorimetric systems provide numerical specifications that are meant to indicate whether or not pairs of color stimuli match when viewed by a CIE standard observer. The CIE color systems are not intended to provide visually uniform scales of color difference or to describe visually perceived color appearances.
- 5.2 This practice provides for the calculation of tristimulus values X, Y, Z and chromaticity coordinates x, y that can be

Note 1—References to Section 7. Calculations are Included. FIG. 2 Flow Chart for Selecting Methods and Tables for Tristimulus Integration

used directly for psychophysical color stimulus specification or that can be transformed to nearly visually uniform color scales, such as CIELAB and CIELUV. Uniform color scales are preferred for research, production control, color-difference calculation, color specification, and setting color tolerances. The appearance of a material or an object is not completely specified by the numerical evaluation of its psychophysical color, because appearance can be influenced by other properties such as gloss or texture.

6. Procedure

6.1 Selecting Standard Observer-When colorimetric re-

sults are required that will be compared with previous results obtained for the CIE 1931 standard observer, use the values in Table 1 for that observer. When new results are being computed, consider using the values in Table 2 for the CIE 1964 supplementary standard observer, but see Note 1.

- 6.1.1 Whenever correlation with visual observations using fields of angular subtense between about 1° and about 4° at the eye of the observer is desired, select the CIE 1931 standard colorimetric observer.
- 6.1.2 Whenever correlation with visual observations using fields of angular subtense greater than 4° at the eye of the

observer is desired, select the CIE 1964 supplementary standard colorimetric observer (but see Note 1).

- 6.2 Selecting Standard or Recommended Illuminants—Select illuminants according to the type of light(s) under which objects will be viewed or for which their colors will be specified or evaluated.
- 6.2.1 When incandescent (tungsten) lamplight is involved, use values for CIE illuminant *A*.
- 6.2.2 When daylight is involved, use values for CIE illuminant ${\cal C}$ or ${\cal D}_{65}$.
- 6.2.3 When fluorescent-lamp illumination is involved, use 4200 K standard cool white (*F*2) unless results are desired for 6500 K broad-band daylight (*F*7) or 4000 K narrow-band white (*F*11) fluorescent illumination.
- 6.3 Selecting the Measurement Interval— For greater accuracy select the 5-nm measurement interval over the 10-nm interval where spectral data are available at 5-nm intervals. Likewise, select the 10-nm measurement interval over the 20-nm interval where spectral data are available at 10-nm intervals. If the 20-nm interval is selected, users should ensure themselves that the resulting accuracy is sufficient for the purpose for which the results are intended. For many industrial applications use of the 20-nm interval may be satisfactory.
- 6.3.1 If the instrument used has a selectable measurement interval, select the interval that most nearly equals the bandpass of the instrument throughout the spectrum. If the instrument has an adjustable bandpass, adjust the bandpass to be approximately equal to the measurement interval.
- 6.3.2 The measurement interval should never be greater than the bandpass (half width of the passband). The use of a measurement interval less than the bandpass does not improve the *accuracy* of the computation, but may improve the *repeatability* by providing redundant spectral data.
- 6.4 Other Miscellaneous Conditions— While the above selections cover the majority of industrial practices, the possibility exists that other conditions could be encountered. Further, the deconvolution routine used to produce Tables 6 is not unique and uses approximating techniques that, while providing overall a good approximation to the true value, may not in a specific instance provide the best approximation. Therefore, other procedures than those included in this practice may be used provided that the results are consistent with those obtained by use of the procedures in the practice.

7. Calculations

- 7.1 *General Procedures*—The general procedures for computing CIE tristimulus values are summarized as follows:
- 7.1.1 *Procedures as Specified by the CIE* The CIE procedures are specified in Ref (3) and summarized in Refs (5 to 9). The fundamental definition is in terms of integrals,

$$X = k \int_{\lambda} R(\lambda) S(\lambda) \, \bar{x}(\lambda) \, d\lambda \tag{1}$$

$$Y = k \int_{\lambda} R(\lambda) S(\lambda) \, \bar{y}(\lambda) \, d\lambda$$

$$Z = k \int_{\lambda} R(\lambda) S(\lambda) \, \bar{z}(\lambda) \, d\lambda$$

where:

 $R(\lambda)$ = the reflectance, transmittance, or radiance factor (on a scale of zero to one for the perfect reflecting diffuser),

 $S(\lambda)$ = the relative spectral power of a CIE standard illuminant, and

 $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ = the color-matching functions of one of the CIE standard observers.

The integration is carried out over the entire wavelength region in which the color-matching functions are defined, 360 to 830 nm. The normalizing factor k is defined as

$$k = 100 / \int_{\lambda} S(\lambda) \, \bar{y}(\lambda) \, d\lambda \tag{2}$$

The CIE notes that in all practical calculations of tristimulus values the integration is approximated by a summation, giving the equations as follows:

$$X = k \sum_{\lambda} R(\lambda) S(\lambda) \bar{x}(\lambda) \Delta\lambda$$
 (3)

$$Y = k \sum_{\lambda} R(\lambda) S(\lambda) \, \bar{y}(\lambda) \, \Delta \lambda$$

$$Z = k \sum_{\lambda} R(\lambda) S(\lambda) \bar{z}(\lambda) \Delta \lambda$$

with:

$$k = 100 / \sum_{\lambda} S(\lambda) \, \overline{y}(\lambda) \, \Delta \lambda. \tag{4}$$

7.1.2 Procedure Using Tristimulus Weighting Factors—It is common industrial practice to carry out the summation to tristimulus values in two steps. In the first of these, a set of normalized tristimulus weighting factors W_x , W_y , W_z is calculated as follows:

$$\begin{split} W_x(\lambda) &= k \, S(\lambda) \, \bar{x}(\lambda) \Delta \lambda \\ W_y(\lambda) &= k \, S(\lambda) \, \bar{y}(\lambda) \, \Delta \lambda \\ W_z(\lambda) &= k \, S(\lambda) \, \bar{z}(\lambda) \, \Delta \lambda \end{split} \tag{5}$$

for $\lambda = 360$, ... 780 nm, (see Note 2), and where:

$$k = 100/\sum_{360}^{780} S(\lambda) \,\bar{y}(\lambda) \,\Delta\lambda \tag{6}$$

For a given selection of illuminant, observer, measurement interval $\Delta\lambda$, and measurement bandpass, this calculation needs to be done only once, since the spectral reflectance (or transmittance or radiance) factor R (λ) is not included in the weighting factors W. In the second step, tristimulus values X, Y, Z (or X_{10} , Y_{10} , Z_{10}) are calculated using the values of W and R (λ) in the following equations:

$$X = \sum_{360}^{780} W_x(\lambda) R(\lambda) \Delta \lambda$$

$$Y = \sum_{360}^{780} W_y(\lambda) R(\lambda) \Delta \lambda$$

$$Z = \sum_{360}^{780} W_z(\lambda) R(\lambda) \Delta \lambda$$
(7)

Note 2—While 360 nm is recommended as the starting wavelength for summation and elsewhere in this practice, CIE data reproduced in Tables 1-4, and the spectrum locus scale of Fig. 1, begin only at 380 nm; since

the missing data cannot be supplied in all cases, these references to 380 nm should remain. In the region between 360 and 379 nm, values of color matching functions are so small that their inclusion or omission in the calculations would not lead to significant differences in the resulting tristimulus values.

7.2 Summary of Calculations (see Note 2)—A general outline of the procedure is given in Fig. 2 in the form of a flow chart. Begin by determining whether or not the spectral data have been corrected for bandpass dependence.

Note 3—For reflecting materials, calculate tristimulus values from spectral data obtained relative to the perfect reflecting diffuser. For transmitting materials, calculate by use of the incident light as the reference.

7.2.1 Procedure for 1-nm Measurement Interval—Use the 1-nm spectral data in CIE S001 and S002 (or on CIE D001 Disk) and (Eq 3) and (Eq 4).

7.2.2 Procedures for Spectral Data With Bandpass Correction:

7.2.2.1 Procedure for Data Obtained at 5-nm Measurement Intervals—Prepare tables of tristimulus weighting factors for desired illuminant-observer combinations, using the spectral data in Tables 1-4 (see Note 2), and (Eq 5) and (Eq 6). Use the tables so prepared as described in 7.3 (see Note 4).

Note 4—Using the previous procedure at 10 nm or 20 nm intervals by omitting intermediate tabulated values is not allowed. Use the procedures of 7.2.3.2 and 7.3 instead.

7.2.2.2 Procedures for Data Obtained at 10- or 20-nm Measurement Intervals—Select the appropriate tables of tristimulus weighting factors from those in Tables 5 and use them as described in 7.3.

7.2.3 Procedures for Spectral Data Without Bandpass Correction:

7.2.3.1 Procedure for Data Obtained at 5-nm Measurement Intervals—Prepare optimized tables of tristimulus weighting factors for desired illuminant-observer combinations, using the spectral data in Tables 1-4 (see Note 2), and procedures described in the literature (10, 11). Use the tables so prepared as described in 7.3.

7.2.3.2 Procedures for Data Obtained at 10- or 20-nm Measurement Intervals—Select the appropriate tables of tristimulus weighting factors from Tables 6 and use them as described in 7.3.

7.3 Use of Tristimulus Weighting Factors:

7.3.1 Use of Data Obtained at 5-nm Measurement Intervals—Use the color-matching functions $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$, from Table 1, for the 1931 CIE standard colorimetric observer, or when desired the functions $\bar{x}_{10}(\lambda)$, $\bar{y}_{10}(\lambda)$, $\bar{z}_{10}(\lambda)$, from Table 2, for the 1964 CIE supplementary standard colorimetric observer. Select the desired CIE standard or recommended illuminant, for example A, C, or one of the D or F illuminants from Table 3 or Table 4. At each wavelength multiply the tabulated value of the observer color-matching functions by the tabulated value of the relative spectral power of the illuminant $S(\lambda)$, and by the spectral reflectance (or transmittance) factor $R(\lambda)$ (or $T(\lambda)$) of the specimen. Obtain the sum of these products at 5 nm intervals over the wavelength range 360 to 780 nm and use (Eq 3) and (Eq 4).

7.3.2 Use of Data Obtained at 10- or 20-nm Measurement Intervals:

7.3.2.1 Data Available over the Wavelength Range 360 to 780 nm—Select the appropriate tables of tristimulus weighting factors, computed for triangular bandpass and 10- or 20-nm measurement intervals, for the desired observer and illuminant, from among the 36 sets included in Tables 5 (12) for bandpass-corrected data, and from among the 36 sets included in Tables 6 for data that have not been corrected for bandpass dependence. No normalization of any data from Tables 5 or 6 is required.

7.3.2.2 Data Available only for Wavelength Ranges Shorter than 360 to 780 nm—When data for $R(\lambda)$, $T(\lambda)$, or $\beta(\lambda)$ are not available for the full wavelength range, add the weights at the wavelengths for which data are not available to the weights at the shortest and longest wavelength for which spectral data are available. That is: add the weights for wavelengths 360, ..., up to the last wavelength for which measured data are not available, to the next higher weight, for which such data are available; add the weights for wavelengths of 780, ..., down to the last wavelength for which measured data are not available, to the next lower weight, for which such data are available.

7.3.3 *Tristimulus Values*—Obtain the products of R (λ), T (λ) or $\beta(\lambda)$ and the weights selected in 7.3.1 or 7.3.2, including any modifications, and sum to obtain the CIE tristimulus values X, Y, Z, or X_{10} , Y_{10} , Z_{10} .

7.4 *Chromaticity Coordinates*—Obtain chromaticity coordinates x, y, z (for the CIE 1931 standard observer) by dividing each tristimulus value X, Y, Z by the sum of all three: x = X/(X + Y + Z); y = Y/(X + Y + Z); and z = Z/(X + Y + Z), or use the same procedure with all quantities having the subscript 10 for the CIE 1964 supplementary standard observer.

7.5 CIE 1976 Uniform Color Spaces— When a color space more nearly uniform than X, Y, Z is desired, use CIELAB or CIELUV.

7.5.1 CIELAB or L*a*b*—This approximately uniform color space is produced by plotting in rectangular coordinates the quantities L*, a*, b* defined as follows:

$$L^* = 116(Y/Y_n)^{1/3} - 16$$

$$a^* = 500[(X/X_n)^{1/3} - (Y/Y_n)^{1/3}]$$

$$b^* = 200[(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3}]$$
(8)

where:

$$X/X_n$$
; Y/Y_n ; $Z/Z_n > 0.01$. (9)

The tristimulus values X_n , Y_n , Z_n define the color of the normally white object-color stimulus. Usually, the white object-color stimulus is given by the spectral radiant power of one of the CIE standard illuminants, for example, C, D_{65} or another of daylight quality, reflected into the observer's eye by the perfect reflecting diffuser. Under these conditions, X_n , Y_n , Z_n are the tristimulus values of the standard illuminant with Y_n equal to 100 obtained by use of the same method used to obtain X, Y, Z (see 7.6).

7.5.1.1 The CIE 1976 ($L^*a^*b^*$) space fails to approximate uniform color spacing when one or more of the ratios X/X_m Y/Y_n , and Z/Z_n is less than 0.01.

7.5.1.2 In calculating L^* , values of Y/Y_n less than 0.01 may be included if the normal formula is used for values of Y/Y_n greater than 0.008856, and the following modified formula is used for values of Y/Y_n equal to or less than 0.008856:

$$L^* = 903.3(Y/Y_n) Y/Y_n \le 0.008856 (10)$$

7.5.1.3 In calculating a^* and b^* values of X/X_n , Y/Y_n , Z/Z_n less than 0.01 may be included if the normal equations are replaced by the following modified equations for *all* calculations of a^* and b^* :

$$a^* = 500[f(X/X_n) - f(Y/Y_n)]$$

$$b^* = 200[f(Y/Y_n) - f(Z/Z_n)]$$
(11)

where:

$$\begin{split} f(X/X_n) &= (X/X_n)^{1/3} & X/X_n > 0.008856 & (12) \\ f(X/X_n) &= 7.787(X/X_n) + 16/116 & X/X_n \leq 0.008856 \\ f(Y/Y_n) &= (Y/Y_n)^{1/3} & Y/Y_n > 0.008856 \\ f(Y/Y_n) &= 7.787(Y/Y_n) + 16/116 & Y/Y_n \leq 0.008856 \\ f(Z/Z_n) &= (Z/Z_n)^{1/3} & Z/Z_n > 0.008856 \\ f(Z/Z_n) &= 7.787(Z/Z_n) + 16/116 & Z/Z_n \leq 0.008856 \end{split}$$

7.5.2 CIELUV or $L^*u^*v^*$ —This approximately uniform color space is produced by plotting in rectangular coordinates the quantities L^* , u^* , v^* defined as follows (see also Note 5):

$$L^* = 116(Y/Y_n)^{1/3} - 16 \qquad Y/Y_n > 0.01$$

$$u^* = 13L^*(u' - u'_n)$$

$$v^* = 13L^*(v' - v'_n)$$
(13)

with:

$$u' = \frac{4X}{X + 15Y + 3Z}$$

$$v' = \frac{9Y}{X + 15Y + 3Z}$$

$$u'_{n} = \frac{4X_{n}}{X_{n} + 15Y_{n} + 3Z_{n}}$$

$$v'_{n} \frac{9Y_{n}}{X_{n} + 15Y_{n} + 3Z_{n}}$$
(14)

7.5.2.1 In calculating L^* values for Y/Y_n less than 0.01, use the same equation given in 7.5.1.3.

Note 5—The CIE 1976 $L^*u^*v^*$ space incorporates, for constant L^* , a (u', v') chromaticity diagram which is a projective transformation of the CIE 1931 (x, y) chromaticity diagram. Straight lines in the (x, y) chromaticity diagram remain straight in the (u', v') diagram.

7.5.3 LCH Versions of CIELAB and CIELUV:

7.5.3.1 It may be useful to calculate CIE 1976 hue and chroma coordinates as follows, combining them with L^* to provide alternative sets of LCH coordinates within the CIELAB and CIELUV spaces:

CIE 1976 hue angles:

$$h_{\rm ab} = \tan^{-1}(b^*/a^*)$$
 or $h_{\rm uv} = \tan^{-1}(v^*/u^*)$ (15)

CIE 1976 chromas:

$$C_{ab}^* = [(a^*)^2 + (b^*)^2]^{1/2}$$
 or $C_{uv}^* = [(u^*)^2 + (v^*)^2]^{1/2}$ (16)

7.5.3.2 Differences in hue angle between two specimens can be correlated with differences in their visually perceived hue,

and differences in their chroma can similarly be correlated with differences in their visually perceived chroma (see also Test Method D 2244).

7.6 Tristimulus Values X_n , Y_n , Z_n :

7.6.1 It is emphasized that the tristimulus values of the nominally white object-color stimulus must always be calculated by the same method used to calculate tristimulus values for other colors with which they are to be used. This implies not only use of the same illuminant and observer, but also of the same measurement interval, bandpass, band shape, and method of summation. When using Tables 5 or 6 for measurement intervals of 10 or 20 nm, the values tabulated as "White Point" at the bottoms of the tables must always be the ones used for X_n , Y_n , and Z_n .

7.6.2 Use values of X_n , Y_n , and Z_n meeting the above requirements in the calculation of CIELAB coordinates and in some single-number color scales such as those for indexes of yellowness and whiteness, among others (see Practice E 313).

8. Report

- 8.1 The report of color calculations shall include the following:
 - 8.1.1 Specimen Identification:
- 8.1.2 *Source of Data*—Give instrument identification, illuminating and viewing geometry, spectral bandpass, and date of measurement.
- 8.1.3 Standard Observers—Indicate whether the reported data were computed for the CIE 1931 standard observer (2°) or the CIE 1964 supplementary standard observer (10°), or specify any other observers that were used.
- 8.1.4 Standard or Recommended Illuminants—Indicate which of the following illuminants were used, or specify any other illuminants that were used: A, C, D_{50} , D_{55} , D $_{65}$, D_{75} , F2, F7, F11.
- 8.1.5 *Bandpass Correction*—Indicate whether or not the spectral data were corrected for bandpass, and which sets of tables of tristimulus weighting factors were used.
- 8.1.6 Method of Calculation—Indicate whether the procedures for 1-nm bandpass and measurement interval, or for 5-nm triangular bandpass and measurement interval, or a specific abridged procedure (for 10- or 20-nm triangular bandpass and measurement interval) were used, and give the wavelength range of the spectral data used.
 - 8.1.7 Tristimulus Values—Report as X, Y, Z or X_{10} , Y_{10} , Z_{10} .
 - 8.1.8 Chromaticity Coordinates—Report as x, y or x_{10} , y_{10} .
- 8.1.9 As an alternative to 8.1.7 or 8.1.8, report CIELAB results as L*a*b* or $L*C*_{ab}h$ ab, or CIELUV results as L*u*v* or $L*C*_{uv}h_{uv}$.

9. Precision and Bias

- 9.1 *Precision*—The precision of results calculated by use of Tables 1-5 is limited by the precision of the measured spectral data and round-off of the data used in the calculations. The precision of Tables 6, incorporating correction for bandpass dependence, is believed to be about 4.5 log units (digits). Thus the precision of the results is expected to be limited by the precision of the spectral data, not of the tables.
- 9.2 *Bias*—In the calculation procedures of 7.2, the bias is the same as the precision when the same spectral data are used.

Bias of the abridged calculation procedures of 7.3 depends on the measurement interval and wavelength range, the complexity of the spectral character of the specimen, and the degree to which the passband of the measuring instrument conforms to the width and ideal triangular shape assumed in computing the tables. Least bias is obtained with the smallest measurement interval, the largest wavelength range, and the best correspondence of passband width and shape.

9.2.1 The uncertainty of the tristimulus values depends on the uncertainty of the spectral measurements.

9.2.2 The use of Tables 6, which incorporate the correction for bandpass dependence, has been shown (11) to reduce, on average, the bias of these calculations by about 0.1 to 0.3

CIELAB unit of color difference, when compared to calculations in which the bandpass correction is ignored. The actual reduction in bias in any given case depends on the spectral character of the data used.

9.2.3 The bias introduced by conversion of text to numeric formats, and that introduced by floating-point processor noise, are mostly insignificant.

10. Keywords

10.1 CIELAB; CIELUV; CIE system; color coordinates; tristimulus integration; tristimulus values; tristimulus weighting factors

REFERENCES

- (1) Foster, W. H., Jr., Gans, R., Stearns, E. I., and Stearns, R. E., "Weights for Calculation of Tristimulus Values from Sixteen Reflectance Values," *Color Engineering*, Vol 8, No. 3, 1970, pp. 35–47.
- (2) Stearns, E. I., "Weights for Calculation of Tristimulus Values," *Clemson Review of Industrial Management and Textile Science*, Vol 14, No. 1, 1975, pp. 79–113.
- (3) Commission Internationale de l'Éclairage, Publication CIE No. 15.2, *Colorimetry*, 2nd ed., Central Bureau of the CIE, Vienna, 1986.
- (4) Commission Internationale de l'Éclairage, Publication CIE No. 17, International Lighting Vocabulary, 3rd ed., 1970; 4th ed., 1987. Central Bureau of the CIE, Vienna.
- (5) Judd, D. B., and Wyszecki, G., "Calculation of Tristimulus Values and Chromaticity Coordinates," *Color in Business, Science and Industry*, 3rd ed., John Wiley and Sons, New York, 1975, pp. 139–149.
- (6) Billmeyer, F. W., and Saltzman, M., Principles of Color Technology, 2nd ed., John Wiley and Sons, New York, 1981.

- (7) Hunter, R. S., and Harold, R. W., *The Measurement of Appearance*, 2nd ed., John Wiley and Sons, New York, 1987.
- (8) Wyszecki, G., and Stiles, W. S., Color Science, 2nd ed., John Wiley and Sons, New York, 1982.
- (9) Billmeyer, F. W., and Fairman, H. S., "CIE Method for Calculating Tristimulus Values," *Color Research and Application*, Vol 12, 1987, pp. 27–36.
- (10) Stearns, E. I., and Stearns, R. E., "An Example of a Method for Correcting Radiance Data for Bandpass Error," *Color Research and Application*, Vol 13, 1988, pp. 257–259.
- (11) Venable, W. H., "Accurate Tristimulus Values from Spectral Data," Color Research and Application, Vol 14, 1989, pp. 260–267.
- (12) Fairman, H. S., "The Calculation of Weight Factors for Tristimulus Integration," Color Research and Application, Vol 10, 1985, pp. 199–203.

INTRODUCTION TO TABLES 5 AND 6

Tables 5 and 6 consist of sets of 36 tables each, containing tristimulus weighting factors for a variety of CIE standard and recommended illuminants and the CIE 1931 and 1964 standard

TABLE 5 Index for Tables 5.1 Through 5.36 and Tables 6.1 Through 6.36

Tables	Illum- inant	Ob- server	Measure- ment Interval	Tables	Illum- inant	Ob- server	Measure- ment Interval
5.1, 6.1	Α	1931	10 nm	5.19, 6.19	D ₆₅	1964	10 nm
5.2, 6.2	Α	1931	20	5.20, 6.20	D ₆₅	1964	20
5.3, 6.3	Α	1964	10	5.21, 6.21	D ₇₅	1931	10
5.4, 6.4	Α	1964	20	5.22, 6.22	D ₇₅	1931	20
5.5, 6.5	С	1931	10	5.23, 6.23	D ₇₅	1964	10
5.6, 6.6	С	1931	20	5.24, 6.24	D ₇₅	1964	20
5.7, 6.7	С	1964	10	5.25, 6.25	F2	1931	10
5.8, 6.8	С	1964	20	5.26, 6.26	F2	1931	20
5.9, 6.9	D_{50}	1931	10	5.27, 6.27	F2	1964	10
5.10, 6.10	D_{50}	1931	20	5.28, 6.28	F2	1964	20
5.11, 6.11	D_{50}	1964	10	5.29, 6.29	F7	1931	10
5.12, 6.12	D_{50}	1964	20	5.30, 6.30	F7	1931	20
5.13, 6.13	D ₅₅	1931	10	5.31, 6.31	F7	1964	10
5.14, 6.14	D ₅₅	1931	20	5.32, 6.32	F7	1964	20
5.15, 6.15	D ₅₅	1964	10	5.33, 6.33	F11	1931	10
5.16, 6.16	D ₅₅	1964	20	5.34, 6.34	F11	1931	20
5.17, 6.17	D ₆₅	1931	10	5.35, 6.35	F11	1964	10
5.18, 6.18	D ₆₅	1931	20	5.36, 6.36	F11	1964	20

observers. Both 10-nm and 20-nm measurement intervals are represented for all illuminant-observer combinations. The tables are presented with three decimal digits of precision. These digits should be carried in the calculations until the final values sought are calculated, and only then should the results be rounded to the appropriate number of significant digits available in the measured data.

Note that in the case of the values in Tables 5 the interpolation procedure, and in the case of the values in Tables 6 the approximating procedure, lead to some small values with a negative sign. This sign is correct, and the corresponding entry must be carried in the calculations as a negative number.

The data labeled "Check Sum" at the bottom of each column in each table of Tables 5 and 6 is the algebraic sum of the entries above. It provides as a convenience the assurance that the tables have been copied correctly should copying be required. These check sums may not be identical to the "White Point" data located below them because of roundoff. Each value in a column has been rounded to three decimal digits. The "White Point" is the analytic total of the double-precision values at each wavelength, rounded to three decimal digits. It is these "White Point" data, and no others, that must be used as

 X_n , Y_n , Z_n when converting tristimulus values calculated by use of these tables to CIELAB or CIELUV coordinates or for any other purpose requiring the ratio of the tristimulus value of the specimen to that of the white point.

The tables of Tables 5 have been prepared for use with spectral measurement data that have previously been corrected for spectral bandpass dependence. The tables of Tables 6 have been prepared to apply a correction for spectral bandpass dependence built into the calculation of the tristimulus values. Accordingly, users should determine the status of their spectral

data and select from Tables 5 or Tables 6 for data previously corrected, or not corrected, respectively, for bandpass dependence.

The tables presented here were calculated from the data on CIE Standard D 001 (see 2.3) and have been reproduced here photographically to avoid any possible transcription errors.

Tables 5.1 through Tables 6.36 are indexed by illuminant, observer, and measurement interval in the accompanying Index Table.

Table 5.1	1	: A, 1931 C 0 nm Inter	val	Table 5.3	1	A, 1964 (0 nm Inte	
nm	W _x	w,	$\mathbf{W}_{\mathbf{z}}$	nm	$W_{10,x}$	$\mathbf{W}_{10,\mathbf{v}}$	$\mathbf{W}_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.001	370	0.000	0.000	0.000
380	0.001	0.000	0.005	380	0.000	0.000	0.000
390	0.005	0.000	0.021	390	0.002	0.000	0.008
400	0.017	0.000	0.083	400	0.025	0.003	0.110
410	0.070	0.002	0.333	410	0.134	0.014	0.615
420	0.272	0.008	1.309	420	0.377	0.039	1.792
430	0.644	0.027	3.144	430	0.686	0.084	3.386
440	0.924	0.061	4.635	440	0.964	0.156	4.944
450	1.036	0.117	5.461	450	1.080	0.259	5.806
460	1.017	0.209	5.838	460	1.006	0.424	5.812
470	0.779	0.362	5.128	470	0.731	0.696	4.919
480	0.428	0.618	3.639	480	0.343	1.082	3.300
490	0.160	1.039	2.332	490	0.078	1.616	1.973
500	0.024	1.802	1.513	500	0.022	2.422	1.152
510	0.059	3.091	0.962	510	0.218	3.529	0.658
520	0.428	4.756	0.533	520	0.750	4.840	0.382
530	1.210	6.320	0.305	530	1.642	6.100	0.211
540	2.313	7.599	0.162	540	2.842	7.250	0.102
550	3.735	8.571	0.075	550	4.336	8.114	0.032
560	5.511	9.219	0.036	560	6.200	8.758	0.001
570	7.573	9.456	0.021	570	8.262	8.988	0.000
580	9.718	9.224	0.017	580	10.227	8.760	0.000
590	11.583	8.543	0.013	590	11.945	8.304	0.000
600	12.706	7.547	0.010	600	12.746	7.468	0.000
610	12.671	6.360	0.005	610	12.337	6.323	0.000
620	11.347	5.061	0.002	620	10.817	5.033	0.000
630	9.010	3.716	0.001	630	8.560	3.744	0.000
640	6.551	2.559	0.000	640	6.014	2.506	0.000
650	4.345	1.639	0.000	650	3.887	1.560	0.000
660	2.626	0.971	0.000	660	2.309	0.911	0.000
670	1.457	0.533	0.000	670	1.276	0.499	0.000
680	0.794	0.289	0.000	680	0.666	0.259	0.000
690	0.406	0.147	0.000	690	0.336	0.130	0.000
700	0.207	0.075	0.000	700	0.166	0.065	0.000
710	0.109	0.039	0.000	710	0.082	0.032	0.000
720	0.056	0.020	0.000	720	0.040	0.016	0.000
730	0.029	0.010	0.000	730	0.020	0.008	0.000
740	0.014	0.005	0.000	740	0.020	0.004	0.000
750	0.007	0.003	0.000	750	0.005	0.004	0.000
760	0.004	0.001	0.000	760	0.003	0.002	0.000
770	0.004	0.001	0.000	770	0.003	0.001	0.000
780	0.001	0.000	0.000	780	0.001	0.000	0.000
Check Sum	109.849	100.000	35.584	Check Sum			35.203
White Point	109.850	100.000	35.585	White Point	111.146	100.000 100.000	35.203
		A, 1931 O			111.144		
	20	nm Inter	val	Table 5.4	20	A, 1964 C nm Inter	val
nm	W _x	W,	W _z	nm	W _{10,x}	W _{10.y}	$\mathbf{W}_{10,z}$
360	0.000	0.000	-0.001	360	0.000	0.000	-0.001
380	-0.002	0.000	-0.008	380	-0.009	-0.001	-0.041
400	0.020	0.000	0.088	400	0.060	0.005	0.257
420	0.614	0.017	2.944	420	0.773	0.078	3.697
440	1.812	0.118	9.121	440	1.900	0.304	9.755
460	1.982	0.410	11.430	460	1.971	0.855	11.487
480	0.889	1.204	7.444	480	0.718	2.146	6.785
500	0.023	3.720	3.035	500	0.043	4.899	2.321
520	0.902	9.446	1.095	520	1.522	9.647	0.743
540	4.619	15.187	0.314	540	5.677	14.461	0.196
560	11.082	18.429	0.070	560	12.445	17.474	0.005
580	19.472	18.411	0.031	580	20.554	17.584	-0.003
600	25.292	15.107	0.018	600	25.332	14.896	0.000
620	22.531	10.092	0.005	620	21.571	10.080	0.000
640	13.195	5.145	0.000	640	12.179	5.068	0.000
660	5.312	1.954	0.000	660	4.668	1.830	0.000
680	1.564	0.566	0.000	680	1.324	0.513	0.000
700	0.402	0.145	0.000	700	0.318	0.123	0.000
720	0.107	0.039	0.000	720	0.075	0.029	0.000
740	0.027	0.010	0.000	740	0.018	0.007	0.000
760	0.007	0.002	0.000	760	0.005	0.002	0.000
780	0.002	0.001	0.000	780	0.001	0.001	0.000
Check Sum	109.852	100.003	35.586	Check Sum	111.145	100.001	35.201
White Point	109.850	100.000	35.585	White Point	111.144	100.000	35.200

Table 5.5	Illuminant 10	C, 1931 C) nm Inter		Table 5.7) nm Inter	
nm	W _x	w,	W_z	nm	$\mathbf{W}_{10,\mathbf{x}}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.001	0.000	0.004	370	0.000	0.000	0.000
380	0.004	0.000	0.017	380	0.000	0.000	-0.002
						0.001	0.025
390	0.018	0.001	0.084	390	0.006		
400	0.076	0.002	0.358	400	0.102	0.011	0.457
410	0.325	0.009	1.547	410	0.594	0.060	2.728
420	1.292	0.038	6.207	420	1.705	0.179	8.117
430	2.968	0.123	14.496	430	3.025	0.372	14.933
440	3.959	0.261	19.860	440	3.944	0.638	20.229
450	3.931	0.443	20.728	450	3.919	0.941	21.068
460	3.360	0.692	19.286	460	3.178	1.340	18.361
470	2.283	1.061	15.022	470	2.047	1.948	13.768
480				480	0.856	2.695	8.218
	1.116	1.612	9.479				4.273
490	0.363	2.358	5.286	490	0.171	3.502	
500	0.048	3.414	2.868	500	0.040	4.387	2.088
510	0.092	4.842	1.512	510	0.325	5.291	0.986
520	0.578	6.449	0.720	520	0.970	6.274	0.493
530	1.519	7.936	0.381	530	1.971	7.319	0.252
540	2.786	9.145	0.195	540	3.271	8.339	0.117
550	4.285	9.831	0.086	550	4.755	8.896	0.035
560	5.877	9.834	0.038	560	6.319	8.928	0.001
				570	7.637	8.311	0.000
570	7.323	9.148	0.020				
580	8.414	7.990	0.015	580	8.464	7.253	0.000
590	8.985	6.629	0.010	590	8.855	6.158	0.000
600	8.958	5.321	0.007	600	8.589	5.032	0.000
610	8.324	4.177	0.003	610	7.747	3.969	0.000
620	7.055	3.146	0.001	620	6.427	2.990	0.000
630	5.327	2.196	0.000	630	4.837	2.116	0.000
640	3.692	1.442	0.000	640	3.240	1.350	0.000
650	2.352	0.887	0.000	650	2.011	0.807	0.000
				660	1.143	0.451	0.000
660	1.360	0.503	0.000				
670	0.713	0.261	0.000	670	0.597	0.234	0.000
680	0.364	0.132	0.000	680	0.292	0.114	0.000
690	0.172	0.062	0.000	690	0.136	0.053	0.000
700	0.080	0.029	0.000	700	0.062	0.024	0.000
710	0.039	0.014	0.000	710	0.028	0.011	0.000
720	0.019	0.007	0.000	720	0.013	0.005	0.000
730	0.009	0.003	0.000	730	0.006	0.002	0.000
740	0.004	0.001	0.000	740	0.003	0.001	0.000
750				750	0.001	0.000	0.000
	0.002	0.001	0.000	760	0.001	0.000	0.000
760	0.001	0.000	0.000			0.000	0.000
770	0.000	0.000	0.000	770	0.000		
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	98.074	100.000	118.230	Check Sum	97.287	100.002	116.147
White Point	98.074	100.000	118.232	White Point	97.285	100.000	116.145
Table 5.6	Illuminant			l able 5.8	Illuminant		
		nm Inter				onm Inter	
nm	W_{x}	w,	W_z	nm	$W_{10,x}$	$W_{10,y}$	$\mathbf{W}_{10,x}$
360	-0.001	0.000	-0.006	360	-0.001	0.000	-0.005
380	-0.011	0.000	-0.054	380	-0.040	-0.004	-0.187
400	0.089	-0.001	0.393	400	0.262	0.022	1.120
420	2.919	0.085	14.033	420	3.508	0.364	16.803
440		0.511	38.518	440	7.662	1.249	39.339
	7.649			460	6.326	2.727	36.719
460	6.641	1.382	38.120				
480	2.364	3.206	19.564	480	1.851	5.369	17.043
500	0.069	6.910	5.752	500	0.072	8.754	4.191
520	1.198	12.876	1.442	520	1.955	12.599	0.909
540	5.591	18.258	0.357	540	6.561	16.605	0.212
560	11.750	19.588	0.073	560	12.610	17.753	0.004
580	16.794	15.991	0.026	580	16.954	14.592	-0.003
600	17.896	10.696	0.013	600	17.141	10.080	0.000
620	14.018	6.261	0.003	620	12.823	5.977	0.000
640	7.457			640	6.579	2.733	0.000
		2.902	0.000	660	2.304	0.902	0.000
660	2.746	1.008	0.000				0.000
680	0.712	0.257	0.000	680	0.576	0.223	
700	0.153	0.055	0.000	700	0.115	0.044	0.000
720	0.034	0.012	0.000	720	0.022	0.009	0.000
740	0.007	0.003	0.000	740	0.005	0.002	0.000
760	0.002	0.001	0.000	760	0.001	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	98.077	100.001	118.234	Check Sum	97.286	100.000	116.145
White Point	98.074	100.000	118.232	White Point	97.285	100.000	116.145
TIME I OIL	55.01						

Table 5.9		nm Interv	val		10	nm Inter	
nm	W _x	W,	W_z	nm	W _{10.x}	$\mathbf{W}_{10,\mathbf{y}}$	$\mathbf{W}_{10,z}$
360	0.000	0.000	0.001	360	0.000	0.000	0.000
370	0.001	0.000	0.005	370	0.000	0.000	0.000
380	0.003	0.000	0.013	380	0.000	0.000	-0.002
390	0.012	0.000	0.057	390	0.004	0.000	0.017
400	0.060	0.002	0.285	400	0.083	0.009	0.371
410	0.234	0.002	1.113	410	0.427	0.044	1.966
		0.023	3.723	420	1.049	0.110	4.989
420	0.775	0.023	7.862	430	1.668	0.204	8.231
430	1.610			440	2.487	0.403	12.758
440	2.453	0.162	12.309	450	2.814	0.677	15.129
450	2.777	0.313	14.647	460	2.404	1.012	13.886
460	2.500	0.514	14.346	470	1.565	1.490	10.528
470	1.717	0.798	11.299		0.671	2.108	6.442
480	0.861	1.239	7.309	480		2.779	3.392
490	0.283	1.839	4.128	490	0.135	3.850	1.824
500	0.040	2.948	2.466	500	0.035		
510	0.088	4.632	1.447	510	0.317	5.143	0.960
520	0.593	6.587	0.736	520	1.010	6.513	0.513
530	1.590	8.308	0.401	530	2.098	7.791	0.269
540	2.799	9.197	0.196	540	3.341	8.525	0.120
550	4.207	9.650	0.085	550	4.745	8.877	0.035
560	5.657	9.471	0.037	560	6.183	8.742	0.001
570	7.132	8.902	0.020	570	7.560	8.222	0.000
580	8.540	8.112	0.015	580	8.733	7.485	0.000
590	9.255	6.829	0.010	590	9.273	6.449	0.000
600	9.835	5.838	0.007	600	9.586	5.613	0.000
610	9.469	4.753	0.004	610	8.959	4.592	0.000
620	8.009	3.573	0.002	620	7.419	3.452	0.000
630	5.926	2.443	0.001	630	5.471	2.392	0.000
640	4.171	1.629	0.000	640	3.721	1.550	0.000
650	2.609	0.984	0.000	650	2.268	0.910	0.000
660	1.541	0.570	0.000	660	1.316	0.519	0.000
670	0.855	0.313	0.000	670	0.728	0.285	0.000
680	0.434	0.158	0.000	680	0.354	0.138	0.000
690	0.194	0.070	0.000	690	0.155	0.060	0.000
700	0.097	0.035	0.000	700	0.076	0.029	0.000
710	0.050	0.018	0.000	710	0.036	0.014	0.000
720	0.022	0.008	0.000	720	0.015	0.006	0.000
730	0.012	0.004	0.000	730	0.008	0.003	0.000
740	0.006	0.002	0.000	740	0.004	0.002	0.000
750	0.002	0.001	0.000	750	0.002	0.001	0.000
760	0.002	0.000	0.000	760	0.001	0.000	0.000
770	0.001	0.000	0.000	770	0.000	0.000	0.000
770 780	0.001	0.000	0.000	780	0.000	0.000	0.000
Check Sum	96.421	99.997	82.524	Check Sum	96.721	99.999	81.429
White Point	96.422	100.000	82.521	White Point	96.720	100.000	81.427
							64 Observer
Table 5.10) Illuminant 20	nm Inter		Table 5.12	20	nm Inter	val
nm	W_{x}	Wy	W_z	nm	$W_{10,x}$	$W_{10,y}$	$\mathbf{W}_{10,x}$
360	-0.001°	0.000	-0.003	360	-0.001	0.000	-0.004
380	-0.007	0.000	-0.034	380	-0.028	-0.003	-0.130
400	0.100	0.001	0.459	400	0.227	0.021	0.994
420	1.651	0.044	7.914	420	2.059	0.207	9.821
440	4.787	0.325	24.153	440	4.874	0.803	25.080
460	4.897	1.018	28.125	460	4.741	2.045	27.526
480	1.815	2.413	15.027	480	1.441	4.145	13.316
500	0.044	6.037	4.887	500	0.065	7.734	3.613
520	1.263	13.141	1.507	520	2.066	13.058	0.982
540	5.608	18.442	0.375	540	6.698	17.059	0.228
560	11.361	18.960	0.069	560	12.397	17.467	0.003
580	16.904	16.060	0.026	580	17.346	14.898	-0.003
600	19.537	11.646	0.014	600	19.013	11.159	0.000
620	15.917	7.132	0.003	620	14.807	6.921	0.000
640	8.342	3.245	0.000	640	7.481	3.107	0.000
660	3.112	1.143	0.000	660	2.654	1.039	0.000
680	0.857	0.310	0.000	680	0.705	0.273	0.000
700	0.178	0.064	0.000	700	0.136	0.053	0.000
720	0.044	0.016	0.000	720	0.029	0.011	0.000
740	Q. O 1 1		0.000	740	0.007	0.003	0.000
	0.011	0.004					
760	0.011 0.002	0.004 0.001		760	0.001	0.001	0.000
760 780	0.002	0.001	0.000		0.001 0.000		
760 780 Check Sum	0.002 0.001	0.001 0.000	0.000 0.000	760		0.001	0.000
780	0.002	0.001	0.000	760 780	0.000	0.001 0.000	0.000 0.000

		D55, 193 nm Inter	31 Observer val	Table 5.15	10	D55, 19 nm Inte	64 Observer rval
nm	W_{x}	W _v	W_z	nm	W _{10,x}	$\mathbf{W}_{10,\mathbf{y}}$	$W_{10,z}$
360	0.000	0.000	0.001	360	0.000	0.000	0.000
370	0.001	0.000	0.006	370	0.000	0.000	0.000
380	0.004	0.000	0.017	380	0.000	0.000	-0.002
390	0.015	0.000	0.073	390	0.005	0.001	0.022
400	0.073	0.002	0.353	400	0.102	0.011	0.457
		0.002	1.350	410	0.515	0.053	2.370
410	0.284					0.130	5.922
420	0.924	0.027	4.440	420	1.245		9.596
430	1.886	0.077	9.208	430	1.944	0.238	
440	2.805	0.186	14.076	440	2.829	0.459	14.517
450	3.119	0.352	16.447	450	3.144	0.757	16.906
460	2.769	0.570	15.893	460	2.651	1.116	15.309
470	1.877	0.872	12.353	470	1.703	1.621	11.453
480	0.929	1.338	7.891	480	0.721	2.265	6.921
490	0.301	1.960	4.399	490	0.143	2.947	3.597
500	0.042	3.101	2.593	500	0.037	4.029	1.908
510	0.092	4.822	1.506	510	0.329	5.329	0.995
520	0.610	6.779	0.758	520	1.034	6.671	0.525
530	1.622	8.476	0.409	530	2.130	7.910	0.273
540	2.835	9.314	0.199	540	3.367	8.592	0.121
550	4.231	9.706	0.085	550	4.749	8.885	0.035
560	5.654	9.467	0.037	560	6.151	8.696	0.001
570	7.089	8.848	0.020	570	7.479	8.133	0.000
580	8.431	8.009	0.015	580	8.580	7.355	0.000
590	9.044	6.674	0.010	590	9.019	6.272	0.000
600	9.503	5.641	0.007	600	9.218	5.398	0.000
610	9.070	4.553	0.003	610	8.540	4.377	0.000
620	7.616	3.398	0.002	620	7.020	3.267	0.000
630	5.593	2.306	0.000	630	5.139	2.247	0.000
640	3.897	1.522	0.000	640	3.459	1.441	0.000
650	2.420	0.913	0.000	650	2.094	0.840	0.000
66Û	1.416	0.524	0.000	660	1.204	0.475	0.000
670	0.779	0.285	0.000	670	0.660	0.258	0.000
680	0.394	0.143	0.000	680	0.319	0.124	0.000
690	0.176	0.064	0.000	690	0.141	0.055	0.000
700	0.088	0.032	0.000	700	0.068	0.027	0.000
710	0.046	0.016	0.000	710	0.033	0.013	0.000
720	0.020	0.007	0.000	720	0.014	0.005	0.000
730	0.011	0.004	0.000	730	0.007	0.003	0.000
740							
		0.002	0.000	740	0.004	0.001	0.000
	0.005	0.002	0.000 0.000	740 750	0.004 0.002	0.001 0.001	0.000 0.000
750	0.002	0.001	0.000	750	0.002	0.001	0.000
750 760	0.002 0.001	0.001 0.000	0.000 0.000	750 760	0.002 0.001	0.001 0.000	0.000 0.000
750 760 770	0.002 0.001 0.001	0.001 0.000 0.000	0.000 0.000 0.000	750 760 770	0.002 0.001 0.000	0.001 0.000 0.000	0.000 0.000 0.000
750 760 770 780	0.002 0.001 0.001 0.000	0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000	750 760 770 780	0.002 0.001 0.000 0.000	0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000
750 760 770 780 Check Sum	0.002 0.001 0.001 0.000 95.676	0.001 0.000 0.000 0.000 99.999	0.000 0.000 0.000 0.000 92.151	750 760 770 780 Check Sum	0.002 0.001 0.000 0.000 95.800	0.001 0.000 0.000 0.000 100.002	0.000 0.000 0.000 0.000 90.926
750 760 770 780	0.002 0.001 0.001 0.000 95.676	0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000	750 760 770 780	0.002 0.001 0.000 0.000	0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000
750 760 770 780 Check Sum White Point Table 5.14	0.002 0.001 0.001 0.000 95.676 95.682	0.001 0.000 0.000 0.000 99.999 100.000	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer	750 760 770 780 Check Sum White Point Table 5.16	0.002 0.001 0.000 0.000 95.800 95.799	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19	0.000 0.000 0.000 0.000 90.926 90.926
750 760 770 780 Check Sum White Point Table 5.14	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20	0.001 0.000 0.000 0.000 99.999 100.000 D55, 193 nm Inter	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer	750 760 770 780 Check Sum White Point Table 5.16	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte	0.000 0.000 0.000 0.000 90.926 90.926
750 760 770 780 Check Sum White Point Table 5.14 nm	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x	0.001 0.000 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _y	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z	750 760 770 780 Check Sum White Point Table 5.16	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10,x}	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,z}
750 760 770 780 Check Sum White Point Table 5.14 nm 360	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001	0.001 0.000 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004	750 760 770 780 Check Sum White Point Table 5.16 nm 360	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.v} 0.000	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.2} -0.005
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008	0.001 0.000 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.000	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.v} 0.000 -0.003	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.2} -0.005 -0.155
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128	0.001 0.000 0.000 0.000 99.999 100.000 D55, 193 nm Inter W , 0.000 0.000	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037 0.589	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,z} -0.005 -0.155 1.232
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420	0.002 0.001 0.001 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _y 0.000 0.000 0.001 0.053	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037 0.589 9.414	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.Y} 0.000 -0.003 0.026 0.246	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.2} -0.005 -0.155 1.232 11.639
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _y 0.000 0.000 0.001 0.053 0.372	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.2} -0.005 -0.155 1.232 11.639 28.514
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420	0.002 0.001 0.001 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _y 0.000 0.000 0.001 0.053	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037 0.589 9.414	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,z} -0.005 -0.155 1.232 11.639 28.514 30.369
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.000 0.001 0.053 0.372 1.129 2.608	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10,y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,2} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W, 0.000 0.000 0.000 0.053 0.372 1.129	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10,y} 0.000 -0.003 0.246 0.246 0.913 2.254 4.453 8.098	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,z} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.000 0.001 0.053 0.372 1.129 2.608	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W ₁₀₂ -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047	0.001 0.000 0.000 9.999 100.000 D55, 193 nm Inter W _y 0.000 0.000 0.001 0.053 0.372 1.129 2.608 6.350	0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10,y} 0.000 -0.003 0.246 0.246 0.913 2.254 4.453 8.098	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,2} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297	0.001 0.000 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W ₁₀₂ -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677	0.001 0.000 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677	0.000 0.000 0.000 0.000 92.151 92.149 31 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10,x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W ₁₀₂ -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540	0.002 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.2} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600	0.002 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _y 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W ₁₀₂ -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620	0.002 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139	0.001 0.000 0.000 0.000 99.999 100.000 D55, 193 nm Inter W, 0.000 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580 600	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10,y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.x} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003 0.003	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014	0.001 0.000 0.000 0.000 100.000 D55, 19 nm Inte W _{10,y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W ₁₀₂ -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660	0.002 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803 2.860	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034 1.050	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 600 620 640	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014 6.965	0.001 0.000 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10,y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rival W _{10,2} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000 0.000
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680	0.002 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803 2.860 0.776	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034 1.050 0.281	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003 0.000 0.000	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10,x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014 6.965 2.427	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10,Y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892 0.950	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,z} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000 0.000 0.000
750 760 770 780 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700	0.002 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803 2.860 0.776 0.162	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _y 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034 1.050 0.281 0.058	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003 0.000 0.000 0.000 0.000	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014 6.965 2.427 0.636	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10,Y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892 0.950 0.246	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.2} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000 0.000 0.000 0.000
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803 2.860 0.776 0.162 0.040	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _y 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034 1.050 0.281 0.058 0.014	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003 0.000 0.000 0.000 0.000 0.000	750 760 770 780 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014 6.965 2.427 0.636 0.123	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10,Y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892 0.950 0.246 0.048	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.2} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803 2.860 0.776 0.162 0.040 0.010	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034 1.050 0.281 0.058 0.014 0.003	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014 6.965 2.427 0.636 0.123 0.027	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.Y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892 0.950 0.246 0.048	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10.2} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803 2.860 0.776 0.162 0.040 0.010 0.002	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W, 0.000 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034 1.050 0.281 0.058 0.014 0.003 0.001	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	750 760 770 780 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014 6.965 2.427 0.636 0.123 0.027 0.006	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892 0.950 0.246 0.010 0.002	0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,z} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
750 760 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803 2.860 0.776 0.162 0.040 0.010	0.001 0.000 0.000 99.999 100.000 D55, 193 nm Inter W _v 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034 1.050 0.281 0.058 0.014 0.003	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	750 760 770 780 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 Check Sum	0.002 0.001 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014 6.965 2.427 0.636 0.123 0.027 0.006 0.001 0.000 95.799	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892 0.950 0.246 0.010 0.002 0.000	0.000 0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W _{10,2} -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
750 760 770 780 770 780 Check Sum White Point Table 5.14 nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780	0.002 0.001 0.001 0.000 95.676 95.682 Illuminant 20 W _x -0.001 -0.008 0.128 1.963 5.471 5.430 1.964 0.047 1.297 5.677 11.359 16.674 18.887 15.139 7.803 2.860 0.776 0.162 0.040 0.010 0.002 0.001	0.001 0.000 0.000 0.000 99.999 100.000 0.000 0.000 0.000 0.001 0.053 0.372 1.129 2.608 6.350 13.522 18.677 18.956 15.848 11.262 6.781 3.034 1.050 0.281 0.058 0.014 0.003 0.001 0.000	0.000 0.000 0.000 0.000 92.151 92.149 81 Observer val W _z -0.004 -0.037 0.589 9.414 27.599 31.172 16.244 5.134 1.548 0.379 0.069 0.025 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	750 760 770 780 Check Sum White Point Table 5.16 nm 360 380 400 420 440 460 480 500 520 540 560 680 600 620 640 660 680 700 720 740 760 780	0.002 0.001 0.000 0.000 95.800 95.799 Illuminant 20 W _{10.x} -0.001 -0.033 0.280 2.440 5.542 5.232 1.554 0.067 2.114 6.749 12.335 17.028 18.293 14.014 6.965 2.427 0.636 0.123 0.027 0.006 0.001 0.000	0.001 0.000 0.000 100.002 100.000 D55, 19 nm Inte W _{10.y} 0.000 -0.003 0.026 0.246 0.913 2.254 4.453 8.098 13.376 17.191 17.380 14.630 10.739 6.548 2.892 0.950 0.246 0.048 0.048 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 90.926 90.926 64 Observer rval W ₁₀₂ -0.005 -0.155 1.232 11.639 28.514 30.369 14.325 3.775 1.002 0.229 0.002 -0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

	10	nm Inter			10	nm Inte	
nm	W _x	W _y	$\mathbf{W}_{\mathbf{z}}$	nm	$\mathbf{W}_{10,\mathbf{x}}$	$\mathbf{W}_{10,\mathbf{v}}$	W _{10,z}
360	0.000	0.000	0.001	360	0.000	0.000	0.000
370	0.002	0.000	0.010	370	0.000	0.000	0.000
380	0.006	0.000	0.026	380	0.000	0.000	-0.002
390	0.022	0.001	0.104	390	0.008	0.001	0.033
400	0.101	0.003	0.477	400	0.137	0.014	0.612
410	0.376	0.010	1.788	410	0.676	0.069	3.110
420	1.200	0.035	5.765	420	1.603	0.168	7.627
430	2.396	0.098	11.698	430	2.451	0.300	12.095
440	3.418	0.226	17.150	440	3.418	0.554	17.537
450	3.699	0.417	19.506	450	3.699	0.890	19.888
460	3.227	0.664	18.520	460	3.064	1.290	17.695
470	2.149	0.998	14.137	470	1.933	1.838	13.000
480	1.042	1.501	8.850	480	0.802	2.520	7.699
490	0.333	2.164	4.856	490	0.156	3.226	3.938
500	0.045	3.352	2.802	500	0.039	4.320	2.046
510	0.098	5.129	1.602	510	0.347	5.621	1.049
520	0.637	7.076	0.791	520	1.070	6.907	0.544
530	1.667	8.708	0.420	530	2.170		
540	2.884	9.474	0.202	540		8.059	0.278
550	4.250	9.752	0.086		3.397	8.668	0.122
560	5.626	9.419	0.037	550	4.732	8.855	0.035
570	6.988	8.722		560	6.070	8.581	0.001
580	8.214		0.019	570	7.311	7.951	0.000
		7.802	0.014	580	8.291	7.106	0.000
590	8.730	6.442	0.010	590	8.634	6.004	0.000
600	9.015	5.351	0.007	600	8.672	5.079	0.000
610	8.492	4.263	0.003	610	7.930	4.065	0.000
620	7.050	3.145	0.001	620	6.446	2.999	0.000
630	5.124	2.113	0.000	630	4.669	2.042	0.000
640	3.516	1.373	0.000	640	3.095	1.290	0.000
650	2.167	0.818	0.000	650	1.859	0.746	0.000
660	1.252	0.463	0.000	660	1.056	0.417	0.000
670	0.678	0.248	0.000	670	0.570	0.223	0.000
680	0.341	0.124	0.000	680	0.274	0.107	0.000
690	0.153	0.055	0.000	690	0.121	0.047	0.000
700	0.076	0.027	0.000	700	0.058	0.023	0.000
710	0.040	0.014	0.000	710	0.028	0.011	0.000
720	0.018	0.006	0.000	720	0.012	0.005	0.000
730	0.009	0.003	0.000	730	0.006	0.002	0.000
740	0.005	0.002	0.000	740	0.003	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.001	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.049	99.999	108.882	Check Sum		100.000	107.307
White Point		100.000	108.883	White Point		100.000	107.304
Table 5.18	Illuminant 20	D65, 193 nm Inter	31 Observer val	Table 5.20		D65, 196	
nm	W_{x}	W_{v}	W_z	nm	$W_{10,x}$	$\mathbf{W}_{10,\mathbf{y}}$	$\mathbf{W}_{10,\mathbf{z}}$
360	-0.001	ď	0.005	360	-0.001	0	-0.007
380	-0.008	0	-0.039	380	-0.043	-0.004	-0.2
400	0.179	0.002	0.829	400	0.378	0.035	1.667
420	2.542	0.071	12.203	420	3.138	0.320	14.979
440	6.670	0.453	33.637	440	6.701	1.104	34.461
460	6.333	1.316	36.334	460	6.054	2.605	35.120
480	2.213	2.933	18.278	480	1.739	4.961	15.986
500	0.052	6.866	5.543	500	0.071	8.687	4.038
520	1.348	14.106	1.611	520	2.183	13.844	1.031
540	5.767	18.981	0.382	540	6.801	17.327	0.229
560	11.301	18.863	0.068	560	12.171	17.153	0.002
580	16.256	15.455	0.025	580	16.465	14.150	-0.003
600	17.933	10.699	0.013	600	17.230	10.118	0.000
620	14.020	6.277	0.003	620	12.872	6.012	0.000
640	7.057	2.743	0.000	640	6.248	2.593	0.000
660	2.527	0.927	0.000	660	2.126	0.832	0.000
680	0.670	0.242	0.000	680	0.544	0.832	0.000
700	0.140						0.000
		0.050	0.000	700 730	0.105	0.041	
720 740	0.035	0.013	0.000	720 740	0.023	0.009	0.000
740 760	0.008	0.003	0.000	740	0.005	0.002	0.000 0.000
	0.002	0.001	0.000	760 780	0.001	0.000	
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum White Point		100.001 100.000	108.882 108.883	Check Sum White Point	94.811 94.811	99.999 100.000	107.303 107.304

Table 5.21		D75, 193 nm Inter	31 Observer	Table 5.23		D75, 19	964 Observer erval
nm	W _x	W _v	W _z	nm	W _{10,x}	W _{10.y}	W _{10,z}
360	0.000	0.000	0.002	360	0.000	0.000	0.000
370			0.013	370	0.000	0.000	0.000
	0.003	0.000			0.000	0.000	-0.002
380	0.007	0.000	0.035	380			
390	0.028	0.001	0.132	390	0.010	0.001	0.042
400	0.124	0.003	0.587	400	0.167	0.018	0.749
410	0.457	0.012	2.176	410	0.816	0.083	3.755
420	1.439	0.043	6.916	420	1.911	0.200	9.091
430	2.809	0.115	13.714	430	2.855	0.350	14.089
440	3.926	0.260	19.702	440	3.900	0.632	20.011
450	4.182	0.472	22.055	450	4.155	1.000	22.341
460	3.600	0.741	20.660	460	3.396	1.430	19.612
470	2.364	1.098	15.551	470	2,112	2.008	14.205
480	1.133	1.632	9.621	480	0.866	2.721	8.316
490	0.357	2.321	5.209	490	0.167	3.438	4.197
500	0.048	3.551	2.967	500	0.041	4.546	2.151
510	0.103	5.365	1.676	510	0.360	5.842	1.090
520	0.655	7.281	0.814	520	1.094	7.061	0.556
530	1.698	8.873	0.427	530	2.197	8.158	0.281
540	2.912	9.567	0.204	540	3.408	8.696	0.122
550	4.256	9.766	0.086	550	4.708	8.809	0.034
560	5.584	9.350	0.036	560	5.985	8.462	0.001
570	6.879	8.586	0.019	570	7.150	7.776	0.000
580	8.032	7.629	0.013	580	8.055	6.903	0.000
590	8.478	6.256	0.010	590	8.329	5.793	0.000
600	8.677	5.151	0.006	600	8.293	4.857	0.000
							0.000
610	8.105	4.068	0.003	610	7.519	3.854	0.000
620	6.673	2.977	0.001	620	6.060	2.820	
630	4.804	1.981	0.000	630	4.349	1.902	0.000
640	3.274	1.279	0.000	640	2.864	1.193	0.000
650	2.008	0.757	0.000	650	1.711	0.687	0.000
660	1.151	0.426	0.000	660	0.964	0.380	0.000
670	0.618	0.226	0.000	670	0.516	0.202	0.000
680	0.309	0.112	0.000	680	0.247	0.096	0.000
690	0.139	0.050	0.000	690	0.109	0.042	0.000
700	0.068	0.025	0.000	700	0.052	0.020	0.000
710	0.036	0.013	0.000	710	0.026	0.010	0.000
720	0.016	0.006	0.000	720	0.011	0.004	0.000
730	0.008	0.003	0.000	730	0.006	0.002	0.000
740	0.004	0.002	0.000	740	0.003	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.000	0.000
760	0.001	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	94.967	99.999	122.636	Check Sum	94.413	99.997	120.641
White Point	94.972	100.000	122.638	White Point		100.000	120.641
Table 5.22		D75, 193 nm Inter		Table 5.24		D75, 19 nm Inte	
nm	W_x	W_{v}	W_z	nm	\mathbf{W}_{10}	W _{10,y} 0.000	$\mathbf{W}_{10.z}$
360	-0.001	0.000	-0.005 °	360	W _{10,x} -0.002	0.000	-0.008
380	-0.008	0.000	-0.040	380	-0.051	-0.005	-0.238
400	0.227	0.003	1.054	400	0.466	0.043	2.058
420	3.031	0.085	14.551	420	3.723	0.381	17.775
440	7.661	0.520	38.631	440	7.645	1.261	39.311
460	7.071	1.469	40.551	460	6.717	2.886	38.950
480	2.410	3.191	19.889	480	1.882	5.358	17.279
500	0.056	7.269	5.860	500	0.073	9.139	4.237
520	1.385	14.525	1.657	520	2.229	14.168	1.050
540	5.823	19.169	0.383	540	6.822	17.382	0.228
560	11.215	18.727	0.067	560	12.000	16.917	0.002
					15.994	13.746	-0.003
580 600	15.895	15.113	0.024 0.012	580 600	16.479	9.678	0.000
600	17.264	10.302				5.653	0.000
620	13.272	5.940	0.003	620	12.105		0.000
640	6.573	2.554	0.000	640	5.782	2.399	0.000
660	2.323	0.852	0.000	660	1.941	0.759	
680	0.607	0.219	0.000	680	0.489	0.189	0.000
700	0.126	0.045	0.000	700	0.094	0.037	0.000
720	0.032	0.011	0.000	720	0.021	0.008	0.000
740	0.008	0.003	0.000	740	0.005	0.002	0.000
760	0.001	0.001	0.000	760	0.001	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	94.971	99.998	122.637	Check Sum		100.001	120.641
White Point	94.972	100.000	122.638	White Point	94.416	100.000	120.641

Table 5.25		F2, 193 nm Inte	31 Observer erval	Table 5.27		F2, 1964 nm Inter	
nm	W _x	W,	W_z	nm	$W_{10.x}$	$W_{10,y}$	$\mathbf{W}_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.000	370	0.000	0.000	0.000
380	0.001	0.000	0.003	380	0.000	0.000	-0.001
390	-0.001	0.000	-0.006	390	-0.009	-0.001	-0.041
400	0.082	0.002	0.391	400	0.133	0.014	0.603
410	0.169	0.005	0.802	410	0.311	0.032	1.425
420	0.173	0.001	0.806	420	0.310	0.025	1.418
430	2.860	0.136	14.065	430	2.977	0.395	14.861
440	3.931	0.234	19.588	440	4.074	0.617	20.711
450	1.338	0.162	7.114	450	1.393	0.354	7.553
460	1.421	0.294	8.161	460	1.402	0.593	8.103
470	1.011	0.470	6.652	470	0.946	0.900	6.363
480	0.502	0.723	4.257	480	0.401	1.261	3.852
490	0.166	1.078	2.418	490	0.081	1.671	2.039
500	0.022	1.614	1.356	500	0.019	2.165	1.030
510	0.045	2.425	0.757	510	0.169	2.764	0.515
520	0.310	3.466	0.387	520	0.543	3.517	0.277
530	0.793	4.424	0.223	530	1.093	4.262	0.154
540	2.935	9.137	0.175	540	3.562	8.685	0.107
550	5.305	12.533	0.122	550	6.166	11.838	0.055
560	6.428	10.676	0.039	560	7.209	10.117	-0.001
570	10.089	12.520	0.028	570	10.967	11.867	0.000
580	13.508	12.872	0.024	580	14.182	12.191	0.000
590	13.082	9.655	0.015	590	13.453	9.357	0.000
600	11.989	7.125	0.009	600	11.997	7.032	0.000
610	9.453	4.746	0.004	610	9.183	4.707	0.000
620	6.393	2.850	0.001	620	6.075	2.825	0.000
630	3.711	1.529	0.000	630	3.517	1.537	0.000
640	1.929	0.753	0.000	640	1.767	0.736	0.000
650	0.906	0.341	0.000	650	0.808	0.324	0.000
660	0.387	0.143	0.000	660	0.339	0.134	0.000
670	0.152	0.055	0.000	670	0.133	0.052	0.000
680	0.059	0.021	0.000	680	0.049	0.019	0.000
690	0.023	0.008	0.000	690	0.019	0.007	0.000
700	0.008	0.003	0.000	700	0.007	0.003	0.000
710	0.003	0.001	0.000	710	0.003	0.001	0.000
720	0.001	0.000	0.000	720	0.001	0.000	0.000
730	0.001	0.000	0.000	730	0.000	0.000	0.000
740	0.000	0.000	0.000	740	0.000	0.000	0.000
750	0.000	0.000	0.000	750 760	0.000	0.000	0.000
760 770	0.000	0.000	0.000	760 770	0.000	0.000	0.000
770	0.000	0.000	0.000	770 780	0.000	0.000	0.000
780	0.000	0.000	0.000		0.000	0.000	0.000
Check Sum	99.185	100.002	67.391	Check Sum White Point		100.001	69.023
White Point	99.186	100.000	67.393	Wille Folkt	103.279	100.000	69.027
Table 5.26				Table 5.28			
		nm Inte		_		nm Interv	
nm	W _x	W,	W _z	nm	W _{10.x}	W _{10,y}	$\mathbf{W}_{10,z}$
360	0.000	0.000	-0.002	360	0.000	0.000	-0.002
380	-0.011	0.000	-0.050	380	-0.024	-0.002	-0.109
400	-0.017	-0.005	-0.115	400 420	0.102	0.004	0.375
420	1.856	0.072	9.030		2.135	0.251	10.426
440 460	6.133	0.367	30.621	440 460	6.365	0.969	32.397
	2.598	0.575	15.095		2.572	1.178	15.110
480 500	1.069 0.021	1.430 3.263	8.827 2.724	480 500	0.874 0.025	2.509 4.319	8.033 2.072
520			0.778	520			
540	0.460 5.710	6.535 17.665	0.778	540	0.886 6.923	6.692	0.518
560		23.949	0.109	560		16.756	0.190
580 580	14.283 25.551	23.949	0.039	580	16.002 26.885	22.655 23.029	0.021 -0.004
600	23.791	14.379	0.017	600	20.885	14.131	0.000
620	12.941	5.764	0.003	620	12.349	5.743	0.000
640	3.944	1.507	0.000	640	3.633	1.487	0.000
660	0.745	0.267	0.000	660	0.643	0.245	0.000
680	0.097	0.034	0.000	680	0.043	0.243	0.000
700	0.037	0.004	0.000	700	0.000	0.004	0.000
700 720	0.013	0.004	0.000	700 720	0.009	0.004	0.000
740	0.002	0.000	0.000	740	0.001	0.000	0.000
760	0.000	0.000	0.000	740 760	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	99.186	99,999	67.393	Check Sum		100.001	69.027
White Point	99.186	100.000	67.393	White Point		100.000	69.027

Table 5.29	10	nm Inter	val	Table 5.31	10	nm Inter	val
nm	W_{x}	W,	W_z	nm	$W_{10,x}$	$W_{10,y}$	$\mathbf{W}_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	-0.001	370	0.000	0.000	0.000
380	0.001	0.000	0.007	380	0.000	0.000	-0.001
390	0.004	0.000	0.019	390	-0.007	0.001	-0.034
400	0,110	0.003	0.521	400	0.168	0.017	0.757
410	0.269	0.007	1.282	410	0.486	0.050	2.229
420	0.475	0.009	2.249	420	0.715	0.067	3.341
430	3.951	0.183	19.408	430	4.000	0.524	19.933
440	5.466	0.331	27.269	440	5.496	0.842	27.981
450	2.547	0.300	13.501	450	2.569	0.639	13.889
460	2.585	0.534	14.846	460	2.473	1.046	14.292
470	1.840	0.854	12.103	470	1.669	1.587	11.224
480	0.915	1.318	7.764	480	0.709	2.230	6.810
490	0.302	1.964	4.405	490	0.144	2.951	3.603
500	0.041	2.979	2.499	500	0.035	3.873	1.840
510	0.041	4.507	1.404	510	0.308	4.979	0.927
		6.177	0.691	520	0.943	6.080	0.479
520	0.556		0.347	530	1.674	6.466	0.232
530	1.258	6.924		540	4.286	10.438	0.129
540	3.644	11.327	0.217		6.229	12.041	0.059
550	5.522	13.146	0.130	550			-0.002
560	4.932	8.167	0.029	560	5.360	7.501	
570	7.145	8.839	0.019	570	7.528	8.122	0.000
580	9.610	9.176	0.017	580	9.783	8.424	0.000
590	8.888	6.553	0.010	590	8.861	6.158	0.000
600	8.828	5.241	0.007	600	8.563	5.015	0.000
610	7.951	3.991	0.003	610	7.486	3.837	0.000
620	6.485	2.892	0.001	620	5.977	2.780	0.000
630	4.721	1.947	0.000	630	4.337	1.897	0.000
640	3.106	1.213	0.000	640	2.757	1.149	0.000
650	1.949	0.735	0.000	650	1.685	0.676	0.000
660	1.093	0.404	0.000	660	0.929	0.367	0.000
670	0.449	0.164	0.000	670	0.380	0.149	0.000
680	0.181	0.066	0.000	680	0.147	0.057	0.000
690	0.078	0.028	0.000	690	0.062	0.024	0.000
700	0.032	0.011	0.000	700	0.025	0.010	0.000
710	0.013	0.005	0.000	710	0.010	0.004	0.000
720	0.005	0.002	0.000	720	0.004	0.001	0.000
730	0.002	0.001	0.000	730	0.001	0.001	0.000
740	0.001	0.000	0.000	740	0.001	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.042	99.998	108.747	Check Sum	95.793	100.001	107.688
White Point	95.041	100.000	108.747	White Point	95.792	100.000	107.686
Table 5.30	Illuminant	F7, 1931	Observer	Table 5.32	Illuminant	F7, 1964	Observer
		nm Inter			20	nm Inter	val
nm	W_x	W,	W_z	nm	$W_{10,x}$	$\mathbf{W}_{10,\mathbf{y}}$	$W_{10,z}$
360	-0.001	0.000	-0.005^{2}	360	-0.001	0.000	-0.003
380	-0.014	0.000	-0.069	380	-0.035	-0.004	-0.163
400	0.000	-0.006	-0.043	400	0.172	0.010	0.668
420	2.766	0.101	13.418	420	3.151	0.358	15.311
440	8.886	0.544	44.448	440	8.954	1.381	45.662
460	4.834	1.051	27.991	460	4.644	2.090	27.187
480	1.948	2.602	16.086	480	1.545	4.429	14.195
500	0.063	6.128	5.010	500	0.077	7.818	3.693
520	0.982	11.733	1.388	520	1.694	11.650	0.894
540	6.956	21.654	0.392	540	8.187	19.913	0.231
560	11.482	19.792	0.091	560	12.502	18.144	0.017
580	17.742	16.706	0.024	580	18.097	15.414	-0.005
600	17.742	10.700	0.024	600	17.023	10.030	0.000
				620	11.964	5.576	0.000
620 640	12.929	5.773	0.003	640	5.664	2.350	0.000
640	6.345	2.464	0.000		1.817	0.710	0.000
660	2.143	0.786	0.000	660			0.000
680	0.356	0.128	0.000	680	0.290	0.112	
700	0.052	0.019	0.000	700	0.039	0.015	0.000
720	0.009	0.003	0.000	720	0.006	0.002	0.000
740	0.001	0.001	0.000	740	0.001	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum		100.002	108.747	Check Sum	95.791	99.998	107.687
White Point	95.041	100.000	108.747	White Point	95.792	100.000	107.686

Table 5.33	10	nm Interv	al	Table 5.35	10	nm Inter	val
nm	W_x	$W_{\mathbf{y}}$	W_z	nm	$\mathbf{W}_{10,\mathbf{x}}$	W _{10.y}	W _{10,z}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.000	370	0.000	0.000	0.000
380	0.001	0.000	0.002	380	0.000	0.000	0.000
390	-0.005	0.000	-0.022	390	-0.010	-0.001	-0.044
400	0.059	0.002	0.281	400	0.099	0.010	0.451
410	0.097	0.003	0.463	410	0.182	0.019	0.829
420	0.024	-0.004	0.087	420	0.098	0.003	0.415
430	2.687	0.128	13.207	430	2.796	0.372	13.964
440	3.952	0.237	19.705	440	4.103	0.625	20.873
450	1.471	0.177	7.819	450	1.534	0.388	8.310
460	1.328	0.274	7.621	460	1.314	0.554	7.586
470	0.723	0.295	4.685	470	0.681	0.578	4.498
480	0.448	0.803	4.044	480	0.343	1.380	3.625
490	0.326	1.905	4.458	490	0.176	2.955	3.789
500	0.020	1.104	1.005	500	0.009	1.506	0.773
510	0.006	0.499	0.121	510	0.034	0.564	0.074
520	-0.012	0.244	0.038	520	0.005	0.257	0.028
530	-0.155	0.163	0.037	530	-0.145	0.170	0.027
540	8.983	26.955	0.483	540	10.852	25.656	0.293
550	10.520	26.054	0.291	550	12.320	24.661	0.148
560	0.993	1.348	-0.007	560	1.096	1.274	-0.010
570	1.064	1.283	0.002	570	1.157	1.214	0.000
580	6.717	6.191	0.011	580	7.036	5.881	0.000
590	8.697	6.590	0.010	590	8.982	6.382	0.000
600	6.188	3.669	0.005	600	6.204	3.629	0.000
610	27.072	13.415	0.009	610	26.264	13.321	0.000
620	13.847	6.329	0.003	620	13.228	6.279	0.000
630	4.003	1.614	0.000	630	3.797	1.631	0.000
640	0.864	0.335	0.000	640	0.794	0.329	0.000
650	0.541	0.203	0.000	650	0.481	0.192	0.000
660	0.301	0.111	0.000	660	0.264	0.104	0.000
670	0.096	0.035	0.000	670	0.084	0.033	0.000
680	0.046	0.017	0.000	680	0.038	0.015	0.000
690	0.028	0.010	0.000	690	0.023	0.009	0.000
700	0.014	0.005	0.000	700	0.011	0.004	0.000
710	0.018	0.007	0.000	710	0.014	0.005	0.000
720	0.002	0.001	0.000	720	0.002	0.001	0.000
730	0.000	0.000	0.000	730	0.000	0,000	0.000
740	0.000	0.000	0.000	740	0.000	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760 770	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
		100.002	64.358	Check Sum		100.000	65.629
		100.000	64.350	White Point Table 5.36		100.000	65.607
Table 5.34	20	nm Interv	al		20	nm Inter	val
nm	W _x	W ,	W _z	nm 360	$W_{10,x}$	W _{10,γ}	W _{10,z}
360	0.000	0.000	0.000	360 380	0.000 -0.016	0.000	0.000
380	-0.008	0.000	-0.038 -0.381	380 400		-0.002 -0.006	~0.072 ~0.070
400	-0.073	-0.006 0.062	0.381 7.606	420	0.004 1.742	-0.006 0.207	-0.070 8.545
420	1,561 6.149	0.082	30.772	440	6.391	1.000	32.600
440 460	2.422	0.304	13.794	460	2.422	0.909	13.937
480	0.938	1.995	8.635	480	0.722	3.297	7.710
500	0.338	2.294	3.297	500	0.722	3.310	2.674
520	-0.611	-0.646	-0.159	520	-0.644	-0.590	-0.157
540	14.491	40.892	0.642	540	17.324	38.846	0.376
560	7.174	16.775	0.162	560	8.355	15.868	0.075
580	9.760	7.999	-0.002	580	10.221	7.635	-0.011
600	26.160	14.828	0.015	600	25.881	14.619	0.000
620	30.433	14.217	0.008	620	29.246	14.139	0.000
640	1.969	0.627	0.000	640	1.789	0.630	0.000
660	0.344	0.113	0.000	660	0.282	0.098	0.000
680	0.080	0.028	0.000	680	0.066	0.025	0.000
700	0.034	0.012	0.000	700	0.026	0.010	0.000
720	0.011	0.004	0.000	720	0.008	0.003	0.000
740	-0.001	0.000	0.000	740	-0.001	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum		100.000	64.351	Check Sum	103.861	99.998	65.607
White Point	100.962	100.000	64.350	White Point	103.863	100.000	65.607

Table 6.1		nm Inter	val	Table 6.3		0 nm inter	val
nm	W,	W,	W_z	nm	W _{10,x}	$\mathbf{W}_{10,\mathbf{v}}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.001	370	0.000	0.000	0.000
380	0.001	0.000	0.005	380	0.000	0.000	0.000
390	0.004	0.000	0.018	390	0.002	0.000	0.007
400	0.017	0.000	0.081	400	0.018	0.002	0.078
410	0.057	0.002	0.272	410	0.118	0.012	0.540
420	0.246	0.007	1.178	420	0.372	0.038	1.760
430	0.660	0.025	3.214	430	0.686	0.082	3.374
440	0.942	0.059	4.710	440	0.982	0.154	5.024
450	1.039	0.113	5.454	450	1.094	0.255	5.876
460	1.043	0.205	5.969	460	1.024	0.414	5.882
470	0.790	0.353	5.209	470	0.747	0.688	5.023
480	0.416	0.608	3.602	480	0.326	1.073	3.236
490	0.148	1.012	2.277	490	0.061	1.589	1.926
500	0.016	1.749	1.493	500	0.003	2.397	1.129
510	0.028	3.047	0.963	510	0.189	3.503	0.638
520	0.388	4.778	0.505	520	0.717	4.857	0.377
530	1.187	6.345	0.305	530	1.617	6.096	0.205
540	2.288	7.625	0.157	540	2.823	7.290	0.100
550	3.702	8.594	0.137	550	4.296	8.116	0.028
560	5.484	9.255	0.034	560	6.177	8.799	-0.003
570	7.562	9.496	0.020	570	8.285	9.039	0.001
580	9.739	9.265	0.020	580	10.218	8.758	0.000
590	11.644	8.567	0.013	590	12.041	8.350	0.000
600	12.811	7.563	0.010	600	12.850	7.492	0.000
610	12.782	6.365	0.010	610	12.441	6.337	0.000
620	11.460	5.076	0.002	620	10.872	5.025	0.000
630	8.991	3.689	0.002	630	8.604	3.753	0.000
640	6.536	2.543	0.000	640	5.951	2.469	0.000
650	4.296	1.616	0.000	650	3.846	1.537	0.000
660	2.583	0.954	0.000	660	2.259	0.891	0.000
670	1.405	0.514	0.000	670	1.242	0.485	0.000
						0.465	0.000
680	0.780	0.283	0.000	680	0.643		0.000
690	0.388	0.140	0.000	690	0.324	0.126 0.062	0.000
700	0.200	0.072	0.000	700	0.160		0.000
710	0.106	0.038	0.000	710	0.078	0.030	0.000
720	0.054	0.020	0.000	720	0.039	0.015	0.000
730	0.028	0.010	0.000	730	0.019	0.007	0.000
740	0.014	0.005	0.000	740	0.010	0.004	0.000
750	0.007	0.002	0.000	750	0.005	0.002	0.000
760	0.003	0.001	0.000	760	0.002	0.001	0.000
770	0.002	0.001	0.000	770	0.001	0.001	0.000
780	0.001	0.000	0.000	780	0.001	0.000	
Check Sum	109.848	99.997	35.586	Check Sum	111.143	99.999 100.000	35.201 35.200
White Point	109.850	100.000	35.585	White Point	111.144		
Table 6.2	. Illuminant 20	A, 1931 Ot) nm Inter		Table 0.4	20) nm Inter	val
nm	W_{x}	W _v	W_z	nm	$W_{10,x}$	$\mathbf{W}_{10,\mathbf{v}}$	$W_{10,z}$
360	0.000	0.000	0.006	360	0.000	0.000	0.000
380	0.013	0.000	0.060	380	0.007	0.000	0.037
400	-0.026	0.000	-0.123	400	-0.016	0.000	-0.088
420	0.483	0.009	2.306	420	0.691	0.066	3.226
440	1.955	0.106	9.637	440	2.025	0.285	10.278
460	2.145	0.385	12.257	460	2.158	0.796	12.345
480	0.848	1.119	7.301	480	0.642	2.043	6.555
500	-0.112	3.247	2.727	500	-0.160	4.630	1.966
520	0.611	9.517	1.035	520	1.284	9.668	0.721
540	4.407	15.434	0.274	540	5.445	14.621	0.171
560	10.804	18.703	0.055	560	12.238	17.766	-0.013
580	19.601	18.746	0.034	580	20.755	17.800	0.004
600	26.256	15.233	0.018	600	26.325	15.129	-0.001
620	23.295	10.105	0.003	620	22.187	10.097	0.000
640	12.853	4.939	0.000	640	11.816	4.858	0.000
660	4.863	1.784	0.000	660	4.221	1.643	0.000
680	1.363	0.495	0.000	680	1.154	0.452	0.000
700	0.359	0.129	0.000	700	0.282	0.109	0.000
720	0.100	0.036	0.000	720	0.068	0.026	0.000
740	0.023	0.008	0.000	740	0.017	0.007	0.000
760	0.006	0.002	0.000	760	0.004	0.002	0.000
780	0.002	0.001	0.000	780	0.001	0.000	0.000
Check Sum	109.849	99.998	35.584	Check Sum	111.144	99.998	35.201
White Point	109.850	100.000	35.585	White Point	111.144	100.000	35.200

Table 6.5	Illuminant	C, 1931 C		Table 6.7	Illuminant 10	C, 1964 () nm Inte	Observer rval
nm	w _x	W,	W _z	nm	$\mathbf{W}_{10,\mathbf{x}}$	$\mathbf{W}_{10,\mathbf{y}}$	$\mathbf{W}_{10,z}$
		0.000	0.000	360	0.000	0.000	0.000
360	0.000			370	0.000	0.000	0.000
370	0.001	0.000	0.003				
380	0.004	0.000	0.017	380	0.000	0.000	0.000
390	0.015	0.000	0.069	390	0.006	0.001	0.025
400	0.074	0.002	0.350	400	0.071	0.007	0.317
410	0.261	0.007	1.241	410	0.519	0.054	2.362
420	1.170	0.032	5.605	420	1.690	0.173	7.995
430	3.074	0.118	14.967	430	3.050	0.364	15.015
440	4.066	0.259	20.346	440	4.055	0.638	20.751
450	3.951	0.437	20.769	450	3.974	0.936	21.364
		0.684	19.624	460	3.207	1.316	18.457
460	3.421					1.938	13.957
470	2.292	1.042	15.153	470	2.067	2.693	7.968
480	1.066	1.600	9.294	480	0.792		4.126
490	0.325	2.332	5.115	490	0.123	3.489	
500	0.025	3.375	2.788	500	0.008	4.395	2.006
510	0.052	4.823	1.481	510	0.297	5.276	0.935
520	0.535	6.468	0.669	520	0.939	6.275	0.480
530	1.496	7.951	0.381	530	1.944	7.299	0.244
540	2.766	9.193	0.187	540	3.259	8.401	0.114
550	4.274	9.889	0.081	550	4.739	8.926	0.030
560	5.891	9.898	0.036	560	6.340	8.995	-0.003
570	7.353	9.186	0.019	570	7.694	8.357	0.001
							0.000
580	8.459	8.008	0.015	580	8.479	7.236	
590	9.036	6.621	0.010	590	8.929	6.171	0.000
600	9.005	5.302	0.007	600	8.630	5.020	0.000
610	8.380	4.168	0.003	610	7.794	3.966	0.000
620	7.111	3.147	0.001	620	6.446	2.978	0.000
630	5.300	2.174	0.000	630	4.848	2.114	0.000
640	3.669	1.427	0.000	640	3.191	1.323	0.000
650	2.320	0.873	0.000	650	1.986	0.793	0.000
660	1.333	0.492	0.000	660	1.114	0.439	0.000
670						0.226	0.000
	0.683	0.250	0.000	670	0.577		
680	0.356	0.129	0.000	680	0.280	0.109	0.000
690	0.162	0.059	0.000	690	0.130	0.050	0.000
700	0.077	0.028	0.000	700	0.059	0.023	0.000
710	0.038	0.014	0.000	710	0.027	0.010	0.000
720	0.018	0.006	0.000	720	0.012	0.005	0.000
730	0.008	0.003	0.000	730	0.005	0.002	0.000
740	0.004	0.001	0.000	740	0.003	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.000	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770				770		0.000	0.000
780	0.000	0.000	0.000		0.000		0.000
	0.000	0.000	0.000	780	0.000	0.000	
Check Sum	98.074	99.999	118.231	Check Sum	97.286	99.999	116.144
White Point	98.074	100.000	118.232	White Point	97.285	100.000	116.145
Table 6.6	Illuminant o	C, 1931 O nm Inter		Table 6.8	Illuminant	C, 1964 (
200				860			0.000
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	0.066	0.000	0.311	380	0.043	0.002	
400	-0.164	0.001	-0.777	400	-0.122	-0.004	-0.622
420	2.373	0.044	11.296	420	3.216	0.301	15.025
440	8.595	0.491	42.561	440	8.476	1.239	43.144
460	6.939	1.308	39.899	460	6.668	2.577	38.431
480	2.045	3.062	18.451	480	1.430	5.320	15.661
50 0	-0.217	6.596	4.728	500	-0.249	8.742	3.219
520	0.881	12.925	1.341	520	1.734	12.466	0.897
540	5.406	18.650	0.319	540	6.364	16.891	0.187
							-0.014
560 580	11.842	20.143	0.059	560	12.790	18.284	
580	17.169	16.095	0.028	580	17.338	14.617	0.004
600	18.383	10.537	0.013	600	17.597	10.019	-0.001
620	14.348	6.211	0.002	620	13.045	5.925	0.000
640	7.148	2.743	0.000	640	6.283	2.581	0.000
660	2.484	0.911	0.000	660	2.055	0.800	0.000
680	0.600	0.218	0.000	680	0.488	0.191	0.000
700	0.136	0.049	0.000	700	0.100	0.039	0.000
720	0.031	0.043	0.000	720	0.021	0.008	0.000
740	0.006		0.000	740	0.004	0.002	0.000
		0.002					0.000
760 780	0.002	0.001	0.000	760	0.001	0.000	
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	98.073	99.998	118.231	Check Sum	97.282	100.000	116.144
White Point	98.074	100.000	118.232	White Point	97.285	100.000	116.145

Table 6.9	10	nm Inte		Table 6.11	10	nm Inte	
nm	W_{x}	W,	$\mathbf{W}_{\mathbf{z}}$	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.001	0.000	0.005	370	0.000	0.000	0.000
380	0.003	0.000	0.014	380	0.001	0.000	0.002
390	0.008	0.000	0.039	390	0.002	0.000	0.009
400	0.058	0.002	0.277	400	0.059	0.006	0.263
410	0.191	0.005	0.906	410	0.385	0.040	1.751
420	0.751	0.021	3.603	420	1.087	0.112	5.154
430	1.592	0.060	7.747	430	1.598	0.190	7.864
440	2.519	0.158	12.593	440	2.556	0.398	13.066
450	2.824	0.310	14.834	450	2.888	0.675	15.511
460	2.556	0.511	14.659	460	2.437	1.000	14.023
470	1.717	0.776	11.344	470	1.574	1.469	10.623
	0.832	1.246	7.240	480	0.630	2.130	6.312
480 490	0.832	1.783	3.934	490	0.096	2.715	3.227
		2.892	2.447	500	0.006	3.842	1.796
500	0.025			510	0.284	5.138	0.919
510	0.047	4.610	1.432		0.264	6.500	0.501
520	0.538	6.586	0.688	520		7.872	0.263
530	1.590	8.435	0.403	530	2.101		0.114
540	2.770	9.185	0.186	540	3.317	8.532	0.031
550	4.210	9.733	0.080	550	4.745	8.931	
560	5.662	9.503	0.035	560	6.194	8.780	-0.003
570	7.092	8.882	0.019	570	7.547	8.214	0.001
580	8.681	8.225	0.016	580	8.847	7.557	0.000
590	9.175	6.728	0.010	590	9.218	6.375	0.000
600	9.966	5.884	0.008	600	9.712	5.663	0.000
610	9.556	4.752	0.003	610	9.035	4.597	0.000
620	8.099	3.584	0.002	620	7.465	3.447	0.000
630	5.835	2.392	0.000	630	5.426	2.366	0.000
640	4.199	1.633	0.000	640	3.713	1.541	0.000
650	2.539	0.954	0.000	650	2.208	0.882	0.000
660	1.517	0.560	0.000	660	1.289	0.509	0.000
670	0.831	0.304	0.000	670	0.714	0.279	0.000
680	0.423	0.153	0.000	680	0.338	0.131	0.000
690	0.178	0.064	0.000	690	0.144	0.056	0.000
700	0.096	0.035	0.000	700	0.075	0.029	0.000
710	0.049	0.018	0.000	710	0.035	0.014	0.000
720	0.020	0.007	0.000	720	0.014	0.005	0.000
730	0.012	0.004	0.000	730	0.008	0.003	0.000
740	0.006	0.002	0.000	740	0.004	0.002	0.000
750	0.002	0.001	0.000	750	0.002	0.001	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770	0.001	0.000	0.000	770	0.000	0.000	0.000
770 780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	96.422	99.998	82.524	Check Sum		100.001	81.427
White Point		100.000	82.521	White Point		100.000	81.427
Wille Folia	30.722	100.000	02.021	Wille I Gill	00.720		•
Table 6.10	Illuminant	D50, 19	331 Observer	Table 6.12	Illuminant	D50, 19	64 Observer
	20	nm Inte	erval		20	nm Inte	rval
nm	W _x	W,	W_z	nm	$W_{10,x}$	$\mathbf{W}_{10,\mathbf{y}}$	$\mathbf{W}_{10,\mathbf{z}}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	0.021	0.000	0.100	380	0.001	-0.001	0.010
400	-0.013	0.003	-0.060	400	0.035	0.009	0.131
420	1.297	0.023	6.170	420	1.856	0.174	8.631
440	5.218	0.290	25.788	440	5.234	0.748	26.634
460	5.326	0.984	30.489	460	5.206	1.975	29.874
480	1.554	2.291	13.965	480	1.104	4.046	12.054
500	-0.191	5.461	4.224	500	-0.238	7.459	2.948
520	0.915	13.421	1.430	520	1.816	13.203	0.969
540	5.528	18.956	0.313	540	6.614	17.441	0.186
560	11.324	19.226	0.057	560	12.430	17.746	-0.014
580	17.119	16.204	0.028	580	17.595	14.952	0.004
600	20.222	11.611	0.014	600	19.678	11.219	-0.001
620	16.400	7.117	0.002	620	15.166	6.902	0.000
640	7.922	3.030	0.002	640	7.075	2.898	0.000
660	2.835	1.043	0.000	660	2.387	0.931	0.000
		0.268	0.000	680	0.612	0.240	0.000
680 700	0.741 0.150	0.266	0.000	700	0.111	0.043	0.000
			0.000	720	0.030	0.012	0.000
720 740	0.044	0.016		720 740	0.030	0.002	0.000
740	0.009	0.003	0.000	740 760	0.000	0.002	0.000
760 780	0.002	0.001	0.000	780	0.001	0.000	0.000
780	0.001	0.000	0.000	Check Sum	96.720	99.999	81.426
Check Sum		100.002	82.520	White Point		100.000	81.427
White Point	96.422	100.000	82.521	winte count	30.120	,00.000	01.72 <i>1</i>

	10	nm Inter			10	nm Inte	
nm	W_x	W,	W_z	nm	$\mathbf{W}_{10.\mathbf{x}}$	$W_{10,y}$	$\mathbf{W_{10,z}}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.001	0.000	0.006	370	0.000	0.000	0.000
380	0.004	0.000	0.019	380	0.001	0.000	0.003
390	0.011	0.000	0.051	390	0.003	0.000	0.012
400	0.072	0.002	0.343	400	0.073	0.008	0.326
410	0.232	0.006	1.105	410	0.466	0.048	2.122
420	0.897	0.026	4.303	420	1.291	0.133	6.120
430	1.872	0.071	9.113	430	1.870	0.222	9.203
440	2.881	0.181	14.405	440	2.910	0.454	14.875
450	3,169	0.348	16.648	450	3.224	0.755	17.323
460	2.831	0.567	16.238	460	2.686	1.104	15.458
470	1.874	0.849	12.388	470	1.710	1.599	11.543
480	0.896	1.346	7.807	480	0.675	2.289	6.773
490	0.266	1.902	4.187	490	0.101	2.882	3.418
500	0.026	3.042	2.570	500	0.007	4.021	1.876
510	0.050	4.806	1.490	510	0.296	5.329	0.952
520	0.554	6.779	0.707	520	0.989	6.657	0.513
530	1.624	8.605	0.411	530	2.134	7.993	0.267
540	2.807	9.303	0.188	540	3.345	8.600	0.115
550	4.236	9.789	0.080	550	4.751	8.939	0.031
560	5.660	9.497	0.035	560	6.162	8.732	-0.003
570	7.052	8.829	0.018	570	7.468	8.126	0.001
580	8.575	8.123	0.015	580	8.697	7.426	0.000
590	8.968	6.574	0.010	590	8.966	6.199	0.000
600	9.626	5.681	0.008	600	9.336	5.442	0.000
610		4.550	0.003	610	8.610	4.380	0.000
620	9.151 7.698	3.406	0.003		7.061	3.261	0.000
630	5.508	2.258	0.002	620	5.097	2.222	0.000
640	3.916	1.523	0.000	630		1.430	0.000
650	2.356	0.885	0.000	640	3.446	0.814	0.000
660	1.393	0.514	0.000	650	2.039		0.000
670	0.757	0.277	0.000	660	1.178	0.465	0.000
680	0.737	0.277	0.000	670	0.647	0.253	0.000
690	0.363	0.159	0.000	680	0.305	0.119	0.000
700	0.162		0.000	690	0.131	0.051	0.000
		0.031		700	0.067	0.026	
710	0.045	0.016	0.000	710	0.032	0.012	0.000 0.000
720 730	0.018	0.007	0.000 0.000	720	0.012	0.005	0.000
	0.011	0.004		730	0.007	0.003	
740	0.005	0.002	0.000	740	0.004	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.001	0.000
760 770	0.001	0.000	0.000	760	0.001	0.000	0.000
770 780	0.001	0.000	0.000	770	0.000	0.000	0.000
	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.678	99.998	92.150	Check Sum		100.001	90.928
White Point		100.000	92.149	White Point		100.000	90.926
Table 6.14	20	nm Interv	/al	Table 6.16	20	nm Inte	
nm	W_x	W,	W_z	nm	$W_{10,x}$	$\mathbf{W}_{10,\mathbf{v}}$	$\mathbf{W}_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	0.027	0.000	0.127	380	0.001	-0.001	0.013
400	-0.016	0.004	-0.072	400	0.044	0.010	0.165
420	1.578	0.029	7.506	420	2.237	0.210	10.414
440	5.983	0.334	29.586	440	5.965	0.856	30.366
460	5.881	1.094	33.691	460	5.721	2.183	32.860
480	1.663	2.481	15.012	480	1.170	4.359	12.878
500	-0.202	5.771	4.413	500	-0.246	7.830	3.064
520	0.950	13.833	1.471	520	1.870	13.538	0.992
540	5.611	19.197	0.314	540	6.678	17.576	0.186
560	11.328	19.214	0.057	560	12.373	17.649	-0.013
580	16.931	16.001	0.028	580	17.314	14.694	0.004
600	19.527	11.196	0.013	600	18.909	10.768	-0.001
620	15.581	6.759	0.002	620	14.336	6.522	0.000
640	7.384	2.823	0.000	640	6.563	2.688	0.000
660	2.600	0.956	0.000	660	2.177	0.849	0.000
680	0.669	0.242	0.000	680	0.551	0.216	0.000
700	0.137	0.049	0.000	700	0.101	0.039	0.000
720	0.040	0.014	0.000	720	0.027	0.011	0.000
740	0.008	0.003	0.000	740	0.006	0.002	0.000
760	0.001	0.001	0.000	760	0.001	0.000	0.000
780	0.001	0.000	0.000	780	0.000	0.000	0.000
Check Sum		100.001	92.148	Check Sum	95.798	99.999	90.928
White Point		100.000	92.149	White Point		100.000	90.926

New No. New	Table 6.17	10	nm Inter		Table 6.19	10	nm Inte	64 Observer rval
360	nm	W,	W	W,	nm	$\mathbf{W}_{10 x}$	\mathbf{W}_{10}	W _{10.7}
370	360		0.000		360			
380		0.002	0.000	0.009	370	0.000	0.000	-0.001
990 0.016 0.000 0.077 980 0.005 0.000 0.020 400 0.097 0.003 0.460 400 0.097 0.010 0.436 410 0.311 0.009 1.477 410 0.616 0.064 2.808 420 1.641 0.033 5.581 420 1.680 0.171 7.888 430 2.400 0.092 11.684 430 2.377 0.283 11.703 440 3.506 0.221 17.532 440 3.512 0.549 17.7358 450 3.755 0.413 19.729 450 3.783 0.888 20.589 460 3.728 0.413 19.729 450 3.783 0.888 20.589 460 3.289 0.62 18.961 460 3.783 0.888 20.589 460 1.001 1.609 8.730 440 0.747 2.545 7.510 480 1.001 1.609 8.730 440 0.747 2.545 7.510 480 1.001 1.609 8.730 440 0.747 2.545 7.510 500 0.028 3.288 0.769 500 0.007 4.399 2.003 510 0.054 5.122 1.584 510 0.314 5.631 1.004 550 0.581 7.082 0.738 550 1.027 6.896 0.529 530 1.668 8.833 0.421 530 2.174 8.136 0.529 530 1.668 8.833 0.421 530 2.174 8.159 0.529 550 5.602 9.472 0.191 550 4.575 8.00 8.893 7.716 6.501 550 6.562 9.446 0.034 550 6.081 8.814 -0.003 550 6.563 1.789 0.018 570 7.310 7.750 0.000 550 6.563 8.799 0.018 570 7.310 7.750 0.000 640 8.568 4.759 0.018 570 7.310 7.750 0.000 640 8.568 4.759 0.001 520 6.476 5.000 0.007 7.164 0.000 640 8.568 4.759 0.001 520 6.476 0.000 6.60 1.814 0.000 0.000 640 8.568 4.259 0.003 6.00 7.70 5.000 0.000 640 8.568 4.259 0.003 6.00 7.70 5.000 0.000 640 8.568 0.240 0.000 6.60 1.814 0.007 0.000 640 8.568 0.240 0.000 6.60 1.814 0.000 0.000 640 3.522 1.370 0.000 6.60 1.814 0.000 0.000 640 3.522 1.370 0.000 6.60 1.814 0.000 0.000 640 0.352 0.454 0.000 6.600 1.031 0.000 0.000 640 0.352 0.001 0.000 0.000 770 0.000 0.000 640 0.352 0.001 0.000 0.000 770 0.000 0.000 0.000 640 0.352 0.001 0.000 0.000 770 0.000 0.000 0.000 640 0.352 0.001 0.000 0.000 770 0.000 0.000 0.000 0.000 640 0.352 0.001 0.000 0.000 770 0.000 0.0					380	0.001	0.000	0.004
400					390	0.005	0.000	0.020
410								
420								
440								
440								
450 3,755 0.413 19.729 450 3,769 0.888 20.358 460 3.298 0.662 18.921 460 3.103 1.277 17.861 470 2.141 0.973 14.161 470 1.937 1.817 13.085 480 0.293 2.107 4.623 490 0.747 2.545 7.510 3.745 500 0.028 3.288 2.769 500 0.007 4.309 2.003 510 0.054 5.122 1.584 510 0.314 5.631 1.004 520 0.581 7.082 0.736 520 1.027 6.896 0.229 530 1.668 8.833 0.421 530 2.174 8.136 0.271 540 2.860 9.472 0.191 540 3.380 8.864 0.116 550 4.257 9.830 0.061 550 4.257 9.830 0.061 550 4.257 9.830 0.061 550 4.257 9.830 0.061 550 4.735 8.903 0.030 550 550 8.676 6.357 0.005 550 8.676 6.357 0.005 580 8.844 7.901 0.015 580 8.834 7.901 0.015 580 8.834 7.901 0.015 580 8.834 7.901 0.015 580 8.834 7.901 0.016 600 9.120 5.379 0.007 600 8.771 6.000 600 9.120 5.379 0.007 600 8.771 6.000 600 9.120 5.379 0.000 640 3.522 1.370 0.000 640 3.522 1.370 0.000 640 3.522 1.370 0.000 640 3.522 1.370 0.000 640 3.522 1.370 0.000 640 3.522 1.370 0.000 640 3.522 1.370 0.000 640 3.522 1.370 0.000 640 3.522 1.370 0.000 640 0.257 0.454 0.000 650 1.229 0.454 0.000 650 1.229 0.454 0.000 650 1.229 0.454 0.000 660 0.229 0.454 0.000 660 0.229 0.454 0.000 660 0.229 0.454 0.000 660 0.229 0.454 0.000 660 0.229 0.454 0.000 660 0.229 0.000 660 0.229 0.454 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 660 0.229 0.000 0.000 660 0.229 0.000 0.000 660 0.229 0.000 0.000 660 0.229 0.000 0.000 660 0.229 0.000 0.000 660 0.221 0.000 0.000 660 0.221 0.000 0.000 660 0.221 0.000 0.000 660 0.221 0.000 0.000 660 0.221 0.000 0.000 660 0.221 0.000 0.000 660 0.221 0.000 0.000 660 0.221 0.000 0.000 660 0.222 0.000 0.000 660 0.221 0.000 0.000 660 0.222 0.000 0.000 660 0.223 0.000 0.000 660 0.224 0.000 0.000 660 0.225 0.000 0.000 660 0.225 0.000 0.000 660 0.225 0.000 0.000 660 0.225 0.000 0.000 0.000 660 0.225 0.000 0.000 0.000 660 0.225 0.000 0.000 0.000 660								
460								
470								
480								
490								
500								
510								
Section								
530								
\$40								
550								
550								
570								
550								
590								
SOC 9 120 5 379 0 007 600 8.771 5.110 0.000								
610								
620								
630 5 5.049 2 2.070 0.000 630 4.655 2.020 0.000 640 3.574 1.275 0.000 650 3.522 1.370 0.000 640 3.074 1.275 0.000 650 1.814 0.724 0.000 650 1.212 0.794 0.000 650 1.814 0.724 0.000 650 1.229 0.454 0.000 660 1.031 0.407 0.000 660 1.031 0.407 0.000 660 0.321 0.120 0.000 680 0.261 0.102 0.000 680 0.331 0.120 0.000 680 0.261 0.102 0.000 700 0.074 0.003 0.001 0.000 700 0.074 0.003 0.001 0.000 700 0.074 0.007 0.007 700 0.074 0.007 700 0.074 0.007 700 0.074 0.007 700 0.074 0.007 700 0.074 0.007 700 0.007 700 0.074 0.000 710 0.003 0.000 720 0.016 0.000 720 0.001 0.000 720 0.011 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 720 0.001 0.000 0.000 0.000 720 0.001 0.000 0.000 0.000 720 0.000 0.000 0.000 720 0.000 0.000 0.000 0.000 720 0.000 0.000 0.000 0.000 720 0.000 0.000 0.000 0.000 0.000 720 0.000								
640 3,522 1,1370 0,000 640 3,074 1,275 0,000 650 1,214 0,724 0,000 660 1,229 0,454 0,000 660 1,031 0,407 0,000 660 1,031 0,407 0,000 660 1,031 0,407 0,000 660 1,031 0,407 0,000 660 0,331 0,120 0,000 680 0,261 0,000 680 0,261 0,000 680 0,261 0,000 680 0,261 0,000 680 0,261 0,000 0,								
650								
660 1.229 0.454 0.000 660 1.031 0.407 0.000 670 0.557 0.218 0.000 680 0.331 0.120 0.000 680 0.261 0.102 0.000 680 0.261 0.102 0.000 680 0.261 0.102 0.000 680 0.261 0.102 0.000 680 0.261 0.102 0.000 680 0.261 0.102 0.000 700 0.074 0.027 0.000 700 0.057 0.022 0.000 710 0.039 0.014 0.000 720 0.011 0.000 720 0.011 0.000 720 0.016 0.006 0.000 720 0.011 0.004 0.000 730 0.005 0.002 0.000 730 0.006 0.000 730 0.006 0.000 730 0.006 0.000 730 0.006 0.000 730 0.006 0.000 730 0.000 730 0.000 730 0.000 730 0.000 730 0.000 750 0.001 0.000 750 0.001 0.000 750 0.001 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 750 0.001 0.000 0.000 0.000 750 0.001 0.000 0.000 0.000 750 0.001 0.000 0.000 0.000 750 0.001 0.000 0.0								
670								
680								
690								
700								
710 0.039 0.014 0.000 710 0.028 0.011 0.000 720 0.016 0.006 0.000 720 0.011 0.004 0.000 730 0.009 0.003 0.000 730 0.006 0.002 0.000 740 0.005 0.002 0.000 740 0.003 0.001 0.000 750 0.002 0.001 0.000 0.000 760 0.001 0.000 770 0.001 0.000 0.000 770 0.000 0.000 0.000 780 0.000 0.000 0.000 770 0.000 0.000 0.000 Check Sum 95.047 100.001 108.882 Check Sum 94.813 99.997 107.304 White Point 94.811 100.000 107.304 Table 6.18 Illuminant D65, 1931 Observer 100.000 360 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <								
720								
730 0.009 0.003 0.000 730 0.066 0.002 0.000 740 0.005 0.002 0.001 0.000 740 0.003 0.001 0.000 750 0.002 0.001 0.000 750 0.001 0.000								
740 0.005 0.002 0.0001 0.000 750 0.001 0.000 0.000 760 0.001 0.000 0.000 750 0.001 0.000 0.000 770 0.001 0.000 0.000 770 0.000 0.000 0.000 770 0.001 0.000 0.000 770 0.000 0.000 0.000 Check Sum 95.047 100.001 108.882 Check Sum 94.813 99.997 107.304 White Point 95.047 100.000 108.883 White Point 94.813 99.997 107.304 Table 6.18 Illuminant D65, 1931 Observer Table 6.20 Illuminant D65, 1964 Observer 360 0.000 0.000 360 0.000 0.000 360 0.000 0.000 380 0.040 0.000 0.187 380 0.003 -0.011 0.025 400 -0.26 0.004 -0.120 400 0.056								
750 0.002 0.001 0.000 0.000 750 0.001 0.000 0.000 770 0.001 0.000 0.000 760 0.000 0.000 0.000 780 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Check Sum 95.047 100.001 108.882 Check Sum 94.813 99.997 107.304 White Point 95.047 100.000 108.883 White Point 94.813 99.997 107.304 Table 6.18 Illuminant D65, 1931 Observer Table 6.20 Illuminant D65, 1931 Observer 20 mm Interval 100.000 107.304 Table 6.18 Illuminant D65, 1931 Observer 20 mm Interval 100.000 100.000 100.000 360 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000								
760 770 0.001 0.000 0.000 0.000 0.000 0.000 760 780 0.000 0.000 0.000 0.000 107.304 Table 6.18 Illuminant D65, 1931 Observer 20 nm Interval Table 6.20 Illuminant D65, 1964 Observer 20 nm Interval nm m W Illuminant D65, 1964 Observer Table 6.18 Illuminant D65, 1964 Observer Table 6.18 Illuminant D65, 1964 Observer Table 6.18 Wing Illuminant D65, 1964 Observer Table 6.20 Illuminant D65, 1964 Observer Table 6.20 Illuminant D65, 1964 Observer T								
770 780 0.001 780 0.000 0.000 0.000 0.000 0.000 780 0.000 0.000 0.000 0.000 770 780 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 780 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000								
780 Check Sum White Point 95.047 95.047 100.001 108.882 Check Sum White Point 94.813 99.997 107.304 107.304 Table 6.18 Illuminant D65, 1931 Observer nm Interval Table 6.20 Illuminant D65, 1931 Observer nm Interval Table 6.20 Illuminant D65, 1964 Observer nm Interval nm Wy Wy Wy Nam Nm Interval Table 6.20 Illuminant D65, 1964 Observer nm Interval 1 minterval Table 6.20 Illuminant D65, 1964 Observer nm Interval nm Wy Wy Wy Nam Nm MW Niox Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Wiloy Miloy D65, 1964 Observer nm Interval 1 minterval Table 6.20 Illuminant D65, 1964 Observer nm Interval Table 6.20 Illuminant Nm Interval D65, 1964 Observer nm Interval 1 minterval Table 6.20 Illuminant Nm Interval Table 6.20 Illuminant N								
Check Sum White Point 95.047 95.047 100.001 108.882 108.883 Check Sum White Point 94.813 99.997 94.813 107.304 107.304 Table 6.18 Illuminant 20 mm Interval D65, 1931 Observer 20 nm Interval Table 6.20 Illuminant 20 mm Interval D65, 1964 Observer 20 nm Interval Table 6.20 nm Interval Illuminant 20 mm Interval D65, 1964 Observer 20 nm Interval More 20 nm Interval Milluminant 20 mm Interval D65, 1964 Observer 20 nm Interval Milluminant 20 mm Interval D65, 1964 Observer 20 nm Interval Milluminant 20 mm Interval D65, 1964 Observer 20 nm Interval Milluminant 20 mm Interval Milluminant 20 mm Interval Milluminant 20 mm Interval Milluminant 20 mm Interval D65, 1964 Observer 20 nm Interval Milluminant 20 mm Interval <								
White Point 95.047 100.000 108.883 White Point 94.811 100.000 107.304 Table 6.18 Illuminant D65, 1931 Observer 20 mm Interval Table 6.20 Illuminant D65, 1964 Observer nm Interval Table 6.20 mm Interval 100.000 mm Interval 20 mm Interval								
Table 6.18 Illuminant 2065, 1931 Observer 20 nm Interval Table 6.20 Illuminant 20 nm Interval D65, 1964 Observer nm Interval Nom Interval Nom Interval Nom Interval W _{10x} nm Interval								
nm W W W nm W W M W Nm M W W M W M W M W M W M W M W M W M W M W M W M W M W M W M W M W M M W M W M <th>Wille Folia</th> <th>33.047</th> <th>100.000</th> <th>100.000</th> <th>,,,,,,,</th> <th>5</th> <th></th> <th></th>	Wille Folia	33.047	100.000	100.000	,,,,,,,	5		
nm W _x W _y W _z nm W _{10,x} W _{10,y} W _{10,z} 360 0.000 0.000 0.000 360 0.000 0.000 0.000 380 0.040 0.000 0.187 380 0.003 -0.001 0.025 400 -0.026 0.004 -0.120 400 0.056 0.013 0.199 420 2.114 0.041 10.065 420 2.951 0.280 13.768 440 7.323 0.411 36.235 440 7.227 1.042 36.808 460 6.815 1.281 39.090 460 6.578 2.534 37.827 480 1.843 2.797 16.753 480 1.278 4.872 14.226 500 -0.219 6.291 4.727 500 -0.259 8.438 3.254 520 1.003 14.463 1.532 520 1.951 14.030 1.025 540	Table 6.18				Table 6.20			
360 0.000 0	nm				nm			W _{10.7}
380 0.040 0.000 0.187 380 0.003 -0.001 0.025 400 -0.026 0.004 -0.120 400 0.056 0.013 0.199 420 2.114 0.041 10.065 420 2.951 0.280 13.768 440 7.323 0.411 36.235 440 7.227 1.042 36.808 460 6.815 1.281 39.090 460 6.578 2.534 37.827 480 1.843 2.797 16.753 480 1.278 4.872 14.226 500 -0.219 6.291 4.727 500 -0.259 8.438 3.254 520 1.003 14.463 1.532 520 1.951 14.030 1.025 540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580		0.000	0.000			0.000	0.000	0.000
400 -0.026 0.004 -0.120 400 0.056 0.013 0.199 420 2.114 0.041 10.065 420 2.951 0.280 13.768 440 7.323 0.411 36.235 440 7.227 1.042 36.808 460 6.815 1.281 39.090 460 6.578 2.534 37.827 480 1.843 2.797 16.753 480 1.278 4.872 14.226 500 -0.219 6.291 4.727 500 -0.259 8.438 3.254 520 1.003 14.463 1.532 520 1.951 14.030 1.025 540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.004 600						0.003	-0.001	
420 2.114 0.041 10.065 420 2.951 0.280 13.768 440 7.323 0.411 36.235 440 7.227 1.042 36.808 460 6.815 1.281 39.090 460 6.578 2.534 37.827 480 1.843 2.797 16.753 480 1.278 4.872 14.226 500 -0.219 6.291 4.727 500 -0.259 8.438 3.254 520 1.003 14.463 1.532 520 1.951 14.030 1.025 540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.004 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 </th <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.199</td>								0.199
440 7.323 0.411 36.235 440 7.227 1.042 36.808 460 6.815 1.281 39.090 460 6.578 2.534 37.827 480 1.843 2.797 16.753 480 1.278 4.872 14.226 500 -0.219 6.291 4.727 500 -0.259 8.438 3.254 520 1.003 14.463 1.532 520 1.951 14.030 1.025 540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.004 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 </th <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
460 6.815 1.281 39.090 460 6.578 2.534 37.827 480 1.843 2.797 16.753 480 1.278 4.872 14.226 500 -0.219 6.291 4.727 500 -0.259 8.438 3.254 520 1.003 14.463 1.532 520 1.951 14.030 1.025 540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.044 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 680 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
480 1.843 2.797 16.753 480 1.278 4.872 14.226 500 -0.219 6.291 4.727 500 -0.259 8.438 3.254 520 1.003 14.463 1.532 520 1.951 14.030 1.025 540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.004 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700								37.827
500 -0.219 6.291 4.727 500 -0.259 8.438 3.254 520 1.003 14.463 1.532 520 1.951 14.030 1.025 540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.004 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 700 0.088 0.034 0.000 720								
520 1.003 14.463 1.532 520 1.951 14.030 1.025 540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.004 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 720 0.088 0.034 0.000 720								
540 5.723 19.509 0.314 540 6.751 17.715 0.184 560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.004 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 760								
560 11.284 19.106 0.058 560 12.223 17.407 -0.013 580 16.548 15.600 0.027 580 16.779 14.210 0.004 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760								
580 16.548 15.600 0.027 580 16.779 14.210 0.004 600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0								
600 18.528 10.607 0.013 600 17.793 10.121 -0.001 620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 Check Sum 95.046 <t< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
620 14.397 6.240 0.002 620 13.135 5.971 0.000 640 6.646 2.540 0.000 640 5.859 2.399 0.000 660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
640 6.646 2.540 0.000 640 5.859 2.399 0.000 660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
660 2.290 0.842 0.000 660 1.901 0.741 0.000 680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
680 0.574 0.208 0.000 680 0.469 0.184 0.000 700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
700 0.120 0.043 0.000 700 0.088 0.034 0.000 720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
720 0.034 0.012 0.000 720 0.023 0.009 0.000 740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
740 0.007 0.003 0.000 740 0.005 0.002 0.000 760 0.001 0.000 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
760 0.001 0.000 0.000 760 0.001 0.000 0.000 780 0.001 0.000 0.000 780 0.000 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
780 0.001 0.000 0.000 780 0.000 0.000 0.000 Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
Check Sum 95.046 99.998 108.883 Check Sum 94.812 100.001 107.306								
						94.812	100.001	107.306
					White Point	94.811	100.000	107.304

Table 6.21	10	nm Inter			10	nm Inte	
nm	W _x	W,	$\mathbf{W}_{\mathbf{z}}$	nm	$W_{10.x}$	$W_{10,y}$	$\mathbf{W}_{10,\mathbf{z}}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.003	0.000	0.012	370	0.000	0.000	-0.001
380	0.008	0.000	0.038	380	0.001	0.000	0.005
390	0.021	0.001	0.098	390	0.006	0.001	0.026
400	0.120	0.003	0.567	400	0.119	0.013	0.535
410	0.378	0.010	1.798	410	0.745	0.077	3.396
420	1.403	0.040	6.728	420	1.985	0.205	9.410
430	2.820	0.108	13.727	430	2.773	0.330	13.652
440	4.028	0.254	20.146	440	4.009	0.628	20.503
450	4.244	0.467	22.301	450	4.254	0.998	22.859
460	3.677	0.739	21.106	460	3.437	1.417	19.790
470	2.350	1.071	15.552	470	2.112	1.986	14.275
480	1.087	1.642	9.485	480	0.805	2.751	8.104
490	0.313	2.262	4.951	490	0.116	3.374	3.981
500	0.029	3.484	2.929	500	0.008	4.534	2.105
510	0.058	5.371	1.657	510	0.328	5.863	1.043
520	0.599	7.281	0.754	520	1.051	7.042	0.539
530	1.702	9.005	0.430	530	2.203	8.241	0.274
540	2.890	9.564	0.192	540	3.392	8.711	0.116
550	4.265	9.845	0.081	550	4.713	8.858	0.030
560	5.592	9.375	0.034	560	5.997	8.493	-0.003
570	6.853	8.571	0.018	570	7.149	7.773	0.001
580	8.161	7.725	0.015	580	8.154	6.959	0.000
	8.429	6.174	0.009	590	8.303	5.736	0.000
590 600	8.777	5.174	0.003	600	8.386	4.885	0.000
600		4.064	0.003	610	7.580	3.855	0.000
610	8.176	2.980	0.003	620	6.088	2.811	0.000
620	6.737	1.938	0.000	630	4.312	1.879	0.000
630	4.728	1.275	0.000	640	2.843	1.179	0.000
640 650	3.279 1.956	0.735	0.000	650	1.669	0.666	0.000
650 660		0.733	0.000	660	0.940	0.371	0.000
660 670	1.128 0.599	0.219	0.000	670	0.504	0.197	0.000
680	0.393	0.109	0.000	680	0.236	0.092	0.000
690	0.128	0.046	0.000	690	0.102	0.040	0.000
	0.067	0.024	0.000	700	0.051	0.020	0.000
700		0.024	0.000	710	0.025	0.010	0.000
710	0.036 0.014	0.005	0.000	720	0.010	0.004	0.000
720	0.009	0.003	0.000	730	0.006	0.002	0.000
730		0.003	0.000	740	0.003	0.001	0.000
740	0.004	0.002	0.000	750	0.001	0.000	0.000
750	0.002	0.001	0.000	760 760	0.000	0.000	0.000
760	0.001	0.000	0.000	770	0.000	0.000	0.000
770	0.000	0.000	0.000	780	0.000	0.000	0.000
780	0.000	99.999	122.639	Check Sum	94.416	100.002	120.640
Check Sum	94.972 94.972	100.000	122.638	White Point		100.000	120.641
White Point	34.312	100.000	122.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Table 6.22	Illuminant	D75, 193	31 Observer	Table 6.24	Illuminant 20		64 Observer rval
nm	W _x	W _v	W _z	nm	$W_{10,x}$	$\mathbf{W}_{10,\mathbf{y}}$	$\mathbf{W}_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.002
380	0.050	0.000	0.235	380	0.003	-0.002	0.029
400	-0.030	0.005	-0.142	400	0.071	0.015	0.252
400 420	2.571	0.003	12.243	420	3.555	0.339	16.605
		0.051	41.731	440	8.252	1.195	42.050
440	8.429		43.498	460	7.268	2.815	41.829
460	7.578	1.434	43.496 18.114	480	1.358	5.270	15.257
480	1.982	3.045	4.973	500	-0.266	8.912	3.401
500	-0.231	6.706		520	2.006	14.363	1.045
520	1.042	14.911	1.575	540 540	6.791	17.776	0.182
540	5.798	19.708	0.314		12.060	17.154	-0.013
560	11.210	18.953	0.057	560 580	16.311	13.796	0.004
580	16.196	15.245	0.026		17.015	9.671	-0.001
600	17.836	10.201	0.012	600 620	12.327	5.601	0.000
620	13.604	5.892	0.002	620 640	5.403	2.212	0.000
640	6.169	2,358	0.000			0.676	0.000
660	2.102	0.773	0.000	660	1.733	0.676	0.000
680	0.518	0.188	0.000	680	0.421	0.163	0.000
700	0.109	0.039	0.000	700	0.080	0.031	0.000
720	0.031	0.011	0.000	720 740	0.021 0.005	0.008	0.000
740				140	0.005		
	0.007	0.002	0.000				
760	0.007 0.001	0.000	0.000	760	0.001	0.000	0.000
760 780	0.007 0.001 0.000	0.000 0.000	0.000 0.000	760 780	0.001 0.000	0.000 0.000	0.000 0.000
760	0.007 0.001	0.000	0.000	760	0.001	0.000	0.000

Table 6.25	10	F2, 1931 nm Inter		Table 6.27	Illuminant 10	nm Interv	/al
nm	W _x	W,	W,	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.000	370	0.000	0.000	0.000
380	0.001	0.000	0.004	380	0.001	0.000	0.003
390	-0.007	0.000	-0.038	390	-0.020	-0.001	-0.097
400	0.082	0.002	0.390	400	0.130	0.014	0.588
410	0.175	0.005	0.836	410	0.326	0.034	1.494
420	-0.048	-0.010	-0.293	420	0.088	-0.005	0.303
430	2.994	0.139	14.707	430	3.107	0.407	15.491
440	4.235	0.248	21.081	440	4.387	0.658	22.288
450	1.115	0.145	5.992	450	1.169	0.312	6.415
460	1.462	0.290	8.373	460	1.441	0.587	8.294
470	1.020	0.463	6.727	470	0.954	0.895	6.428
480	0.487	0.714	4.211	480	0.383	1.257	3.794
490	0.150	1.063	2.353	490	0.060	1.664	1.973
500	800.0	1.592	1.318	500	0.002	2.156	0.989
510	0.025	2.406	0.738	510	0.151	2.752	0.492
520	0.292	3.473	0.370	520	0.528	3.519	0.267
530	0.656	4.112	0.214	530	0.934	3.956	0.148
540	2.917	9.247	0.176	540	3.551	8.791	0.108
550	5.409	12.968	0.124	550	6.295	12.243	0.056
560	6.217	10.369	0.034	560	6.984	9.828	-0.004
570	10.109	12.644	0.027	570	11.012	11.985	0.000
580	13.826	13.167	0.024	580	14.508	12.451	0.000
590	13.136	9.598	0.014	590	13.512	9.315	0.000
600	12.110	7.113	0.009	600	12.111	7.032	0.000
610	9.497	4.706	0.003	610	9.208	4.671	0.000
620	6.361	2.802	0.001	620	6.030	2.776	0.000
630	3.637	1.484	0.000	630	3.450	1.496	0.000
640	1.867	0.723	0.000	640	1.702	0.704	0.000
650	0.864	0.324	0.000	650	0.767	0.305	0.000
660	0.363	0.134	0.000	660	0.317	0.125	0.000
670	0.140	0.051	0.000	670	0.122	0.048	0.000
680	0.054	0.020	0.000	680	0.045	0.017	0.000
690	0.021	0.008	0.000	690	0.017	0.007	0.000
700	0.008	0.003	0.000	700	0.006	0.002	0.000
710	0.003	0.001	0.000	710	0.002	0.001	0.000
720	0.001	0.000	0.000	720	0.001	0.000	0.000
730	0.001	0.000	0.000	730	0.000	0.000	0.000
740	0.000	0.000	0.000	740	0.000	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum		100.004	67.395	Check Sum		100.002	69.030
White Point		100.000	67.393	White Point		100.000	69.027
Table 6.26	20	nm Inter	val	Table 6.28	20	nm Interv	ai
nm	W _x	W _y	W _z	nm	W _{10,x} 0.000	W _{10,y} 0.000	W _{10,z}
360	0.000	0.000	0.000	360			0.000
380	-0.015	-0.001	-0.075	380	-0.038	-0.005	-0.171
400	0.126	0.006	0.604	400	0.234	0.028	1.066
420 440	0.723 7.638	0.016 0.413	3.459 37.775	420 440	1.022 7.898	0.100	4.782
						1.121	39.933
460 480	2.320	0.518 1.364	13.826	460 480	2.301	1.042	13.716
480	0.931		8.340	480	0.686	2.475	7.408
500	-0.106	3.077	2.271	500	-0.133	4.279	1.613
520 540	0.034 5.711	5.636 18.719	0.725 0.319	520 540	0.444	5.769 17.713	0.511 0.191
					6.953		
560 580	13.144	23.526	0.088	560	14.911	22.281	-0.001
580 600	27.390	25.997	0.044	580	28.878	24.639	0.002
600 630	24.880	13.965	0.017	600 630	24.810	13.883	0.000
620 640	12.425	5.247	0.001	620 640	11.708	5.211	0.000
640 660	3.276	1.258	0.000	640	3.014	1.241	0.000
660 680	0.613	0.222	0.000	660	0.516	0.197	0.000
680 700	0.082	0.030	0.000	680	0.073	0.030	0.000
700	0.014	0.005	0.000	700	0.010	0.004	0.000
720	0.002	0.001	0.000	720	0.001	0.001	0.000
740	0.000	0.000	0.000	740	0.000	0.000	0.000
760 780	0.000	0.000	0.000	760 780	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	99.188	99.999	67.394	Check Sum		100.009	69.050
White Point	99.186	100.000	67.393	White Point	103.279	100.000	69.027

Table 6.29		F7, 1931 nm Inter		Table 6.31	Illuminant 10	F7, 1964 nm Inter	
nm	W,	W,	W,	nm	W _{10.x}	W _{10.v}	W _{10.2}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	-0.001	370	0.000	0.000	0.000
380	0.001	0.000	0.005	380	0.000	0.000	0.001
390	-0.004	0.000	-0.021	390	-0.021	-0.001	-0.101
400	0.105	0.003	0.499	400	0.156	0.016	0.700
410	0.165	0.007	1.265	410	0.138	0.010	2.259
420	0.203	-0.005	0.904				
430			20.179	420	0.461	0.030	2.055
	4.113	0.186		430	4.148	0.535	20.642
440	5.834	0.346	29.065	440	5.863	0.885	29.819
450	2.301	0.278	12.246	450	2.334	0.589	12.685
460	2.650	0.527	15.185	460	2.532	1.034	14.581
470	1.855	0.842	12.235	470	1.682	1.578	11.335
480	0.889	1.303	7.684	480	0.677	2:224	6.711
490	0.273	1.933	4.285	490	0.106	2.935	3.483
500	0.016	2.937	2.432	500	0.004	3.858	1.770
510	0.052	4.495	1.372	510	0.278	4.979	0.888
520	0.537	6.254	0.661	520	0.934	6.139	0.462
530	1.118	6.620	0.329	530	1.518	6.168	0.221
540	3.686	11.541	0.214	540	4.342	10.634	0.126
550	5.727	13.711	0.131	550	6.462	12.551	0.058
560	4.699	7.698	0.021	560	5.108	7.073	-0.006
570	7.124	8.867	0.019	570	7.520	8.149	0.000
580	9.875	9.422	0.017	580	10.048	8.637	0.000
590	8.833	6.445	0.010	590	8.809	6.065	0.000
600	8.895	5.236	0.007	600	8.627	5.018	0.000
610	7.999	3.978	0.003	610	7.521	3.826	0.000
620	6.510	2.879	0.001				
630	4.709	1.929	0.000	620	5.988	2.766	0.000
640	3.068	1.192	0.000	630	4.332	1.886	0.000
650	1.924	0.723	0.000	640	2.715	1.126	0.000
660	1.076	0.397	0.000	650	1.659	0.663	0.000
670	0.417	0.152	0.000	660	0.912	0.359	0.000
680	0.168	0.152	0.000	670	0.354	0.138	0.000
			0.000	680	0.134	0.052	0.000
690	0.073	0.026		690	0.058	0.022	0.000
700	0.029	0.011	0.000	700	0.023	0.009	0.000
710	0.013	0.005	0.000	710	0.009	0.003	0.000
720	0.005	0.002	0.000	720	0.003	0.001	0.000
730	0.002	0.001	0.000	730	0.001	0.001	0.000
740	0.001	0.000	0.000	740	0.001	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.042	100.002	108.747	Check Sum	95.791	99.999	107.689
White Point	95.041	100.000	108.747	White Point		100.000	107.686
Table 6.30	Illuminant	F7. 1931	Observer	Table 6.32	Illuminant	F7. 1964	Observer
		nm Inter	· - •	, and o <u>-</u>	20	nm Inter	
nm	W_{x}	W .,	W,	nm	W _{10,x}	W _{10.y}	W _{10.2}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	-0.007	-0.001	-0.033	380	-0.036	-0.005	-0.161
400	0.121	0.007	0.578	400	0.246	0.031	1.106
420	1.323	0.028	6.323	420	1.824	0.177	8.525
440	10.790	0.584	53.336	440	10.807	1.533	54.683
460	4.665	0.963	27.365	460	4.506	1.899	26.455
480	1.708	2.492	15.213	480	1.222	4.373	13.104
500	-0.218	5.611	4.189	500	-0.261	7.596	2.884
520	0.379	11.237	1.309	520			0.890
540	7.709	23.952	0.351	540 540	1.147 9.029	11.062	0.199
						21.938	
560 580	10.453	18.318	0.071	560 580	11.459	16.827	0.000
580	18.791	17.848	0.030	580	19.208	16.389	0.002
600	17.996	10.198	0.013	600	17.412	9.821	0.001
620	13.114	5.650	0.001	620	12.049	5.451	0.000
640	5.970	2.291	0.000	640	5.311	2.182	0.000
660	1.965	0.720	0.000	660	1.641	0.638	0.000
680	0.204	0.074	0.000	680	0.169	0.067	0.000
700	0.073	0.026	0.000	700	0.055	0.021	0.000
720	0.003	0.001	0.000	720	0.001	0.000	0.000
740	0.003	0.001	0.000	740	0.002	0.001	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.042	100.000	108.746	Check Sum		100.001	107.686
White Point	95.041	100.000	108.747	White Point		100.000	107.686

Table 6.33	10	nm Interv	al	Table 6.35	10	nm Interv	al
nm	W_x	W _y	W_z	nm	$\mathbf{W}_{10,\mathbf{x}}$	$W_{10,y}$	$\mathbf{W}_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.000	370	0.000	0.000	0.000
380	0.001	0.000	0.005	380	0.001	0.000	0.004
390	-0.009	0.000	-0.048	390	-0.019	-0.001	-0.088
400	0.061	0.002	0.291	400	0.102	0.011	0.460
410	0.107	0.003	0.511	410	0.196	0.021	0.897
420	-0.205	-0.014	-1.044	420	-0.134	-0.028	-0.756
430	2.800	0.130	13.758	430	2.908	0.381	14.502
440	4.264	0.251	21.231	440	4.426	0.666	22.492
450	1.277	0.164	6.849	450	1.339	0.355	7.327
				460	1.348	0.566	7.783
460	1.367	0.280	7.848			0.500	
470	0.695	0.255	4.495	470	0.657		4.313
480	0.435	0.754	3.956	480	0.329	1.316	3.539
490	0.341	2.063	4.778	490	0.176	3.206	4.053
500	0.004	1.088	0.792	500	-0.006	1.464	0.581
510	0.007	0.469	0.054	510	0.039	0.510	0.020
520	-0.001	0.229	0.032	520	0.015	0.238	0.024
530	-0.925	-2.067	0.000	530	-1.070	-1.951	0.005
540	9.613	29.254	0.535	540	11.643	27.854	0.327
550	11.438	28.030	0.300	550	13.374	26.520	0.149
560	0.196	-0.695	-0.031	560	0.159	-0.660	-0.023
570	0.602	0.870	0.002	570	0.674	0.822	0.000
580	7.021	6.565	0.012	580	7.362	6.226	0.000
590	9.070	6.866	0.011	590	9.374	6.653	0.000
600	4.247	2.617	0.004	600	4.309	2.597	0.000
610	29.903	14.812	0.010	610	29.011	14.710	0.000
620	13.567	6.132	0.003	620	12.930	6.080	0.000
630	3.446	1.329	0.000	630	3.263	1.353	0.000
			0.000	640	0.571	0.232	0.000
640	0.630	0.240		650	0.473	0.232	0.000
650	0.534	0.199	0.000			0.103	0.000
660	0.297	0.110	0.000	660	0.261		
670	0.084	0.031	0.000	670	0.073	0.029	0.000
680	0.043	0.016	0.000	680	0.036	0.014	0.000
690	0.028	0.010	0.000	690	0.023	0.009	0.000
700	0.013	0.005	0.000	700	0.010	0.004	0.000
710	0.020	0.007	0.000	710	0.015	0.006	0.000
720	0.001	0.000	0.000	720	0.001	0.000	0.000
730	0.000	0.000	0.000	730	0.000	0.000	0.000
740	0.000	0.000	0.000	740	0.000	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum		100.005	64.354	Check Sum		100.006	65.609
		100.000	64.350	White Point		100.000	65.607
Wille Folia	100.502	100.000	01.000	***************************************			
Table 6.34	Illuminant 20	F11, 1931 nm Interv	Observer al	Table 6.36	Illuminant 20	F11, 1964 nm Interv	
nm	W,	W _v	w,	nm	$W_{10,x}$	W _{10.y}	W _{10,z}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	-0.014	-0.001	-0.076	380	-0.029	-0.005	-0.142
400	0.100	0.005	0.509	400	0.181	0.026	0.869
420	0.100	-0.003	1.093	420	0.414	0.020	1.729
420 440	8.207	0.419	40.877	440	8.515	1.220	43.348
		0.419					
460	1.559		9.228	460	1.544	0.977	9.002
480	0.600	0.507	8.258	480	0.319	1.693	7.470
500	1.524	7.107	4.371	500	1.673	8.341	3.484
520	-5.091	-14.004	-0.965	520	-5.992	-13.547	-0.739
540	20.536	58.821	1.039	540	24.601	55.948	0.625
560	3.973	7.524	-0.034	560	4.494	7.060	-0.051
580	9.894	9.370	0.032	580	10.526	8.885	0.014
600	24.253	13.848	0.011	600	24.099	13.702	-0.004
620	37.637	17.208	0.009	620	36.033	17.112	0.001
640	-4.377	-2.270	-0.002	640	-4.279	-2.247	0.000
660	2.164	0.978	0.001	660	2.026	0.952	0.000
680	-0.411	-0.200	0.000	680	-0.397	-0.198	0.000
700	0.172	0.075	0.000	700	0.155	0.072	0.000
720	~0.025	-0.012	0.000	720	-0.025	-0.013	0.000
740	0.006	0.003	0.000	740	0.025	0.003	0.000
760	-0.001	-0.001	0.000	760	-0.001	-0.003	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	100.962	99.999	64.351	Check Sum	103.863	99.999	65.606
		100.000	64.350	White Point		100.000	65.607
THING FOILI	100.902	100.000	07.000	Winte FORM	100.003	100.000	55.607

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).