Standard Test Method for
Assay of Di-tert-Butyl Peroxide Using Gas Chromatography

This standard is issued under the fixed designation E 475; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the assay of di-tert-butyl peroxide using gas chromatography. It is applicable to commercial di-tert-butyl peroxide which may contain small amounts of isobutylene, tert-butanol, tert-butyl hydroperoxide, triisobutenes, and water as impurities.

1.2 Review the current appropriate Material Safety Data Sheets (MSDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 9.

2. Referenced Documents

2.1 ASTM Standards:
E 180 Practice for Determining the Precision of ASTM Methods for Analysis and Testing of Industrial Chemicals
E 203 Test Method for Water Using Karl Fischer Reagent

3. Terminology

3.1 Definitions:
3.1.1 active oxygen—the oxidizing power present in organic peroxides expressed as oxygen (equivalent weight = 8.00).

4. Summary of Test Method

4.1 A sample is diluted in dodecane and injected into a gas chromatograph containing a wide-bore capillary column with a nonpolar stationary phase. A temperature program is used to separate di-tert-butyl peroxide from impurities using helium as a carrier gas. The flame ionization detector response, proportional to component concentration, is recorded and the peak areas are measured. The concentration of di-tert-butyl peroxide is determined by area normalization after correcting for the area of the solvent peak. The assay of di-tert-butyl peroxide is corrected for water, which is determined using a separate Karl Fischer titration since water is not detected using flame ionization detection. The area percent of di-tert-butyl peroxide is assumed to be equal to weight percent.

5. Significance and Use

5.1 Di-tert-butyl peroxide is widely used as a catalyst and reaction initiator. Knowledge of the peroxide content is important in such applications. This test method provides a procedure for determining the active peroxide content of commercial di-tert-butyl peroxide.

6. Interferences

6.1 Interferences will be encountered if other components are present in the sample that have the same retention time as di-tert-butyl peroxide.

7. Apparatus

7.1 Instrumentation—Gas chromatograph, capable of column oven temperature programming from 40 to 160°C at a rate of 10°C/min and from 160 to 240°C at a rate of 35°C/min.
7.2 Injection System—Glass-lined sample injection port, maintained at 150°C.
7.3 Sample Introduction—Microliter syringes or automatic syringe injectors, capable of delivering 0.5 µL of a liquid sample, have been used successfully.
7.4 Detection—Flame ionization detector, maintained at 250°C.
7.5 Data Acquisition System—Electronic data acquisition and area integration capabilities are recommended.
7.6 Chromatographic Column—30 m wide-bore capillary column (0.53 mm inside diameter) with a 5.0 µm dimethylpolysiloxane stationary phase.

8. Reagents and Materials

8.1 Carrier Gas (Helium), chromatographic grade.
8.2 Hydrogen, chromatographic grade.
8.3 Compressed Air, oil-free.
8.4 Dodecane, for use as a sample diluent, 99 % or greater chromatographic purity.

9. Hazards

9.1 Organic peroxides are strong oxidizing agents and present potential fire and explosion hazards. While di-tert-butyl peroxide is one of the more stable peroxides, contact with...
reducing agents and sources of heat, sparks, or open flames must be avoided. Organic peroxides in general are irritating to
the skin, eyes, and mucous membranes. Avoid bodily contact
and handle only in a well-ventilated area.

10. Procedure

10.1 Install the column in the chromatograph. The operating
conditions required to give the desired separation are given in
Table 1. Set the helium flow to 10.0 mL/min and the oven
temperature to 40°C and allow sufficient time for the instru-
ment to equilibrate as indicated by a stable baseline.

10.2 Prepare test samples by transferring approximately 0.2
g of di-tert-butyl peroxide into a flask or vial and add
approximately 10 mL of dodecane. Mix well.

10.3 Inject 0.5 µL of the sample solution into the chromato-
graph. A typical chromatogram is shown in Fig. 1 and Fig. 2.

10.4 Determine the water content of the sample using a Karl
Fischer titration in accordance with Test Method E 203.

NOTE 1—Water can be determined in samples of di-tert-butyl peroxide
using Test Method E 203 without pretreatment with SO2 if the sample
temperature is maintained below 20°C during the titration. If the sample
temperature cannot be maintained below 20°C, the sample must be
pretreated by bubbling SO2 through the sample for several minutes prior
to titrating.

11. Calculation

11.1 Measure the peak areas and calculate the total area by
summing the individual areas for all peaks except for that of
the solvent peak, as follows:

\[A_t = A_1 + A_2 + A_3 + ... + A_n \]

(1)

where:

- \(A_t \) = total area (excluding the solvent peak), and
- \(A_{i,...,n} \) = area of individual component peaks.

11.2 Calculate the area percent of di-tert-butyl peroxide as
follows:

\[\text{di-tert-butyl peroxide, area %} = \frac{A_D (100 - W)}{A_t} \]

(2)

where:

- \(A_D \) = area of the di-tert-butyl peroxide peak,
- \(A_t \) = sum total of all component peaks (except solvent),
- \(W \) = weight percent of water in the sample, as determined
 in 10.4.

The area percent of di-tert-butyl peroxide is assumed to be
equal to the weight percent.

11.3 If desired, calculate the weight percent of active
oxygen due to di-tert-butyl peroxide as follows:

\[\text{active oxygen, weight %} = \frac{C \times 8.000}{73.11} \]

(3)

where:

- \(C \) = di-tert-butyl peroxide, weight %.

12. Report

12.1 Report the purity of the di-tert-butyl peroxide to the
nearest 0.01 %.

13. Precision and Bias

13.1 Precision:

13.1.1 Repeatability (Single Analyst)—The coefficient of
variation for a single determination has been estimated to be
0.05 % relative at 18 degrees of freedom (DF). The 95 % limit
for the difference between two such runs is 0.13 % relative.

13.1.2 Laboratory Precision (Within-Laboratory, Between-
Days Variability, Formerly Called Repeatability)—The coeffi-
cient of variation of results (each the average of duplicates)
obtained by the same analyst on different days has been
estimated to be 0.04 % relative at 9 DF. The 95 % limit for the
difference between two such averages is 0.10 % relative.

13.1.3 Reproducibility (Multilaboratory)—The coefficient
of variation of results (each the average of duplicates) obtained
by analysts in different laboratories has been estimated to be
0.24 % relative at 8 DF. The 95 % limit for the difference between two such averages is 0.67 % relative.

NOTE 2—The precision statements are based on an interlaboratory
study performed in 1995 on one sample of di-tert-butyl-peroxide.

13.2 Bias—The bias of this test method has not been
determined due to the unavailability of suitable reference
materials.

14. Keywords

14.1 active oxygen; di-tert-butyl peroxide; gas chromatog-
raphy; peroxides

4 Supporting data are available from ASTM Headquarters. Request RR:E15-1044.